首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Abstract

Apple seedlings from a greenhouse pot experiment, investigating the effects of copper (Cu) and peat amendments on crop performance growing on a Cu‐and potassium (K)‐deficient soil, were characterized for a range of major and trace elements. Concentrations of barium (Ba), calcium (Ca), Cu, iron (Fe), K, magnesium (Mg), manganese (Mn), molybdenum (Mo), sodium (Na), rubidium (Rb), strontium (Sr), and zinc (Zn) in leaf and stem tissues were correlated with treatment and tissue. Addition of Cu, peat and the nature of the tissue had significant impacts on many element concentrations. Generally, increasing Cu resulted in elevated Ba, Fe, Mo, and Sr as well as Cu levels. The presence of peat resulted in reduced levels, generally in both leaf and stem, of Ba, Mg, Mn, Rb, and Zn and increased levels of Fe, K, and Mo. Finally, the vast majority of elemental concentrations were higher in leaf tissue rather than stem, with the exceptions of Na and Zn. Elemental concentration ranges, over all tissues and conditions of added Cu and peat were (mg kg‐1) Ba 9–49, Ca 6380–16340, Cu 2–11, Fe 10–57, K 4070–16950, Mg 900–4260, Mn 22–197, Mo 0.02–0.19, Na 28–124, Rb 0.7–12, Sr 41–58, Zn 18–48.  相似文献   

2.
遵义市部分烟区烤烟中、微量元素含量及其空间分布   总被引:2,自引:0,他引:2  
【目的】作为烟草生长发育所必需的营养元素,中、微量元素对于协调烟株生理机能、烤烟产量、品质的形成和增强抗病能力有着大量元素不可替代的作用。本研究基于野外取样与室内检测所获得的烟叶养分信息,旨在探求遵义市部分烟区烤烟烟叶中微量元素特征与空间分布情况,为该地烤烟生产养分分区管理、配方施肥技术和化肥减量提效提供科学参考。 【方法】运用经典统计学方法,初步对研究区烤烟烟叶中微量元素的丰缺状况进行分析评价,并结合 GPS 定位,以地统计学的半变异函数为工具,定量分析了研究区烟叶中微量元素的空间变异特征,采用 Kriging 插值法,得到烟叶中微量元素含量的空间分布格局。 【结果】1) 研究区 C3F 等级烟叶 7 种中微量元素含量平均值分别为 Ca 20.3 g/kg、Mg 3.7 g/kg、Cu 4.42 mg/kg、Zn 34.85 mg/kg、Fe 229.81 mg/kg、Mn 205.43 mg/kg、Mo 0.25 mg/kg,含量范围分别为 Ca 14.7~27.3 g/kg、Mg 1.3~8.0 g/kg、Cu 1.69~8.83 mg/kg、Zn 12.31~56.11 mg/kg、Fe 141.62~339.00 mg/kg、Mn 66.21~426.11 mg/kg、Mo 0.06~0.60 mg/kg,各元素变异系数在 12.8%~48.7% 之间,均表现为中等强度变异;参照烟叶中微量营养元素分级标准,研究区烟叶适宜范围内钙占 95.2%,高水平锰含量占 65.1%,低水平镁、铜、锌、铁含量分别占 26.5%、55.4%、32.5%、20.5%,适宜水平镁、铜、锌、铁分别占 48.2%、25.3%、63.9%、79.5%,烟叶钼含量总体较缺乏。2) 研究区烟叶中 Ca、Mg、Zn 和 Fe 符合正态分布,Cu、Mn、Mo 经对数转化后均符合正态分布,分别选择指数模型作为 Ca、Cu、Fe、Mo 的最优拟合理论模型,Mg、Zn、Mn 为高斯模型,得出烟叶中 Ca、Mg、Cu、Zn、Fe、Mn、Mo 7 种元素各项异性比均大于 1,块金系数分别为 43.8%、26.9%、31.0%、58.4%、69.0%、32.6%、42.7%,变程分别为 148.099、137.407、15.554、18.723、25.624、88.770、74.749 km。 【结论】研究区烟叶 Ca 含量基本在适宜范围内,Mn 含量总体较高,Mg、Cu、Zn、Fe 含量基本在低–适宜水平,Mo 较缺乏。地统计分析表明:7 种元素均具有空间各向异性;空间变异指标块金系数大小顺序为 Fe > Zn > Ca > Mo > Mn > Cu > Mg,均为中等空间相关性;空间自相关范围由大到小依次为 Ca、Mg、Mn、Mo、Fe、Zn、Cu。采用地统计插值绘制的空间分布图,直观地反映了研究区烟叶中微量营养元素的含量分布状况。  相似文献   

3.
A controlled environment experiment was conducted to determine the effect of amending soil with various rates of high-Cu compost (0, 20, 40, and 60% compost/soil by volume) on dill (Anethum graveolens L.) and peppermint (Mentha X piperita L.) yields, on fractionation of Cu and Zn in soils, on elemental composition of soil and tissue, and on the essential oils. The compost contained about 2000 mg kg(-)(1) of Cu. Dill yields were greatest in the 20 or 40% treatments, but peppermint yields were greatest in the 20% treatment. Compost additions increased soil pH and electrical conductivity (EC), HNO(3) extractable soil B, Ca, K, Mg, Mn, P, S, Na, and Pb. Additions of high-Cu compost to soil increased tissue P, S, and Na in both crops and Mn, Mo, and Zn in dill but decreased tissue Ca, Cd, and Fe in both crops and Mn, Mo, and Zn in peppermint, increased Cu in all soil fractions including exchangeable, and increased tissue Cu of dill and peppermint as compared to unamended soil. Addition of 60% of high-Cu compost to soil resulted in 760-780 mg kg(-)(1) Cu in the growth medium. Nevertheless, Cu content in both crops reached only 12 mg kg(-)(1) DW in the 60% compost treatment, which is below the toxicity levels for plants and below the upper chronic dietary exposure for animals. The application of high-Cu compost altered chemical composition of dill and peppermint essential oils, but oils were free of Cu, Zn, Cd, Ni, Cr, and Pb. Results from this study suggest that mature composts with concentrations of Cu and Zn of 2008 and 321 mg/kg, respectively, can be used as a soil conditioner without risk for phytotoxicity or risk of increasing the normal range of Cu and Zn in crop tissue. However, the long-term effect of the accumulation of heavy metals in soils following repeated compost applications needs to be carefully considered.  相似文献   

4.
农牧交错带草地开垦对土壤有效态微量元素的影响及评价   总被引:6,自引:1,他引:5  
为明确草地利用方式转变对土壤微量元素的影响,以华北农牧交错带2种类型草地及其相应开垦的农田为对象,采用成对设计的方法研究了开垦对草地土壤表层(0~20cm)有效态微量元素(铜、铁、锰、锌、硼、钼)的影响并对其进行了评价,以期为农牧交错带的科学管理提供参考。结果表明:典型草地开垦导致土壤有效态铜、锌含量分别上升8.8%和16.4%,其他4种微量元素含量下降16.4%~28.1%。根据土壤有效态微量元素评价标准,典型草地区域有效态硼、钼含量处于高水平,有效态铜处于中等水平,有效态锌处于极低水平;有效态铁、锰在典型草地为高水平和中等水平,开垦为农田后分别降到中等水平和低水平。低湿草甸开垦导致微量元素含量下降10.6%~77.7%,其中有效态铁、硼、钼处于极高水平,有效态锰处于中等水平,有效态锌处于极低水平;有效态铜由低湿草甸的高水平降到农田的中等水平。整个研究区土壤有效锌含量限制草地植被和农作物生长发育,由典型草地开垦的农田其土壤有效锰含量不能够满足作物的需求。建议研究区禁止开垦草地并对已开垦的草地实行退耕还草,同时建议建立基于土壤微量元素密度的评价体系。  相似文献   

5.
不同种植年限土壤微量元素对山银花品质的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的]探索不同种植年限土壤微量元素对山银花品质的影响,筛选山银花高产优质的最佳种植年限范围。[方法]采用野外调查和室内分析结合的方法,研究贵州省绥阳县不同种植年限山银花土壤微量元素对山银花品质的影响。[结果]不同种植年限下土壤pH值为4.67~6.01,土壤微量元素平均含量为:Cu 17.17~37.50 mg/kg,Mo 1.52~2.24 mg/kg,Mn 444.6~544.26 mg/kg,Zn 102.06~114.39mg/kg;山银花花蕾微量元素平均含量为:Cu 6.91~14.52 mg/kg,Mo 0.16~0.24 mg/kg,Mn 30.06~79.36mg/kg,Zn 12.73~23.54mg/kg;不同种植年限山银花绿原酸含量为2.988%~7.840%。[结论]土壤中Zn,Cu含量随种植年限增加而递增,Mo,Mn含量总体呈下降趋势。11~15a的山银花绿原酸含量最高,植物生长状况良好,花蕾微量元素含量总体随年限增加而增加。微量元素Cu,Zn能促进山银花的生长和绿原酸的合成,Mn元素与山银花的茎粗和叶片生长有关。  相似文献   

6.
Effect of wastewater irrigation was investigated on mineral composition of corn and sorghum plants in a pot experiment. The ranges for the concentration of different minerals in corn plants were 0.67–0.89% calcium (Ca), 0.38–0.58% magnesium (Mg), 0.09–1.29% sodium (Na), 0.81–1.87% nitrogen (N), 1.81–2.27% potassium (K), 0.12–0.16% phosphorus (P), 190–257 mg/kg iron (Fe), 3.5–5.6 mg/kg copper (Cu), 37.1–44.5 mg/kg manganese (Mn), 21.6–33.6 mg/kg zinc (Zn), 1.40–1.84 mg/kg molydbenum (Mo), 11.0–45.7 mg/kg lead (Pb), and 2.5–10.8 mg/kg nickel (Ni). Whereas for sorghum plants, the ranges were: 0.56–0.68% Ca, 0.19–0.32% Mg, 0.02–0.27% Na, 0.69–1.53% N, 1.40–1.89% K, 0.10–0.14% P, 190–320 mg/kg Fe, 3.8–6.0 mg/kg Cu, 29.2–37.6 mg/kg Mn, 21.1–29.9 mg/kg Zn, 2.2–3.7 mg/kg Mo, 12.3–59.0 mg/kg Pb, and 2.5–15.2 mg/kg Ni. Heavy metals such as cobalt (Co) and cadmium (Cd) were below detection limits at mg/kg levels. The concentrations of Ca, N, K, P, Cu, and Mn in corn plants were in the deficient range except for Mg, Fe, Zn, and Al. The concentrations of Ca, N, P, K, Cu, Mn, Mg, and Zn in sorghum plants were in the deficient range except for Fe and aluminum (Al). The analysis of regression indicated a strong interaction between Pb, Ni, Ca, and Fe in corn and sorghum plants. In conclusion, waste water irrigation did not increase mineral concentrations of either macro‐ and micro‐elements or heavy trace metals in corn and sorghum plants to hazardous limits according to the established standards and could be used safely for crop irrigation.  相似文献   

7.
广东红壤微量元素含量及分布特征   总被引:6,自引:0,他引:6  
2004年对广东部分红壤9种微量元素含量调查结果表明,9种微量元素平均含量为B 41.38 mg kg-1,Mo21.71 mg kg-1,Cu 77.37 mg kg-1,Pb 33.94 mg kg-1,Zn 265.52 mg kg-1,As 19.018 mg kg-1,Hg 0.056 mg kg-1,Cr 248.95mg kg-1,Cd 0.324 mg kg-1。同族微量元素相比,原子量小的元素的含量大于原子量大的元素的含量。母岩、成土风化作用影响这些微量元素在土壤中的含量。  相似文献   

8.
Abstract

A previous study indicated that agricultural biosolid applications increased the concentration of EPA3050‐digestible trace elements in soils on Pennsylvania production farms but could not indicate potential trace‐element environmental availability. This study was conducted to determine if biosolid application had altered the distribution of trace‐elements among operationally defined soil fractions and the relationship of trace element concentrations in soil and crop tissues. Biosolid‐amended and unamended soils from production farms in Pennsylvania were extracted using a modified Bureau Communautaire de Référence (BCR) sequential fractionation technique and analyzed for chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Trace‐element concentrations in crop tissues (soybean silage, sudangrass, corn grain, alfalfa hay, and orchardgrass hay) from the same farms were also determined. Fractionation results indicated that the proportion of Cr, Cu, Ni, Pb, and Zn that is potentially bioavailable is quite small in unamended soils. Biosolid applications significantly (P≤0.1) increased concentrations of Cu in all soil fractions (average increase over unamended soil=1.14, 8.27, 6.04, and 5.84 mg kg?1 for the exchangeable, reducible, oxidizable, and residual fractions, respectively), Ni (0.41, 1.65 mg kg?1 for the reducible and residual fractions, respectively), Pb (5.12 and 1.49 mg kg?1 for the reducible and residual fractions, respectively), and Zn (8.28, 7.12, 4.44, and 8.98 mg kg?1 for the exchangeable, reducible, oxidizable, and residual fractions, respectively) but did not significantly increase Cr in any soil fraction. Concentrations of Cu in all soil fractions were significantly (P≤0.01) correlated with concentrations of Cu in orchardgrass tissue (r=0.70, 0.66, 0.76, and 0.69 for the exchangeable, reducible, oxidizable, and residual soil fractions, respectively). Concentrations of exchangeable and reducible Zn were significantly correlated with Zn in sudangrass tissue (r=0.81 and 0.67), and reducible Zn was significantly correlated with Zn concentrations in orchardgrass tissue (r=0.65). Application of biosolids had little effect on bioavailability of Cr, Ni, or Pb, whereas higher loadings of Cu and Zn led to a shift toward the more labile soil fractions. Loadings of Cu and Zn were much smaller than cumulative loadings permitted under U.S. Environmental Protection Agency (USEPA) Part 503 regulations. Chemical soil fractionation was able to detect increases in labile soil Cu and Zn that relate to increased phytoavailability.  相似文献   

9.
For trace elements, such as copper (Cu) and zinc (Zn), the bioavailability of these elements, Cu and Zn, in biosolids is important because both are essential elements and both are potential contaminants when biosolids are land applied. A greenhouse study was conducted in factorial experiment based on a completely randomized design (CRD) with four replications on a soil treated with four rates of Cu (0, 50, 100, and 150 mg/kg) and four rates of Zn (0, 150, 300, and 450 mg/kg) on celery plants to investigate the distribution and mobility of these elements as well as growth and antioxidant changes of celery. The results of antioxidant changes were inconclusive due to irregular changes with Zn and Cu applications. However, generally the results show that Cu did not affect superoxide dismutase (SOD) or peroxidase (POD) activities in most of the treatments. On the other hand, Zn stimulated SOD and POD activities in most of the treatments. The photosynthesis rate decreased with the applications of Cu and Zn at the rates above 100 and 300 mg/kg and increased in low Cu concentration (50 mg/kg) compared to S (soil without biosolid).  相似文献   

10.
利用田间试验初步研究了污泥农用对小麦、玉米大田作物及土壤环境影响以及污泥中痕量元素在土壤与植物可食部分之间转移规律。结果表明,施用污泥后,尤其是36t·hm^-2施用量时,土壤中Zn、Cu、Cd、Pb、As和№的含量均显著增加,但是施用污泥4.5至36t·hm^-2后,除小麦籽粒中Zn、Cu含量和玉米籽粒中Zn、Cr含量显著增加外,其他痕量元素在小麦和玉米籽粒中的含量没有显著增加。作物籽粒中Zn含量与土壤中污泥施加量之间存在着显著的线性回归关系,土壤中增施1t·hm^-2之污泥,小麦和玉米籽粒中Zn的含量分别增加0.570和0.118mg·kg^-1。小麦和玉米籽粒除M和Pb的富集系数相近外,对其他痕量元素而言,小麦籽粒的富集系数显著高于玉米籽粒。从痕量元素的累积速率和现行土壤环境质量标准考虑,北京污泥中Hg是优先考虑控制的元素,但是污泥中№对食品安全的影响还需要进行长期的大田实验研究。  相似文献   

11.
青岛崂山茶园土壤微量元素有效量及其影响因素研究   总被引:14,自引:0,他引:14  
青岛市崂山茶种植区土壤调查研究表明,茶园土壤中6种主要微量元素(Zn、Cu、B、Mn、Fe、Mo)的有效量多大于其缺素临界值,有效态铜、锌、锰含量均处于高水平,钼中等,硼较低。统计分析表明,土壤中Zn、B、Mn等元素全量与有效量间具显著正相关性,Fe呈显著负相关性,说明全量并不是有效量的完全控制因素;pH值与有效态Zn、Cu、B、Fe和Mo均有一定的负相关关系,表明土壤酸性增强(酸化)会增加这类元素的生物有效性;有机质含量与有效态Zn、Cu、B、Fe和Mo呈正相关性,说明有机质较高有利于土壤元素活化。  相似文献   

12.
Investigation was conducted into the occurrence and extent of potentially toxic heavy metals and/or trace elements in soils from three study areas in the Eastern Region of Ghana namely Abonse, Pepease and Mamfe. A protocol for soil sampling, preparation and analysis was developed to yield sufficient information on elemental concentrations in the soils. The soil samples were analysed for As, Co, Cr, Cu, Sb, Th, U, V and Zn, using Instrumental Neutron Activation Analysis (INAA) coupled with conventional counting system. Concentrations of Co, Cr, Th and Zn positively correlate with As, and regressions performed on Co-Zn, Co-Cr, Co-Th, Cr-Th and Zn-Cr values also show strong correlations. The regressions suggest that these elements are geochemically associated and might be enriched simultaneously. Though there are relatively high concentrations of Cu (maximum; 46.3 mg/kg), Co (maximum; 9.17 mg/kg), Th (maximum; 15.1 mg/kg) and U (maximum; 2.38 mg/kg) in some of the soils compared with their levels in world average soils, the average concentrations of the trace elements in general are below or within levels in world average soils/uncontaminated soils. Also, the enrichment index computed in the soils indicates that all the study areas are not enriched with toxic elements, particularly As, Cu, Sb and Zn, and the enrichment index values decrease in the order of Pepease > Mamfe > Abonse. When the average composition of the soils was normalized to the average composition of the underlying rocks, the soils were depleted in the trace elements determined, indicative of background concentration values. Lack of correlations between soil characteristics such as texture, organic carbon, organic matter, total nitrogen and available phosphorous, and most of the trace elements suggests that the influence of these parameters on the distribution of the trace elements is not important in the surface soils.  相似文献   

13.
Spring wheat (Triticum aestivum L.) is the major crop in southwestern Australia where 75% of the 18 million hectares comprise sandy duplex and deep sandy soils, including uniform yellow sandplain soils. Some of the sandplain soils in the lower rainfall (< 350 mm annual average) eastern region are naturally very acidic (soil pH, as measured in 1:5 soil:0.01 M calcium chloride, 3.7–4.5) in soil horizons explored by wheat roots so molybdenum (Mo) deficiency and aluminium (Al) toxicity adversely affects grain production of wheat. Liming is not an economic option to ameliorate Mo deficiency and Al toxicity in these soils because uneconomical large amounts are required. However, despite Al toxicity, applying Mo fertilizer produces profitable grain yield. The fertilizer also increases Mo concentration in grain, and if this grain was used to sow the next crop, it may reduce the amount of Mo fertilizer required by the subsequent crop. To test this hypothesis we grew wheat in an experiment on naturally acidic sandplain soil (pH 4.5) when either 0 or 160 g/ha fertilizer Mo was applied. The grain harvested at the end of the growing season had Mo concentrations of 0.07 mg/kg when no Mo was applied (low Mo seed) and 0.27 mg/kg when Mo was applied (high Mo seed). In two further field experiments on naturally acidic sandplain soil (pH 4.3 and 4.4) we sowed low and high Mo seed of the same size (36.4 ± 0.2 mg per seed) when 4 rates of Mo fertilizer (0, 35, 70, and 140 g/ha Mo) was applied to soil. Grain yield responses to the Mo fertilizer were 59% for low Mo seed and 55 g/ha fertilizer Mo was required to produce 90% of the maximum grain yield. Corresponding values for high Mo seed were 15% response and 15 g/ha fertilizer Mo. Rather than sowing wheat seed harvested from acidic soils to sow wheat crops on the acidic sandplain soils, we instead recommend seed harvested from alkaline soils with larger concentrations of Mo in the seed be used reducing the rate of fertilizer Mo required for that crop.

The concentration of Mo in the youngest emerged leaf blades (YEB) that was related to 90% of the maximum grain yield (critical prognostic tissue test value for grain production) was about 0.08–0.09 mg/kg at tillering (Gs24) and at emergence of wheat heads (Gs59).  相似文献   

14.
Abstract

Greater than 10 mg/kg molybdenum (Mo) concentrations in forage present increasingly challenging management of most classes of livestock. In 1950, 71 alfalfa fields were sampled in Kern County, California, to gain a better understanding of the extent and distribution of high Mo concentrations in forage. Similarly, a large number (82) of the same or nearby fields were resampled in 1985 to evaluate the changes which had occurred in the Mo levels. The number of samples, minimum, maximum and average Mo concentrations were 71, 1.4, 41.7, 10.78 and 82, 0.7, 9.6, 3.57 mg/kg for 1950 and 1985, respectively. Copper (Cu) concentration in 1985 ranged from 6.0 to 19.0 with an average of 10.23 mg/kg. Cu:Mo ratios in 1985 had a low of 1.19 up to 13.71 with an average of 4.25. Forage concentrations of sulfur (S), zinc (Zn), iron (Fe), and selenium (Se) were also determined. Suggested causes for the decline in forage Mo levels are: leaching of soluble salts with irrigation, acidification of soils by nitrogen fertilizers and crop removal. Molybdenosis in livestock is much less of a problem with the decline in molybdenum concentration of forages.  相似文献   

15.
Es wurden die Biomassebildung und die Makro‐ und Mikronährstoffentzüge von Winterraps, Wintergerste, Winterroggen und Winterweizen im Herbst auf vier verschiedenen Böden in einer Kleinparzellenversuchsanlage untersucht.

Winterraps bildete in Abhängigkeit vom eingesetzten Boden eine Gesamtbiomasse (Spross‐ und Wurzelfrischmasse) bis zu 171 dt/ha, Wintergerste bis 83 dt/ha, Winterroggen bis 54 dt/ha und Winterweizen bis 16 dt/ha. Die höchsten ermittelten N‐Entzüge durch Spross und Wurzel lagen für Winterraps bei rund 70 kg N/ha, für Wintergerste bei rund 50 kg N/ha, für Winterroggen bei rund 35 kg N/ha und für Winterweizen bei rund 10 kg N/ha.

Darüber hinaus entzogen pro Hektar:

_____ Winterraps bis zu 2 kg P, 88 kg K, 5 kg Mg, 31 kg Ca, 26 kg S, 40 g B, 13 g Cu, 9 g Mo, 71g Mn, 104 g Zn

_____ Wintergerste bis zu 6 kg P, 50 kg K, 2 kg Mg, 7 kg Ca, 5 kg S, 6 g B, 8 g Cu, 3 g Mo, 45 g ?n, 58 g Zn

_____ Winterroggen bis zu 5 kg P, 30 kg K, 2 kg Mg, 4 kg Ca, 3 kg S, 4 g B, 8 g Cu, 3 g Mo, 45 g Mn, 52 g Zn sowie

_____ Winterweizen bis zu 1 kg ?, 8 kg ?, 0,5 kg Mg, 1 kg Ca, 1 kg S, 1 g B, 2 g Cu, 0,8 g Mo, 14g Mn und 17g Zn.  相似文献   

16.
Abstract

X‐ray fluorescence (XRF) is an effective and rapid technique for the analysis of many mineral elements in plant tissue. Plant samples sometimes are too small to make good pellets and to provide good XRF analyses. Leaf tissue was mixed with cellulose or boric acid at different ratios to assess whether pellets from these mixtures could be analyzed by XRF and to determine the effects of these inert substances on analysis of Al, Ca, Cl, Cu, Fe, K, Mg, Mn, P, S, Si, and Zn. Concentrations of all elements decreased linearly at all leaf/cellulose ratios. Concentrations of Mn, Fe, Zn, and Cu decreased linearly at all leaf/boric acid ratios, but concentrations of the other elements decreased linearly only when leaf/boric acid ratios were above about 40/60, and decreases in concentration of these other elements were more pronouned at leaf/boric acid ratios below 40/60. Concentrations of P, S, Cl, K, Mg, Ca, Si, and Al were higher in leaf/boric acid than in leaf/cellulose pellets, and similar concentrations were noted for Cu, Mn, Fe, and Zn in both kinds of pellets. Mechanically shaking cellulose with leaf tissue generally resulted in higher mineral element concentrations than if samples were mixed by hand. Cellulose would be the preferred inert substance to mix with plant samples if plant samples are below ~40 mg in size. Small samples of plant tissue can effectively be analyzed by XRF when mixed with cellulose or boric acid.  相似文献   

17.
The growth responses of buffalograss [Buchloe dactyloides (Nutt.) Engelm.] to elevated micronutrient levels in the fertilizer solution were investigated. Seedling plants established in peat‐lite mix in 11‐cm (0.6 L) pots in the greenhouse were irrigated with solutions containing 0.5, 1, 2, 4, 6, 8, or 12 mM of boron (B), chlorine (Cl), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), or zinc (Zn). The control solution contained (in μM): 20 B, 0.5 Cu, 40 Fe, 10 Mn, 0.5 Mo, and 4 Zn. A standard macronutrient concentration was used for all treatment solutions. Boron and Mo induced visual toxicity symptoms more readily than other micronutrients. Boron toxicity was characterized by chlorosis often accompanied by bleached leaf tips, while Mo toxicity resulted in leaf necrosis. The lowest levels that induced visual foliar toxicity were 0.5 mM B, 2 mM Cu, 4 mM Fe, 6 mM Mn, 1 mM Mo, and 4 mM Zn. Chloride did not induce foliar abnormalities in the concentration range tested. Biomass yield was reduced when the nutrient solution contained 2 mM B, 6 mM Cu, or 2 mM Mo. Elevated levels of Cl, Fe, Mn, and Zn did not alter dry matter yield. The relationship between the nutrient and tissue concentrations was determined for each microelement.  相似文献   

18.
在野外采样、室内分析与统计的基础上,对陕北靖边县北部风沙区土壤有效态微量元素的含量及分布进行了研究.结果表明,该地区土壤中B,Cu,Zn,Fe和Mn等微量元素有效态含量的平均值分别为:0.421mg/kg,0.505mg/kg,0.582mg/kg,7.092mg/kg和7.251mg/kg,它们的变幅分别在2.582~0.022mg/kg,1.194~0.158mg/kg,3.944~0.096mg/kg,26.08~2.4mg/kg和13.39~2.082mg/kg之间;在水平方向上,B,Cu,Zn和Mn的含量呈由南向北增高的趋势,Fe则表现出由西向东有所增加;土壤垂直剖面中,0~20cm的耕层B,Cu,Zn,Fe和Mn明显高于20~40cm和40~60cm土层的含量.  相似文献   

19.
Onion is the one of the most important vegetable crops grown extensively throughout the world; hence, understanding the response of the crop to the form and amount of N provided is of immense importance. In a field experiment, poultry and cattle manure (at 10?t/ha) were compared with four inorganic nitrogen (N) application levels (0, 60, 90 and 120?kg?N/ha), and six combinations of manure and N applications were investigated. Plant growth and total yield (kg/ha) significantly increased, when N application increased from 0 to 120?kg/ha, with or without added poultry manure. Plant height, leaf number and neck thickness were significantly reduced at 0?kg/ha?N plus cattle manure. The bulb ascorbic acid concentration significantly increased with the use of poultry manure (15.94?mg/100?g) and cattle manure (15.94?mg/100?g), compared with 120?kg/ha inorganic N (11.42?mg/100?g). No significant effects were observed on total phenolics and total soluble solids of onion bulbs following the different fertiliser treatments. Cattle manure increased P and K concentrations, whilst poultry manure significantly increased Zn and Fe concentrations in onion bulbs. Onion bulb Ca and Mg concentrations were lower when cattle manure (0.19% and 0.12%) was used than when other organic or inorganic fertilisers were used. Therefore, organic manure increases the concentrations of certain minerals in onions, compared with inorganic N application, without negatively affecting bulb size.  相似文献   

20.
安徽省黟县农田耕层土壤中微量元素含量研究   总被引:4,自引:2,他引:2  
齐虹凌  元野  刘世丰  程显明  陈宇  付金龙  江昌玉  吴举 《土壤》2017,49(6):1280-1284
黟县是皖南黄山市重要的农业县,本文利用黟县测土配方施肥工作获取的农田土壤测定数据,分析其耕作层中量元素硫和微量元素铁、锰、铜、锌、硼的有效态含量及其空间分布,以为区域施肥提供决策支持。结果表明:黟县农田土壤有效铁、锰、铜、锌、硼、硫含量分别介于4.20~348.30、0.60~225.00、0.04~14.74、0~88.00、0~355.00、0.48~87.85 mg/kg,平均值分别为126.10、15.62、2.93、1.78、0.81、16.17 mg/kg。采用克里格插值获取的元素有效态含量空间分布图显示,黟县南部、北部的元素有效态含量较高,中间区域的含量相对较低。该地区有效硼普遍较为缺乏,应广泛补施硼肥;部分地区有效锌缺乏,需酌情喷施硫酸锌叶面肥。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号