首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
酸性土壤活性锰与pH、Eh关系及其生物反应   总被引:13,自引:1,他引:13  
以灰潮土为对照研究了湖北省 3种有代表性的酸性土壤在盆栽条件下 ,不同酸化处理土壤pH、Eh与活性锰的动态变化关系。结果表明 ,供试的棕红壤和黄棕壤酸化后 ,在盆栽油菜生长的前 70d内 ,土壤交换性锰含量增加 ,土壤交换性锰与碳酸盐结合态锰呈一定负相关 ,且交换性锰含量增加明显滞后于碳酸盐结合态锰的增加 ;30~90d内 ,碳酸盐结合态锰与易还原性锰呈一定正相关。虽然土壤pH和Eh在作物生长季节不断变化 ,但其 pe +pH仍维持不变。土壤 pH、Eh与交换性锰的关系能较好地反映土壤锰的转化机制 ,在进一步酸化时 ,供试的棕红壤MnO2/Mn2+电对是该土壤锰化合物变化的主要形式 ,MnO2是变化过程的电子受体。供试的黄棕壤则以MnOOH MnO电对为其锰化合物氧化还原的主要形式 ,土壤酸化对其锰电对电位的影响没有直接引起Mn2+ 的变化 ;Mn2+的增加可能是MnO在该过程中进一步溶解所致。试验结果还表明 ,油菜体内的锰铁比随锰中毒程度的加强而急剧增加 ,这一趋势远高于土壤锰铁比的增加。  相似文献   

2.
Exchangeable and soluble soil aluminum (Al) is limiting plant growth in many soils worldwide. This study evaluated the effects of increasing rates of dolomite and magnesium carbonate (MgCO3) on Al3+, pH, dissolved organic carbon, cations, anions, and Al speciation on oil palm Deli dura × AVROS pisifera root growth. Dolomite and MgCO3 additions significantly raised linearly soil solution pH, magnesium (Mg2+), nitrate (NO3 ?) and chlorine (Cl?) concentrations; exponentially decreased the activity of phytotoxic Al species [aluminum (Al3+), aluminum sulfate (Al2SO4), and aluminum fluoride (AlF3)]; and reduced manganese (Mn) concentration and activity. High activity of those species exponentially reduced root dry weight. Optimum oil palm growth was achieved at: <50 μM monomeric Al, < 30 μM Mn, and <0.20 unit of the ratio Al+Mn to calcium (Ca)+Mg. High activity of Al species and Mn in acidic soil solution cause significant reduction of the root growth. Soil acidity alleviation either with dolomite or MgCO3 mitigates the toxic effect of Al and Mn.  相似文献   

3.
The purpose of the study was to determine plant availability of boron (B) and relaxation of soil acid to rape seedling exhibited by B-doped goethite in acidic soil. For this purpose, two kinds of B-doped goethite were synthesized: one was goethite with adsorbed B prepared by reacting goethite with borax solution, and the other was goethite with occluded B by synthesizing goethite in the presence of boric acid. The reaction process in soil-like natural minerals of the B-doped goethite was simulated in a rhizobox culture system. Results showed that the B-doped goethite can provide available B for rape growth. Its addition on acidic soil can alleviate soil acidification by increasing soil pH and decreasing soil exchangeable acid. The observation that nutrient uptake was improved supports the view that the B-doped goethite improved soil quality, as also proved by the increase of root morphology and dry weight.  相似文献   

4.
施石灰石粉后红壤化学性质的变化   总被引:23,自引:0,他引:23       下载免费PDF全文
孟赐福  傅庆林 《土壤学报》1995,32(3):300-307
红壤施用石灰10年的田间试验和盆栽试验的结果表明施用石灰能降低土壤酸度,增加土壤中效换性Ca和Mg含量,从而导致作物产量的提高;底土酸度的降低随时间的推移和石灰用量的增大而增强,每倾施用3.25-15.0吨石灰石粉的降酸和增产效应至少可维持10年以上。  相似文献   

5.
Mixtures of peat and substrate clays are commonly used as growth media for horticultural plant production. A quality protocol for substrate clays defines a threshold value of active manganese (Mnact = sum of exchangeable and easily reducible Mn) in substrate clays of < 500 mg kg–1 to prevent toxic reactions of plants. This threshold value was tested in experiments with peat‐clay blends under various growth conditions, and nutrient solution experiments were additionally conducted to investigate the effects of silicic acid and dissolved organic matter on the occurrence of Mn toxicity. Common bean (Phaseolus vulgaris L.) and hydrangea (Hydrangea macrophylla) plants were cultivated in different peat‐clay substrates and in peat under different moisture and pH levels. The clays varied in their Mnact content from 4–2354 mg kg–1. The results of the substrate experiments reveal that a threshold value for Mn in substrate clays is not justified, as plants grown in all peat‐clay substrates did not develop any Mn toxicity even at high substrate moisture or low pH conditions which are known to increase the Mn availability. The extraction of active Mn did not well reflect the Mn concentrations in plant dry matter and substrate solution. As plants tolerated high Mn concentrations in the substrate solution compared to the nutrient solution without toxicity symptoms, the influence of silicic acid and dissolved organic matter (DOM) on Mn toxicity was characterized in a nutrient‐solution experiment. Manganese toxicity was clearly diminished by silicic acid application, but not by DOM. The former effect probably explains the tolerance of bean plants in peat substrates where high silicon concentrations in the substrate solution were observed. Peat‐clay blends even provided up to five times more silicon to plants than pure peat.  相似文献   

6.
酸化及施碳酸钙对土壤各形态锰的影响   总被引:7,自引:1,他引:7  
以灰潮土为对照 ,研究了华中地区 3种已明显发生酸化的土壤在施用碳酸钙前后各形态锰的变化情况。结果表明 ,已酸化的红壤、棕红壤和黄褐土施用碳酸钙降低了土壤酸度 ,土壤交换态锰随 pH值上升而降低 ,其降幅分别为 42 % ,49%和 39% ;其它形态锰的增减随各土而异 ,残留态锰较稳定 ,变幅小。作为对照 ,灰潮土虽与前 3种已酸化土壤一样种植过多茬作物 ,但其交换态锰含量仍甚微。无论是否施用碳酸钙 ,在灰潮土的交换态锰、碳酸钙结合态锰和易还原态锰 3种形态锰中 ,易还原态锰占 80 %以上 ,说明易还原态锰是其活性锰的主要部分  相似文献   

7.
Boron (B), taken up by plants, comes mainly from boron adsorbed by soil constituents, in particular by metal hydrous oxides, organic matter, and edges of clay minerals. The extent and availability of B adsorbed or occluded by soil minerals is unknown due to the lack of a methodology for probing activity of this type of boron. In this study, 10B labeled boron‐containing goethites, i.e., goethite with adsorbed B (ad‐B‐goethite) and occluded B (oc‐B‐goethite), were added individually to an Ultisol for pot experiments to probe soil B bioavailability. The fraction of soil B extracted from B‐containing goethite showed a sigmoidal extraction pattern similar to that of B adsorbed on soil minerals. The rape seedling uptake of B from ad‐B‐goethite treatment of soil was close to that from soil background (50%), while that from oc‐B‐goethite treatment of soil was about 66%. The B absorbed from both B‐containing goethite and soil was mainly accumulated in the shoot; less than a tenth of the B was accumulated in the root. In summary, the behavior of B in B‐containing goethite was generally similar to that of soil B, indicating that B containing goethite can be used to probe migration of B from soil to plant.  相似文献   

8.
蒋剑敏  仓东卿 《土壤学报》1964,12(3):320-329
“瓦碱”是一种碱化的浅色草甸土,零星分布于我国黄淮海平原的盐碱土地区。瓦碱的土表板平,呈灰白色,没有盐霜或很少盐霜。早春干旱时,土表易于板结,抑制幼苗生长,常引起缺苗现象,土壤板结严重时,甚至全部死亡,形成光板地。瓦碱上难以出苗,卽使出苗,苗也弱,分蘖少,但是出苗以后植株的生长此在附近盐土上好得多,因此羣众说:“瓦碱发老苗,不发小苗”。黄淮海平原内瓦碱的情况已有报导[1-6],但少有详细的理化研究。本文拟就瓦碱苗弱和不出苗的原因及其改良原则进行初步研究。  相似文献   

9.
Chemical speciation and bioaccumulation factor of iron (Fe), manganese (Mn), and zinc (Zn) were investigated in the fractionated rhizosphere soils and tissues of sunflower plants grown in a humic Andosol. The experiment was conducted for a period of 35 days in the greenhouse, and at harvest the soil system was differentiated into bulk, rhizosphere, and rhizoplane soils based on the collection of root-attaching soil aggregates. The chemical speciations of heavy metals in the soil samples were determined after extraction sequentially into fractions classified as exchangeable, carbonate bound, metal–organic complex bound, easily reducible metal oxide bound, hydrogen peroxide (H2O2)–extractable organically bound, amorphous mineral colloid bound, and crystalline Fe oxide bound. Iron and Zn were predominantly crystalline Fe oxide bound in the initial bulk soils whereas Mn was mainly organically bound. Heavy metals in the exchangeable form accumulated in the rhizosphere and rhizoplane soils, comprising <4% of the total content, suggesting their relatively low availability in humic Andosol. Concentrations of organically bound Fe and Mn in soils decreased with the proximity to roots, suggesting that organic fraction is the main source for plant uptake. Concentrations of Mn and Zn in the metal–organic complex also decreased, indicating a greater ability of sunflower to access Mn from more soil pools. Sunflower showed bioaccumulation factors for Zn, Fe, and Mn as large as 0.39, 0.05, and 0.04 respectively, defining the plant as a metal excluder species. This result suggests that access to multiple metal pools in soil is not necessarily a major factor that governs metal accumulation in the plant.  相似文献   

10.
土壤中锌的形态分布及其影响因素   总被引:32,自引:1,他引:32       下载免费PDF全文
  相似文献   

11.
外源铜和镍在土壤中的化学形态及其老化研究   总被引:2,自引:0,他引:2  
采用连续提取法测定了外源铜和镍进入田间土壤后的化学形态分布,比较研究了这2种重金属在3种不同类型土壤(红壤,水稻土和潮土)中随老化时间的形态转化和分布.结果表明,外源铜以残留态(40%~60%)和EDTA可提取态(40%)为主;随老化时间,EDTA可提取态、易还原锰结合态及铁铝氧化态向残留态转化;外源镍在酸性红壤中以可交换态(40%)和残留态(30%~50%)为主,在中性水稻土中以EDTA可提取态(30%)和残留态(30%~50%)为主,在碱性潮土中以铁铝氧化态(20%)和残留态(40%)为主.随老化时间,水溶态、可交换态、EDTA可提取态等向残留态转化.土壤pH较低时水溶态和可交换态含量较高,但是同时随老化时间的降低量也明显;pH较高时有利于易还原锰结合态和有机质结合态的转化.  相似文献   

12.
为了解多年种植烤烟的山地土壤酸度特征,研究了湘西自治州的土壤酸度指标特征及其关系以及植烟年限和土壤类型、有机质、黏粒对土壤酸度的影响。结果表明:(1)植烟年限对土壤酸度的影响大于土壤类型;随植烟年限增加,土壤pH下降,潜性酸度增加,黄棕壤土的交换性盐基、阳离子交换量和盐基饱和度下降。(2)土壤pH与交换性酸为幂函数关系,交换性铝是土壤交换性酸的主体,土壤交换性酸强度随交换性铝及其相对比例的增加而增加。(3)土壤pH与交换性盐基、阳离子交换量、盐基饱和度为二次曲线关系,当pH6时,随土壤pH增加,交换性盐基和阳离子交换量下降,盐基饱和度增加;当pH6时,随土壤pH增加,交换性盐基和阳离子交换量增加,盐基饱和度变幅小。(4)土壤交换性盐基离子主要是交换性钙,其次是交换性镁;对土壤pH影响较大的盐基离子是交换性钙。(5)有机质和黏粒主要影响土壤pH、阳离子交换量、交换性盐基和交换性钙。  相似文献   

13.
The purpose of the study was to determine the effect of boron (B)-permeated goethite on soil B fractionation and the availability of this B fraction to rape seedlings (Brassica napus L.). For this purpose, goethite and two kinds of B-permeated goethite were synthesized and their processes in soil were simulated. Plant availability of B adsorbed or occluded on goethite was investigated with rape seedling. Results found that both ad-B-goethite and oc-B-goethite significantly increased the water soluble B (WS-B), specifically adsorbed B (SPA-B), B occluded in amorphous iron (Fe) and aluminum (A1) oxides (AMO-B) and crystalline Fe and Al oxides (CRO-B) content in the soil, compared with ordinary goethite. Also the B-permeated goethites improved B content of the rape seedling and therefore enhanced the rape shoot and root dry weight. Correlation analysis demonstrated that water soluble B (WS-B) plays the most important role in rape B uptake and accumulation, moreover the specifically adsorbed B (SPA-B), nonspecifically adsorbed B (NSA-B), amorphous Fe and A1 oxides (AMO-B) was also significant correlated with the B content or B accumulation of the rape.  相似文献   

14.
Relationship between Mn in Oat Plants and Soils The Mn concentration of oat plants in the stage of appearing panicles from agricultural fields were put in relationship to extractable Mn. With soils of sandy texture (clay < 4%, pH 4,7–6,6) a correlation existed between Mn in plants and n-MgCl2 extractable Mn, however, no additional relationship with the easyly reducible Mn. A negative correlation between pH and Mn in plants was traced to the pH dependence of exchangeable Mn. With soils of loess (clay 5–28%, pH 6,6–7,7) a significant correlation existed between Mn in plants and easyly reducible Mn fractions (methods by Schachtschabel: extracting solutions containing Na2SO3, pH 8,0, or Na2SO3 + NaHSO3, pH 5,5), however, only if an interrelationship with the pH of the soil was allowed for. The higher the pH of the soil the lower its level of extractable Mn might be, to reach a certain concentration of Mn in plants. This relationship seems to be caused through a modifying influence of the soil pH on the reducing power of the extracting solutions.  相似文献   

15.
《Journal of plant nutrition》2013,36(10):2243-2259
ABSTRACT

Compost significantly enhanced strawberry (Fragaria × ananassa Duch.) plant growth and fruit quality when used as a soil supplement. Adding half strength of Peter nutrient solution (50% fertilizer) to a mixture of 50% soil plus 50% compost was very effective in significantly increasing plant dry weight to approximately double that of controls (without compost), fruit yield by more than 70%, and fruit size by 15% compared to controls in the two strawberry cultivars (“Allstar” and “Honeoye”). Compost and fertilizer also significantly enhanced leaf chlorophyll content. Nitrate reductase activity significantly increased in leaves and roots with the greatest increases when using 50% soil plus 50% compost. Strawberry plants grown with compost had significantly higher levels of nitrogen (N) and potassium (K), but lower levels of manganese (Mn), iron (Fe), molybdenum (Mo), and nickel (Ni) in fruit of both “Allstar” and “Honeoye”. Adding compost to the soil mix did not change zinc (Zn) and cadmium (Cd) levels. Use of compost also significantly increased levels of organic acids (malic and citric acid), sugars (fructose, glucose, and total sugars), soluble solids content, and titratable acidity content in both cultivars. The results indicate that the use of compost can reduce the amount of fertilizer required for optimum strawberry plant growth.  相似文献   

16.
Abstract

The study aims at determining the cobalt retention properties of various soil components. Therefore, cobalt (Co) sorptions and extractions were carried out using an Oxisol sample before (untreated) and after successive removal of organic matter and active manganese (Mn) oxides (H2O2‐treated) and iron (Fe) oxides (H2O2+CBD‐treated). A synthetic goethite was included for comparison. Sorption of the four sorbents was determined over a range of Co concentrations (initially 10‐8 M to 10‐4 M), pH values (3 to 8) and reaction times (2 hours to 504 hours). The Co species sorbed was Co(ll), since oxygen exclusion during sorption had no effect on the amount sorbed. The pH‐dependent sorption curve (sorption edge) was shifted to lower pH at decreasing initial Co concentration and increasing reaction time. The displacements, in particular of the sorption edges corresponding to the lowest initial Co concentrations, to successively higher pH following removal of Mn oxides, organic matter and Fe oxides could be attributed to sorption onto sites of decreasing Co affinity [Mn oxides (and organic matter) > Fe oxides > kaolinite]. Extractions of sorbed Co at pH 5.5–7.5 with 2 M HCI showed that the extractability decreased with increasing sorption time and decreasing initial Co concentration. The untreated and H2O2‐treated soil samples retained sorbed Co at least as firmly as the synthetic goethite, whereas the H2O2+CBD‐treated sample (kaolinite) was clearly less effective. The results emphasized the importance of the soil Mn and Fe oxides for Co retention in soils but also the necessity of taken interior sorption sites into consideration.  相似文献   

17.
韩庆忠 《土壤》2008,40(4):602-607
通过对三峡库区脐橙产业分布典型区域脐橙园土壤养分含量和酸度指标的系统调查,分析了三峡库区脐橙园土壤有机质和主要大量元素、微量元素含量状况和土壤酸碱度现状,进一步采用相关性和主成份分析法,揭示了土壤有机质、主要大量养分元素变化与土壤酸化过程的相互关系.结果表明,该区域三峡库区紫色砂岩分布区脐橙园土壤有机质含量分布不均、多数处于较低水平,且具有缺N、低p、富K的特点;土壤速效态N、P、K含量差异较大,65%土壤有效态N缺乏,45%左右土壤速效P、K含量偏低;有效Zn缺乏的土壤占有较高比例;随着脐橙种植年限的增加,土壤有效态养分含量呈提高的趋势,但是,由于化学肥科的长期过量施用,土壤酸化趋势明显,如果不采取合理的对策,容易引起土壤退化.采用"增库、调流"措施,合理调整有机、无机肥的比例,结合叶片诊断补充微量元素,利用秸秆进行园地覆盖,套种饲草,施用石灰、磷矿粉、煤渣类土壤改良剂,是改普土壤结构、协调土壤养分供应、缓解土壤酸化的重要措施.  相似文献   

18.
钙盐诱导下土壤锰和铁的释放及其对胡椒的生物有效性   总被引:9,自引:7,他引:9  
Releases of manganese and iron ions from an albic soil (Albic-Udic Luvisol), a yellow-red soil (Hap-Udic Ferrisol) and a yellow-brown soil (Arp-Udic Luvisol) induced by calcium salt addition and their bioavailability to pepper (Capsicum frutescens L.) were studied in a pot experiment. Addition of Ca(NO3)2 decreased soil pH and increased both exchangeable and DTPA (diethylenetriamine pentaacetic acid)-extractable Mn and Fe in soils. Meanwhile, total Mn accumulation in the shoots of Capsicum frutescens L. on the salt-treated soils increased significantly (P< 0.01) compared with the control, suggesting that salt addition to soil induced Mn toxicity in Capsicum frutescens L. Although exchangeable and DTPA-extractable Fe increased also in the salt-treated soils, Fe uptake by the shoots of Capsicum frutescens L. decreased. The effect of added salts in soils on dry matter weight of pepper varied with the soil characteristics, showing different buffer capacities of the soils for salt toxicity in an order of yellow-brown soil > albic soil > yellow-red soil. Fe/Mn ratio in shoots of Capsicum frutescens L. decreased with increasing salt addition for all the soils, which was ascribed to the antagonistic effect of Mn on Fe accumulation. The ratio of Fe/Mn in the tissue was a better indicator of the appearance of Mn toxicity symptoms than Mn concentration alone.  相似文献   

19.
研究了中国科学院红壤生态实验站长期定位施肥试验5种不同施肥处理对土壤pH、土壤交换性氢、铝的影响,及其与土壤有机质之间的相关性。结果表明,长期不同施肥处理均提高了土壤pH,降低了土壤交换性氢和交换性铝含量,改良了红壤的酸性。施用有机肥(M)、有机肥+菌剂(BM)、有机肥+菌剂+微量元素(BMT)显著优于施用化肥(F)和化肥+微量元素(TF)的处理。添加微量元素和有效菌剂后土壤交换性氢、铝含量略有提高。土壤有机质与土壤pH呈显著正相关,与土壤交换性氢含量的相关性不显著,而与土壤交换性铝含量呈显著负相关。随着土壤有机质含量的增加,土壤交换性氢占土壤交换性酸度比例越大。长期施用有机肥、提高土壤有机质含量是改良红壤酸度和减轻铝毒较好的农艺措施。  相似文献   

20.
STUDIES ON SOIL COPPER   总被引:11,自引:0,他引:11  
Adsorption isotherms were determined for the specific adsorption of copper by soils and soil constituents. Adsorption was found to conform to the Langmuir equation. The Langmuir constants, a (adsorption maximum) and b (bonding term), were calculated. Soils were found to have specific adsorption maxima at pH 5.5 of between 340 and 5780 μg g?1, and a multiple regression analysis revealed that organic matter and free manganese oxides were the dominant constituents contributing towards specific adsorption. Adsorption maxima for soil constituents followed the order manganese oxides > organic matter > iron oxides > clay minerals, which supported the findings for whole soils. The cation exchange capacities (non-specific adsorption) of the test soils were found to be far greater than the specific adsorption maxima. However, evidence suggests that, for the relatively small amounts of copper normally present in soils, specific adsorption is the more important process in controlling the concentration of copper in the soil solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号