首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Abstract

Corn (Zea mays L.) grown on sandy Coastal Plain soils may be subject to sulfur (S) deficiency due to the low levels of available S in the soil. The diagnosis of S deficiency in the field is sometimes ambiguous since mineralization of soil organic matter or root growth into the subsoil may supply adequate S to the crop. Yield response to S fertilizers has been more frequent since incidental additions of S to the soil by air pollution and fertilizer applications have been reduced. This study was conducted to identify S deficiency in corn grown on sandy Coastal Plain soils and to determine the effects of S source, rate and method of application on grain yield. Irrigated corn was grown on Norfolk loamy sand and Tifton loamy sand near Leesburg and Moultrie, Georgia, respectively in 1987. Grain yields were increased with addition of 11 kg S ha‐1 compared to the check treatment. Increased rates of S up to 88 kg ha‐1 did not increase grain yields above the 11 kg ha‐1 rate. There was no difference between banded or broadcast application of (NH4)2SO4 or between elemental S and (NH4)2SO4 as S sources. Earleaf S concentrations of 1.6 g kg‐1 and extractable soil S concentrations of 4.0 to 8.7 mg kg‐1 were associated with S deficiency. Visual symtoms of S deficiency were observed in the check treatments throughout the growing season at both experimental sites. The results indicate that visual symptoms and tissue analysis can be used to identify S deficiency. Extractable soil S may be useful in determining the possible response to S fertilizer especially if the subsoil is sampled.  相似文献   

2.
Increasing nitrogen (N) fertilizer prices give rise to the question of N benefits from legumes in cropping systems in the Southern Great Plains. This study quantified wheat (Triticum aestivium L.) hay production and N uptake over seven years following six years of alfalfa (Medicago sativa L.), cicer milkvetch (Astragalus cicer L.), or grass (Old World bluestem, Bothriochloa ischaemum L.) production in western Oklahoma. Precipitation over the seven years averaged 550 mm·yr‐1. The major residual N effects were measured within the first five years. On a fine sandy loam soil, wheat hay yields averaged 3,070 kg·ha‐1·yr‐1 over five years following alfalfa, 2,580 kg·ha‐1·yr‐1 following milkvetch, and 950 kg·ha‐1·yr‐1 following grass with N uptake attributed to the residual effect from legumes (calculated by the difference method) averaged 34 kg N ha‐1·yr‐1 from alfalfa and 25 kg·ha‐1·yr‐1 from milkvetch. On a deep loamy sand soil, wheat hay yields averaged 1,290 kg·ha‐1·yr‐1 over five years following alfalfa and 710 kg·ha‐1·yr‐1 following grass with N uptake attributed to the residual effect from alfalfa averaged 8 kg N ha‐1·yr‐1. Thus, the residual N effect attributed to legumes was substantial on the fine sandy loam soil and relatively small on the deep loamy sand soil.  相似文献   

3.
Abstract

Factorial combinations of N, P and K fertilizer have been compared with the use of farmyard manure at M?ystad since 1922 in a seven-year crop rotation (3 ley, oat, potato, wheat, barley). Until 1982, low inputs of N fertilizer (22 kg ha?1) were used. In 1983, they were brought into line with current farming practice. This paper presents the results of three subsequent rotations. Yields without any fertilizer were on average 48% of those with 100 kg N ha?1 in compound fertilizer, whilst those with 20, 40 and 60 Mg ha?1 farmyard manure were 81, 87 and 90%, respectively. Yields with other combinations of N, P and K declined in the order NP, NK, N, PK and K. When NPK fertilizer was used, apparent recoveries of applied fertilizer were close to 50% for N and K, and around 40% for P. Much lower values were found for nutrients applied singly. Balance between N supply and removal was indicated at rates of about 60 kg N fertilizer ha?1 in potatoes, 75 kg ha?1 in cereals and 90 kg ha?1 in leys. A surplus of P was found in all crops at all N levels, and of K in cereals and potatoes. In leys, K balance was achieved with an N supply of 90 kg N ha?1. Nutrient balance was indicated at a little below 20 Mg ha?1 yr?1 farmyard manure. Larger manure applications gave large nutrient surpluses, particularly of N. Soil reaction remained close to neutral with the use of calcium nitrate and manure, but declined with the use of ammonium nitrate. Manure use gave the highest amounts of available P, K and Mg in soil. Similar increases in total inorganic P were found with manure use as with fertilizer use, but amounts of organic P and total K were little affected.  相似文献   

4.
The study was carried out to investigate the balance and lossesof nutrients at a paddy field plot located at the southwest ofcentral Korea from May 1, 1997 to September 30, 1999. The soilof experimental paddy field was in Jisan series (SiL; fine loamy, mixed mesic family of Fluventic Haplaguepts) and its area was 5,000 m2 (100 m × 50 m). The water balance in experimental paddy field was measured as follows.They were 3,693 mm for precipitation, 2,449 mm for irrigationwater, 3,081 mm for runoff water, 1,354 mm for evapotranspitration, and 1,683 mm for infiltration water. Theinput amounts of nitrogen and phosphorus into paddy field weremeasured as follows. They were 155–210 kg N ha-1 yr-1 and 30–52 kg P2O5ha-1 yr-1 by chemical fertilizer, 30–39 kg N ha-1 yr-1 and 0.4–0.7 kg P ha-1 yr-1 by precipitation, and 22–30 kg N ha-1 and 0.4–0.5 kg P ha-1 by irrigationwater, respectively. The output amounts of nitrogen andphosphorus from paddy field were measured as follows. Theywere 107–138 kg N ha-1 yr-1 and 3.4–4.6 kg Pha-1 yr-1 by runoff water, and 18–20 kg N ha-1and 0.14–0.16 kg ha-1 by infiltration water. The runoffloading was the highest in June may be because of the higherconcentrations of chemical components due to applied fertilizer. When the loss ratio of nutrient was calculated based on the amounts of applied chemical fertilizer, the nitrogen and phosphorus by runoff water and infiltration werefound 57.0–65.7% and 8.8–9.4% and 9.7–12.4% and 0.3–0.5%, respectively.  相似文献   

5.
Long-term fertilizer experiments were conducted on cotton (Gossypium hirsutum) for 21 years with eight fertilizer treatments in a fixed site during 1987–2007 to identify an efficient treatment to ensure maximum yield, greater sustainability, monetary returns, rainwater-use efficiency, and soil fertility over years. The results indicated that the yield was significantly influenced by fertilizer treatments in all years except 1987 1988, and 1994. The mean cotton yield ranged from 492 kg ha?1 under the control to 805 kg ha?1 under 25 kg nitrogen (N) [farmyard manure (FYM)] + 25 kg N (urea) + 25 kg phosphorus (P) ha?1. Among the nutrients, soil N buildup was observed with all treatments, whereas application of 25 kg N + 12.5 kg P ha?1 exhibited increase in P status. Interestingly, depletion of potassium (K) was recorded under all the fertilizer treatments as there was no K application in any of the treatments. An increase in soil N and P increased the plant N and P uptake respectively. Using relationships of different variables, principal component (PC) analysis technique was used for assessing the efficiency of treatments. In all the treatments, five PCs were found significant that explained the variability in the data of variables. The PC model of 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1 explained maximum variability of 79.6% compared to other treatments. The treatment-wise PC scores were determined and used in developing yield prediction models and measurement of sustainability yield index (SYI). The SYI ranged from 44.4% in control to 72.7% in 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1, which attained a mean cotton yield of 805 kg ha?1 over years. Application of 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1 was significantly superior in recording maximum rainwater-use efficiency (1.13 kg ha?1 mm?1) and SYI (30.5%). This treatment also gave maximum gross returns of Rs. 30272 ha?1 with benefit–cost ratio of 1.60 and maintained maximum organic carbon and available N, P, and K in soil over years. These findings are extendable to cotton grown under similar soil and agroclimatic conditions in any part of the world.  相似文献   

6.
Abstract

Nitrogen (N) fertilizer is a key factor of yield increase but also an environmental pollution hazard. The sustainable agriculture system should have an acceptable level of productivity and profitability and an adequate environmental protection. The objectives of this study were to determine the relationships between N rate, DM yield, plant N concentration (NC) and residual soil nitrate‐nitrogen in order to improve the predicted N rate in corn (Zea mays L.) silage. The experiment was conducted over a period of three years in the province of Quebec on three soil series in a continuous corn crop sequence. Treatments consisted of six rates of N: O, 40, 80, 120, 160, and 200 kg N ha‐1 as ammonium nitrate applied at planting: broadcast and side banded. Four optimum N rates were calculated using different models: (i) economic rate base on fertilizer and corn price using the quadratic model (E); (ii) economic rate based on fertilizer and corn price using the quadratic‐plus‐plateau model (QP); (iii) critical rate based on linear‐plus‐plateau model (P); (iv) lower than maximum rate (L) corresponding to 95% of maximum yield. The optimum plant NC at all growing stages and the N uptake at harvest were calculated depending on these N rates and yields.

The NC of whole plant at 8‐leaf stage (25–30 cm plant height) of ear leaf at tasselling and of whole plant at harvest stage, the N rate, the N uptake at harvest and the DM yield were all significantly intercorrelated and affected by soils and years, but not affected by N fertilizer application method. The DM yield was linearly and significantly related to NC of whole plant at 8‐leaf stage (rv = 0.932**). At this stage, the average NC corresponding to the optimum N rate and yield was of 3.71, 3.68, and 3.66% as calculated with E, L, and P model, respectively. Our data suggest that the NC of whole plant at 8‐leaf stage may be used to evaluate the N nutrition status of plant and the required optimum N fertilizer rate. The NC of ear leaf at tassel stage was also significantly correlated to corn yield (r = 0.994**). It may be used as an indicator to evaluate the near‐optimum N rate in the subsequent years.

The N uptake by whole above‐ground plant at harvest was quadratically related to corn yield. Data show that at high fertilizer N rate, the N uptake still increased without significantly increasing yield. The N uptake was of 176.5, 163.0, and 155.0 kg N ha‐1 using the E, L and P rates of 146, 126, and 115 kg N applied ha‐1, respectively. The optimum N rate and yield were affected by soil type and year, but not by the method of N fertilizer application. The yield increased rapidly up to a N rate of about 120 kg N ha‐1 and then quite slightly to a maximum N rate of 192 kg N ha‐1. The optimum N rate was of 115 and 126 kg N ha‐1 using the P and L model respectively and as high as 146.8 kg N ha‐1 using the E model. The L model, using a much smaller N rate, gave a reasonably high yield compared to E rate (12.2 and 12.5 Mg ha‐1, respectively). The data show that a relatively much lower N rate than maximum did not proportionally diminish the yield. Thus, for a difference of 40.4% between maximum N rate and P rate a difference of only 7.4% in yield was observed. Using the L model the differences in rate and yield were of 34.4% and 4.7%, respectively. The QP model gave no significant difference compared to E model.

At harvest the residual soil NO3‐N increased significantly with increasing N fertilizer rate in whole of the 100 cm soil profile, but mainly in the top 40 cm soil layer. The total NO3‐N found in 0–100 cm profile at rate of 0, 120 and 200 kg applied N ha‐1 at planting was as high as 33.7, 60.5, and 74.5 kg N ha‐1 respectively in a light soil and 37.5, 97.5, and 145.5 kg N ha‐1 in a heavy clay soil. The difference in NO3‐N content in the 60–100 cm layer between different applied N rate suggests that at harvest, part of fertilizer N applied at planting was already leached below the 100 cm soil layer. Results, thus, show that reasonably high corn yields can be obtained using more adequate N fertilizer rates which avoid the overfertilization and are likely to reduce the air and ground water pollution.  相似文献   

7.
A three-site-year field experiment was conducted to determine nitrogen (N), phosphorus (P), and potassium (K) fertilizer effects on grain filling dynamics and yield formation of high-yielding summer corn (Zea mays L.) in a wheat (Triticum aestivum L.)-corn double crop cropping system. Application of combined NPK fertilizers resulted in the greatest grain yield, largest grain number and grain weight when compared with the treatments receiving N, NP, or NK. Grain filling rate and duration, grain volume, and grain yield increased with NPK rates; however, doubling the rate of 180 kg N ha?1, 40 kg P ha?1, and 75 kg K ha?1 fertilizer only led to minimal increases in grain filling rate (0.8%), grain filling duration (1.6%), grain volume (1.3%) and grain yield (0.4%). Our results suggested that for the high-yielding summer corn, a combined NPK fertilization is required to enhance grain filling and yield, and that under well-fertilized circumstances, limited increases in both grain filling and sink capacity might be the main factor restricting further yield improvement.  相似文献   

8.
Abstract

Understanding seasonal soil nitrogen (N) availability patterns is necessary to assess corn (Zea mays L.) N needs following winter cover cropping. Therefore, a field study was initiated to track N availability for corn in conventional and no‐till systems and to determine the accuracy of several methods for assessing and predicting N availability for corn grown in cover crop systems. The experimental design was a systematic split‐split plot with fallow, hairy vetch (Vicia villosa Roth), rye (Secale cereale L.), wheat (Triticum aestivum L.), rye+hairy vetch, and wheat+hairy vetch established as main plots and managed for conventional till and no‐till corn (split plots) to provide a range of soil N availability. The split‐split plot treatment was sidedressed with fertilizer N to give five N rates ranging from 0–300 kg N ha‐1 in 75 kg N ha‐1 increments. Soil and corn were sampled throughout the growing season in the 0 kg N ha‐1 check plots and corn grain yields were determined in all plots. Plant‐available N was greater following cover crops that contained hairy vetch, but tillage had no consistent affect on N availability. Corn grain yields were higher following hairy vetch with or without supplemental fertilizer N and averaged 11.6 Mg ha‐1 and 9.9 Mg ha‐1 following cover crops with and without hairy vetch, respectively. All cover crop by tillage treatment combinations responded to fertilizer N rate both years, but the presence of hairy vetch seldom reduced predicted fertilizer N need. Instead, hairy vetch in monoculture or biculture seemed to add to corn yield potential by an average of about 1.7 Mg ha‐1 (averaged over fertilizer N rates). Cover crop N contributions to corn varied considerably, likely due to cover crop N content and C:N ratio, residue management, climate, soil type, and the method used to assess and assign an N credit. The pre‐sidedress soil nitrate test (PSNT) accurately predicted fertilizer N responsive and N nonresponsive cover crop‐corn systems, but inorganic soil N concentrations within the PSNT critical inorganic soil N concentration range were not detected in this study.  相似文献   

9.
Abstract

Fertilizer placement for corn (Zea mays L.) has been a major concern for no‐tillage production systems. This 3‐yr study (1994 to 1996) evaluated fertilizer phosphorus (P) or potassium (K) rates and placement for no‐tillage corn on farmers’ fields. There were two sites for each experiment involving fertilizer P or K. Treatments consisted ofthe following fertilizer rates: 0,19,and 39 kg P ha‐1 or 0, 51, and 102 kg K ha‐I. The fertilizer was broadcast or added as a subsurface band 5 cm beside and 5 cm below the seed at planting. Early plant growth, nutrient concentrations, and grain yields were measured. At the initiation of the study, soil test levels for P and K at the 0–1 5 cm depths ranged from optimum (medium) to very high across sites. Effects of added fertilizer and placement on early plant growth and nutrient concentrations were inconsistent. Added fertilizer had a significant effect on grain yields in two of twelve site‐years. Therefore, on no‐tillage soils with high fertility, nutrient addition, and placement affected early plant growth and nutrient utilization, but had limited effect on grain yield. Consequently, crop responses to the additions of single element P or K fertilizers under no‐tillage practices and high testing soils may not result in grain yield advantages for corn producers in the Northern cornbelt regardless of placement method.  相似文献   

10.
Most farming systems involving tilled crops require use of pesticides and nitrogen fertilizers in different combinations although most pesticides effects on soil N transformation are scantly documented. Studies were initiated to compare atrazine and simazine herbicides with two biological nitrification inhibitors (nitrapyrin and terrazole) for their effects on biological nitrification and corn (Zea mays L.) growth. In a laboratory study, inhibition of nitrification was less than 3% in a Tifton loamy sand incubated with 10 μg a.i g‐1 soil atrazine or simazine but was more than 10% in soil amended with nitrapyrin or terrazole, applied separately or in combinations with either herbicide at the same rate. Similar trends were observed with soil treated with different combinations of 2.5 μg a.i. g‐1 soil nitrapyrin or terrazole and 1.25 μg a.i. g‐1 soil atrazine or simazine and incubated with and without corn plants under greenhouse conditions. The combination of either herbicide with nitrapyrin or terrazole significantly reduced the corn dry weights with substantial accumulation of Kjeldahl N and NO3 in tissues of plants, probably due to a concentration effect. However, these chemical combinations, applied at the rate of 1.2 kg a.i. ha‐1 in conjunction with 35 kg ha‐1 N as (NH4)2SO4 in split banded applications (at planting and at the 6th leaf stage), showed a nonsignificant trend towards increased corn ear yields in two‐year field studies. Generally, when atrazine or simazine was part of the chemical treatment, its effects on nitrification, plant growth and total N contents outweighed or masked those of nitrapyrin or terrazole.  相似文献   

11.
Abstract

Coastal bermudagrass yields were increased by 3.1 Mg ha‐1 with K applications of 300 kg ha‐1 yr‐1 in a 7‐year study on Olivier silt loam at Baton Rouge, but available soil K depletion occurred even though K applications exceeded K removal in the forage. At lower rates of K application, K removal exceeded K applications, causing severe depletion of available soil K. Applying 600 kg of K ha‐1 exceeded both the crop K requirement and K removal in the forage, resulting in increased levels of available soil K. Ninety percent of the maximum yield was obtained at about 100 kg of K ha‐1. Potassium concentrations in the forage averaged 9.2 and 13.4 g kg‐1 at K rates of 100 and 300 kg ha‐1, respectively. Apparent recovery of fertilizer K decreased from 53 to 47% as K applications increased from 37 to 300 kg ha‐1. The Olivier silt loam supplied 105 kg of K ha‐1 annually where no K was applied. The study indicates that K applications must be sufficient to produce yields very near the maximum yield in order to avoid depletion of available soil K by high‐yielding Coastal bermudagrass.  相似文献   

12.
Abstract

Estimation of economically optimal nitrogen (N) fertilizer rates involves fitting some production functions to crop yield data obtained at different N fertilizer rates. Most common production functions that have been used in previous N fertilizer response studies are quadratic and square root. In this paper, we employ two alternative production functions, namely Cobb‐Douglas and transcendental, for estimating economically optimal N fertilizer rates. Although these production functions are quite popular in production economics literature, they have not been used in N fertilizer response studies. The two functions were used to estimate economically efficient N fertilizer rates for corn (Zea mays L.). Estimation involves corn yield data obtained from six site‐years in New Jersey during the period 1992–1995. Each site‐year had 10 rates of fertilizer N applied as sidedress. The results obtained by the two functions were compared with those obtained for quadratic and square root models. Economically optimal mean rate for each model was computed assuming that average profits are maximized over observed site‐years. Mean economically optimal N rates for the four models at a common fertilizer‐to‐corn price ratio ranged from 184 kg N ha‐1 for the transcendental to 344 kg N ha‐1 for the Cobb‐Douglas functions. Statistical analyses indicate that the transcendental model is a better predictor of economically optimal N fertilizer rates than the other three models.  相似文献   

13.
Abstract

A long‐term double cropping wheat (Triticum aestivum L.) and corn (Zea mays L.) experiment was conducted at Qiyang, Hunan, China, to study the effects of inorganic fertilizers on grain yields and soil properties and to identify the possible causes of yield trends. Six treatments of unfertilized control, N, NP, NK, PK, and NPK were included. The treatments (N, NP, NK, and NPK) where inorganic nitrogen (N) was added showed significant (P<0.05) yield declines of 76 to 114 kg ha?1 yr?1 for wheat and 94 to 260 kg ha?1 yr?1 for corn, respectively, except for corn yield in the NPK treatment in which the decline was not significant during a 15‐yr (1990–2005) period. Comparatively, the decline amounts in corn were much higher than in wheat. The yields of wheat and corn remained unchanged in the PK treatment. The total organic carbon (C), total N, phosphorus (P), and available P, potassium (K), copper (Cu), and zinc (Zn) contents of soil were either increased or decreased during the study period. Both the decreases of exchangeable calcium (Ca2+) and magnesium (Mg2+) and increases of exchangeable hydrogen (H+) and Al3+ contents of soil in the treatments where inorganic N was applied were significant (P<0.05). The same four treatments showed significant pH declines ranging from 0.07 to 0.12 yr?1. Several lines of evidence point to decline of soil pH due to inorganic N fertilizer added as leading to the overall yield decline of wheat and corn. However, the yields of both crops increased significantly after lime application. In the long term, the farmers should be encouraged to use adequate lime based on a balanced approach to ensure sustainable productivity.  相似文献   

14.
Abstract

This field study was conducted to evaluate nutrient availability and Coastal bermudagrass [Cynodon dactylon (L.) Pers.] yield response to factorial combinations of applied limestone and P in a strongly acid (pH 4.7), infertile soil. Limestone was applied at rates of 0, 672, and 3808 kg ha‐1 to a Lilbert loamy fine sand (loamy, siliceous, thermic, arenic Plinthic Paleudult). Phosphorus was applied at rates of 0, 30, 60, 90, 120, 240, and 480 kg P ha‐1. Soil pH in the surface 15 cm initially increased to 6.2 in response to the high limestone rate, but subsequently declined due to N fertilization. Lime increased soil test P, Ca, and Mg and decreased K and Al. The efficiency of increasing soil test P with fertilizer P was low, but improved as a consequence of liming. Coastal bermudagrass yield increased by as much as 37 percent from P application. Maximum yield coincided with 10 to 15 mg kg‐1 or greater soil test P and tissue P concentrations that ranged from 1.6 to 2.2 g kg‐1. Lime Increased tissue Ca and Mg, but had no effect on plant P concentrations. Yield was unaffected by lime despite its positive effect on soil P and an apparent K‐Mg antagonism. Plant nutrients obtained from deep rooting of the bermudagrass into an argiilic horizon may have precluded any positive effect of lime on Coastal bermudagrass yield.  相似文献   

15.
A computational exercise was undertaken to quantify the percent N derived from atmosphere %Ndfa) in soybean and consequent N benefit from biological N2‐fixation process annually accrued to the soil by the soybean crop using average annual N‐input/‐output balance sheet from a 7 yr old soybean‐wheat continuous rotational experiment on a Typic Haplustert. The experiment was conducted with 16 treatments comprised of combinations of four annual rates of farmyard manure (FYM ? 0, 4, 8, and 16 t ha–1) and four annual rates of fertilizer N (? 0, 72.5, 145, and 230 kg N ha–1) applications. The estimated N contributed through residual biomass of soybean (RBNS) consisting of leaf fall, root, nodules, and rhizodeposition varied in the ranges of 7.02–16.94, 11.65–28.83, 3.31–8.91, and 11.3–23.8 kg N ha–1 yr–1, respectively. A linear relationship was observed between RBNS and harvested biomass N (HBNS) of soybean in the form of RBNS = 0.461 × HBNS – 20.67 (r = 0.989, P < 0.01), indicating that for each 100 kg N assimilated by the harvested biomass of soybean, 25.4 kg N was added to the soil through residual biomass. The Ndfa values ranged between 13% and 81% depending upon the annual rates of application of fertilizer N and FYM. As per the main effects, the %Ndfa declined from 76.4 to 26.0 with the increase in annual fertilizer‐N application from 0 to 230 kg N ha–1, whereas %Ndfa increased from 40.8 to 65.8 with the increase in FYM rates from 0 to 16 t ha–1, respectively. The N benefit from biological N2 fixation accrued to the soil through residual biomass of soybean ranged from 7.6 to 53.7 kg N ha–1 yr–1. The treatments having %Ndfa values higher than 78 showed considerable annual contribution of N from N2 fixation to the soil which were sufficient enough to offset the quantity of N removed from the soil (i.e., native soil N / FYM‐N / fertilizer‐N) with harvested biomass of soybean.  相似文献   

16.
Over the years, a scarcity of information on nutrient gains or losses has led to overemphasis being placed on crop yields and economic income as the direct benefits from fertilizer micro-dosing technology. There is increasing concern about the sustainability of this technology in smallholder Sahelian cropping systems. This study was designed in the 2013 and 2014 cropping seasons to establish nutrient balances under fertilizer micro-dosing technology and their implications on soil nutrient stocks. Two fertilizer micro-dosing treatments [2 g hill?1 of diammonium phosphate (DAP) and 6 g hill?1 of compound fertilizer Nitrogen-Phosphorus-Potassium (NPK) (15-15-15)] and three rates of manure (100 g hill?1, 200 g hill?1 and 300 g hill?1) and the relevant control treatments were arranged in a factorial experiment organized in a randomized complete block design with three replications. On average, millet (Pennisetum glaucum (L.) R.Br.) grain yield increased by 39 and 72% for the plots that received the fertilizer micro-dosing of 6 g NPK hill?1 and 2 g DAP hill?1, respectively, in comparison with the unfertilized control plots. The average partial nutrients balances for the two cropping seasons were ?37 kg N ha?1yr?1, ?1 kg P ha?1yr?1 and ?34 kg K ha?1yr?1 in plots that received the application of 2 g DAP hill?1, and ?31 kg N ha?1yr?1, ?1 kg P ha?1yr?1 and ?27 kg K ha?1yr?1 for 6 g NPK hill?1. The transfer of straw yields accounted for 66% N, 55% P and 89% K for removal. The average full nutrient balances for the two cropping seasons in fertilizer micro-dosing treatments were ?47.8 kg N ha?1 yr?1, ?6.8 kg P ha?1 yr?1 and ?21.3 kg K ha?1 yr?1 which represent 7.8, 24.1 and 9.4% of N, P and K stocks, respectively. The nutrient stock to balance ratio (NSB) for N decreased from 13 to 11 and from 15 to 12 for the plots that received the application of 2 g DAP hill?1 and 6 g NPK hill?1, respectively. The average NSB for P did not exceed 5 for the same plots. It was concluded that fertilizer micro-dosing increases the risk of soil nutrient depletion in the Sahelian low-input cropping system. These results have important implications for developing an agro-ecological approach to addressing sustainable food production in the Sahelian smallholder cropping system.  相似文献   

17.
Abstract. The residual value of mineral N fertilizer applied in the spring was investigated in a field experiment where four cereals (winter wheat, winter barley, spring barley and spring oats) had been grown at reduced (0.7N), normal (1N) or high (1.3N) N fertilizer rates for 20 to 28 years. The effect of previous N fertilizer dressing was tested in two succeeding years by replacing the original N rate with five test N rates ranging from 0 to 240 kg N ha?1 for winter cereals and 0 to 200 kg N ha?1 for spring cereals. In the first test year, winter wheat grown on plots previously supplied with the high rate of mineral fertilizer (202 kg N ha?1 yr?1) yielded more grain and straw and had a higher total N uptake than wheat on plots previously supplied with the normal (174 kg N ha?1 yr?1) or reduced (124 kg N ha?1 yr?1) rate. The grain yield response and N uptake was not significantly affected by the N supply in the test year. The winter wheat grown in the second test year was unaffected by the previous N supply. Grain and straw yield response and total N uptake for spring barley, winter barley and oats, were almost identical irrespective of the previous N rate. After 20 to 28 years there were no significant differences in soil C and N (0 to 20 cm) between soil receiving three rates of N fertilizer. Soil from differently fertilized oat plots showed no significant differences in N mineralizing capacity. Nitrate leaching losses from the soils at the three N rates were estimated and the N balances for the 20 to 28 years experimental period calculated. The data indicated a reduction in overall loss of 189 to 466 kg N ha?1 at the normal and high N rates compared with the reduced N rate. We conclude that the N supplying capacity and soil organic matter content of this fertile sandy loam soil under continuous cereal cropping with straw removal was not significantly affected by differences in N fertilizer residues.  相似文献   

18.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   

19.
In a field experiment conducted at Aligarh, India, nine combinations of nitrogen (N) and phosphorus (P) were factorially randomized with four triticales and one check each of wheat and rye to investigate the effect of progressive rates of application (180–300 kg N+P ha‐1) of combined N+P fertilizer on grain yield and quality. Grain yield, protein content, and values for yield components significantly increased with increasing combined N+P fertilizer rates up to 240 kg N+P ha‐1 (200 kg N+40 kg P ha‐1). The response of further increases in N+P rates gradually diminished, thereafter, despite increasing N and/or P in the fertilizer combinations. The data facilitated the selection of improved cultivars in terms of yield and quality of grain and simultaneously revealed the harmful effects of overfertilization.  相似文献   

20.
On acid sandy soils of Niger (West Africa) fertilizer N recovery by pearl millet (Pennisetum glaucum L.) is often more than 100 per cent in years with normal or above average rainfall. Biological nitrogen fixation (BNF) by N2-fixing bacteria may contribute to the N supply in pearl millet cropping systems. For a long-term field experiment comprising treatments with and without mineral fertilizer (F) and with and without crop residue application (CR) a N balance sheet was calculated over a period of six years (1983-1988). After six years of successive millet cropping total N uptake (36-77 kg N ha?1 yr?1) was distinctly higher than the amount of fertilizer N applied (30 kg N ha?1 yr?1). The atmospheric input of NH4-N and NO3-N in the rainwater was about 2 kg N ha?1 yr?1, 70 % in the form of NH4-N. Gaseous NH3 losses from urea (broadcast, incorporated) were estimated from other experiments to amount to 36 % of the fertilizer N applied. Nitrogen losses by leaching (15 to > 25 kg N ha?1 yr?1) were dependent on the treatment and on the quantity and distribution of single rainfall events (>50 mm). Decline in total soil N content (0-60 cm) ranged from 15 to 48 kg N ha?1 yr?1. The long-term N balance (1983-1988) indicated an annual net gain between 6 (+CR-F) and 13 (+CR+F) kg N ha?1 yr?1. For the control (-CR-F) the long-term N balance was negative (10 kg N ha?1 yr?1). In the treatment with crop residues only, the N balance was mainly determined by leaching losses, whereas in treatments with mineral fertilizer application the N balance depended primarily on N removal by the millet crop. The annual net gain in the N balance increased from 7 kg ha?1 with mineral fertilizer to 13 kg ha?1 in the combination mineral fertilizer plus crop residues. In both the rhizosphere and the bulk soil (0-15 cm), between 9 and 45% of the total bacterial population were N2-fixing (diazotrophic) bacteria. The increased N gain upon crop residue application was positively correlated with an increase in the number of diazotrophic and total bacteria. The data on bacterial numbers suggest that the gain of N in the longterm N balance is most likely due to an N input by biological nitrogen fixation. In addition, evidence exists from related studies that the proliferation of diazotrophs and total bacteria in the rhizosphere due to crop residue application stimulated root growth of pearl millet, and thus improved the phosphorus (P) acquisition in the P deficient soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号