首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

Crop growth in Oxisols is known to be limited by high soil acidity and low levels of basic cations. Five greenhouse experiments were conducted to evaluate the effects of soil pH on the growth and nutrient uptake of upland rice (Oryza sativa L.), wheat (Triticum aestivum L.), corn (Zea mays L.), common bean (Phaseolus vulgaris L.), and cowpea (Vigna unguiculata L. Walp.). Six levels of soil pH (4.1, 4.7, 5.3, 5.9, 6.6, and 7.0) were achieved by addition of various levels of CaCO3. Crop species responded differently to pH, reflecting the genetic diversity among species. Higher dry matter accumulation in roots and tops of rice, corn, and cowpea was observed at acidic pH ranges indicating that these species are tolerant to soil acidity. However, increasing soil pH enhanced dry matter accumulation in roots and tops of wheat and common bean, reflecting their intolerance to soil acidity. In all of the crop species, uptake of calcium (Ca) and magnesium (Mg) decreased with a decrease in soil pH. Overall uptake of zinc (Zn), manganese (Mn), and iron (Fe) in all species increase with a decrease in soil pH. Higher pH in an Oxisol might induce micronutrient deficiencies; therefore, one has to avoid overliming. In general, increasing soil pH decreased the uptake of nitrogen (N), phosphorus (P), and potassium (K) in rice, but uptake of these elements increased in wheat, corn, and common bean. In order to achieve the full genetic potential of any given species on an Oxisol, one needs to consider the species tolerance to soil acidity and its nutrient demand.  相似文献   

2.
Plant nutrient deficiencies are the main yield‐limiting factors in highly weathered acid soils around the world. Five greenhouse experiments were conducted on an Oxisol to identify nutrient deficiencies in common bean, upland rice, corn, wheat, and soybean. The treatments consisted of 13 fertility levels including an adequate level and remaining without application of one of the essential plant macro‐ or micronutrients. Dry matter yield of tops of all the crop species was affected by fertility treatments; however, significant effects of treatments were obtained in the case of common bean, upland rice, and corn. Based on tops dry weight under different treatments compared to adequate fertility level (AFL), the most yield‐limiting nutrients were in the order of phosphorus (P) > calcium (Ca) > magnesium (Mg) > boron (B) > zinc (Zn) for common bean, P > molybdenum (Mo) for upland rice, and P for corn. For the wheat crop, there was substantial decrease in tops dry weight in the absence of Ca, P, and potassium (K) nutrients. In the case of soybean, substantial tops dry weight reduction was due to deficiency in the order of P >Ca>Zn.  相似文献   

3.
Abstract

Even though Mg is an essential nutrient. the response of upland rice, common bean, and cowpea to Mg application has not been adequately documented in Brazilian oxisols. This study was conducted to examine the influence of Mg application on growth and nutrient uptake by upland rice (Oryza sativa L.), common bean (Phaseolus vulgaris L.), and cowpea (Vigna unguiculata L. Walp.) on an oxisol. Magnesium levels in the soil were created at sowing by application of MgO at rates of 0.30, 1.05, 1.15, 1.33, 3.52, and 6.22 cmol Mg/kg of soil. Application of Mg did not have a significant beneficial effect on dry weight of roots and tops of rice and cowpea. Common bean root and top dry weights were increased with Mg applications up to 1 cmol Mg/kg of soil. Uptake of N, P, K, Ca, Cu, Zn, Fe, and Mn by the three crops was significantly (P < 0.01) decreased by increasing Mg levels in the soil. Results related to changes in chemical properties of soil with the application of Mg are also presented.  相似文献   

4.
Abstract

Environmental regulations and limited storage space compel processors to remove spent limestone and not stockpile it on site. This material is often used as a liming material to control pH on acid soils, but in some cases may have to be applied to alkaline soils. This study was undertaken to evaluate the effect of applying sugar beet processing lime on soils with an alkaline solum. Studies were conducted at seven sites representing four soil series. Lime was applied at rates of 0,1.4, 2.8, and 5.6 magnesium (Mg) ha‐1. Sugar beet (Beta vulgaris L.), soybean (Glycine max L.), cora (Zea mays L.), field bean (Phaseolus vulgaris L.), and wheat (Triticum aestivum L.) were used as test crops. Yield of sucrose and roots of sugar beet as well as yield of soybean, corn, field bean, and wheat were not affected by lime application. Manganese (Mn) and zinc (Zn) concentration in leaves of sugar beet and soybean, and whole field bean plants decreased with increasing lime rates. These results show this lime may be applied at rates up to 5 Mg ha‐1 once every three years on these alkaline soils without negatively affecting the yield of sugar beet, soybean, corn, field bean, and wheat. Nutritional status of these crops should be carefully monitored after lime application.  相似文献   

5.
Aluminum (Al) toxicity is a major limiting factor for crop production in many acid soils in Brazil. Two greenhouse experiments were conducted to evaluate response of rice (Oryza saliva L.) and common bean (Phaseolus vulgaris L.) to Al levels on a Low Humic Gley acid soil. The Al levels created by liming were: 0,0.03, 0.10, 0.23, 1.03, and 3.83 cmolc kg‐1 of soil. Rice dry matter and grain yield were significantly improved (P<0.05) with increasing Al levels in the soil solution. However, common bean dry matter as well as grain yield were significantly (P<0.01) decreased with increasing Al levels. At 3.83 cmolc Al kg‐1 of soil, bean did not produce any dry matter or grain yield. On an average, Al decreased nutrient concentrations in the tops of rice plant except zinc (Zn) and manganese (Mn), but in bean crop almost all the nutrients concentrations were increased with increasing Al levels. Rice showed tolerance to Al toxicity, whereas, common bean was susceptible to toxicity of this element. For successful intensive crops production lime application will be necessary in Varzea soils especially for legume production.  相似文献   

6.
Abstract

The lime and N requirements for triticale (X Triticosecale Wittmack) have not been established because of the relatively short history of the crop. This study was designed to evaluate the effects of lime and high N rates on triticale, wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and rye (Secale cereale L.) on Dickson silt loam (Typic Paleudult) and Decatur silty clay loam (Rhodic Paleudult) in 1974–1976. The soils had pH values of 4.9 and 5.5 with no lime and 5.4 and 5.8, respectively, when limed as recommended. The fertilizer rates were 112, 140, and 170 kg N/ha. Yields and N, P, K, Ca, Mg, Mn, Fe, Al, Zn, Cu, and B were determined in straw and grain. Liming the Dickson soil increased the straw yields of barley at 112 kg N/ha and grain yields of the cultivars generally at the 170 kg N/ha rate. Liming the Decatur soil did not have consistent effects on straw yields but increased the grain yields of the wheat and rye cultivars. Increasing N rate increased the straw yields of wheat on Dickson but decreased the grain yields of barley in the same soil with no lime. Nitrogen fertilization did not have consistent effects on the Decatur soil. The N, P, K, Ca, Mg, and Mn compositions suggested that more differences occured at the species level than at the cultivar level.  相似文献   

7.
Abstract

Results of field trials with sunflowers grown on an Ultisol over three seasons indicated that applications of lime and gypsum had little effect on the boron concentration in plant tissues. Only when 30 kg borax/ha/annum had been applied did soil amelioration slightly but significantly decrease the B concentration in 1‐month‐old sunflower seedlings. Liming for three seasons significantly decreased the B concentration in the topmost mature leaf at flowering only when 30 kg borax/ha/annum had been applied and the pH (N KCl) was 4.4 and above. A pot experiment with the same soil was designed to test whether high pH levels affected B uptake. The reduction of toxic aluminum markedly increased top and root growth but higher rates of line had no further benefit. Liming significantly decreased the B concentration in seedling tope but the total B content of the tops was increased by liming. It appeared that liming to pH (N KCl) 7.0 did not adversely affect the uptake and translocation of B by sunflower roots, and that the decreased B concentration in seedling tops resulted from a dilution effect due to the benefit from liming.  相似文献   

8.
Zinc (Zn) deficiency in annual crops is very common in Brazilian Oxisols. Data are limited on Zn uptake and use efficiency during crop growth cycles. A field experiment was conducted during two consecutive years with the objective to determine shoot dry weight and Zn uptake and use efficiency in upland rice, dry bean, corn, and soybean during growth cycles. Shoot dry weight of four crops was significantly increased in an exponential quadratic fashion with increasing plant age. Rice and corn had higher shoot dry weights and grain yields than dry bean and soybean. Zinc concentration in rice and corn decreased in a quadratic fashion with increasing plant age. However, in dry bean and soybean, Zn concentration had a quadratic increase. Zinc uptake followed an exponential quadratic response in four crops, and it was higher in corn and upland rice than in dry bean and soybean. Zinc use efficiency in shoot dry‐weight production had significant quadratic responses in upland rice and soybean with increasing plant age. In corn, Zn use efficiency for shoot dry‐weight production was linear as a function of plant age. Zinc use efficiency for grain production was maximum for corn and minimum for soybean. Hence, cereals had higher Zn use efficiency than legumes.

Zinc concentration in grain of dry bean and soybean was higher than in upland rice and corn, which is a desirable quality factor for human consumption so as to avoid Zn deficiency.  相似文献   

9.
Deficiency of molybdenum (Mo) in acid soils causes poor growth of pulses. An experiment was, therefore, conducted in greenhouse to study the effect of Mo, phosphorus (P), and lime application on the dry matter yield and plant Mo concentration of lentil (Lens esculenta L.) in two Mo‐deficient acid alluvial soils. The experiment was conducted using a factorial design with three levels of lime (no lime, half, and full lime requirement), three levels of P (0, 25, and 50 mg kg‐1), and two levels of Mo (0 and 1.0 mg kg‐1). Plants were grown for 60 days and at harvest their dry matter yield and Mo concentration were recorded. The three treatments significantly increased dry matter yield, Mo concentration and Mo uptake, the increase being most pronounced with Mo application followed by lime and P. Increases due to applied Mo were greater in presence than in absence of added P; while the reverse was true with the liming treatments. Liming and P application at their lower levels also interacted positively for better Mo nutrition of plants. Results thus indicated that the severity of Mo deficiency in the lentil plants may be reduced by lime and P application in Mo‐deficient acid alluvial soils.  相似文献   

10.
Phosphorus deficiency is one of the Important growth limiting factors in crop production in many regions of the world. The objective of this study was to evaluate responses of alfalfa (Medicago sativa L.), red clover (Trifoilum pratense L.), common bean (Phaseolus vulgaris L.), wheat (Triticum aestivum L.) and rice (Oryza sativa L.) to concentrations of P in nutrient solution. The P treatments applied were 5, 50, 100, 200 and 400 μM P. All crop species significantly responded to an increase in external P concentrations. The optimum P concentration for maximum growth varied with crop species, but it was higher for legumes than for cereals. Rice needs minimum as red clover maximum P concentration for maximum growth in nutrient solution as compared to other crops species. Concentrations of K, Zn and Mn were significantly affected in all crop species with P addition. Suggesting positive effects of P in ameliorating Mn toxicity if this element is present in growth medium. Increasing concentrations of P in growth medium produce negative effect on K and Zn nutrition. Growth parameters and plant nutrients concentration and uptake correlation studies showed that legumes are more responsive to P fertilization as compared to cereals.  相似文献   

11.
Phosphorus (P) is required by crop plants for many physiological and biochemical functions. Knowledge of phosphorus uptake and its use by crop plants is essential for adequate management of this essential nutrient. A field experiment was conducted during four consecutive years to determine P uptake and use efficiency by upland rice, dry bean, corn and soybean grown in rotation on a Brazilian Oxisol. Plant samples were taken at different growth stages during the growth cycle of each crop for phosphorus analysis. Phosphorus concentration (content per unit dry matter) significantly decreased in a quadratic fashion with the advancement of plant age in four crop species. Phosphorus concentration was higher in legumes compared to cereals. Phosphorus uptake in shoot, however, significantly increased in an exponential quadratic fashion with the advancement of plant age of crop species. At harvest, P uptake was higher in grain compared to shoot, indicating importance of this element in improving crop yields. Phosphorus use efficiency (grain or straw yield per unit P uptake) was higher in cereals compared to legumes. The P use efficiency for grain production was 465 kg kg?1 for upland rice, 492 kg kg?1 for corn, 229 kg kg?1 for dry bean and 280 kg kg?1 for soybean. The higher P use efficiency in cereals was associated with higher yield of cereals compared to legume species.  相似文献   

12.
Arbuscular mycorrhizal fungi (AMF) have the capability to improve crop yields by increasing plant nutrient supply. A pot experiment was conducted under natural conditions to determine the response of AMF inoculation on the growth of maize (Zea mays L.), sorghum (Sorghum bicolor L.), millet (Pennisetum glaucum L.), mash bean (Vigna mungo L.), and mung bean (Vigna radiata. L.) crops during 2008. The experiment was conducted as a completely randomized design in three replications using phosphorus (P)–deficient soil. Three plants were grown in 10 kg soil up to the stage of maximum growth for 70 days. Spores of AMF were isolated from rhizosphere of freshly growing wheat and berseem crops and mixed with sterilized soil with fine particles. Crops were inoculated in the presence of indigenous mycorrhiza with the inoculum containing 20 g sterilized soil mixed with 40–50 AMF spores. Inoculation with AMF improved yield and nutrient uptake by different crops significantly over uninoculated crops. Inoculated millet crop showed 20% increase in shoot dry matter and 21% in root dry matter when compared with other inoculated crops. Increases of 67% in plant nitrogen (N) and iron (Fe) were observed in millet, 166% in plant P uptake was observed in mash beans, 186% in zinc (Zn) was measured in maize, and 208% in copper (Cu) and 48% in manganese (Mn) were noted in sorghum crops. Maximum root infection intensity of 35% by AMF and their soil spore density were observed in millet crop followed by 32% in mash beans. Results suggest that inoculation of AMF may play a role in improving crop production and the varied response of different crops to fungi signifies the importance of evaluating the compatibility of the fungi and plant host species.  相似文献   

13.
In tropical regions, use of cover crops in crop production is an important strategy in maintaining sustainability of cropping systems. Phosphorus (P) deficiency in tropical soils is one of the most yield-limiting factors for successful production of cover crops. A greenhouse experiment was conducted to evaluate influence of P on growth and nutrient uptake in 14 tropical cover crops. The soil used in the experiment was an Oxisol, and P levels used were low (0 mg P kg?1), medium (100 mg P kg?1) and high (200 mg P kg?1). There was a significant influence of P and cover crop treatments on plant growth parameters. Phosphorus X cover crops interaction for shoot dry weight, root dry weight and root length was significant, indicating different responses of cover crops to variable P levels. Based on shoot dry weight efficiency index (SDEI), legume species were classified into efficient, moderately efficient or inefficient groups. Overall, white jack bean, gray mucuna bean, mucuna bean ana and black mucuna bean were most P efficient. Remaining species were inefficient in P utilization. Macro- and micronutrient concentrations (content per unit dry weight of tops) as well as uptakes (concentration x dry weight of tops) were significantly (P < 0.01) influenced by P as well as crop species treatments, except magnesium (Mg) and zinc (Zn) concentrations. The P x crop species interactions were significant for concentration and uptake of all the macro and micronutrients analyzed in the plant tissues, indicating concentrations and uptake of some nutrients increased while others decreased with increasing P levels. Hence, there was an antagonistic as well as synergetic effect of P on uptake of nutrients. However, uptake of all the macro and micronutrients increased with increasing P levels, indicating increase in dry weight of crop species with increasing P levels. Overall, nutrient concentration and uptake in the top of crop species were in the order of nitrogen (N) > potassium (K) > calcium (Ca) > Mg > sulfur (S) > P for macronutrients and iron (Fe) > manganese (Mn) > zinc (Zn) > copper (Cu) for micronutrients. Interspecific differences in shoot and root growth and nutrient uptake were observed at varying soil P levels  相似文献   

14.
Abstract

We studied the effects of liming on dry matter production, nutrient composition, and grain yields of wheat in field experiments conducted on two soil types at three locations during the 1976–77 and 1977–78 growing seasons. Lime sources were commercial agricultural lime, finely divided stack dust, and dolomitic limestone (which contained 10.6% Mg). Lime applied at 2,800 kg/ha in the 1976–77 and 10,750 kg/ha in the 1977–78 experiments provided Mg from the dolomite at rates of 300 and 1,140 kg/ha, respectively.

Soil pH was significantly increased by liming, but Mg saturation percentages were significantly greater only at the 1,140 kg/ha rate. Forage dry matter and grain yields were not increased by lime applied at the lower rate, but significant increases were found in dry‐matter production in the late fall and spring samplings of the 1977–78 experiment. Those increases in plant growth and dry matter production were probably due to reductions in the soluble Mn and Al concentrations in the soil. Forage N and P concentrations were generally not influenced by liming. Potassium concentrations in forage from the limed plots were usually equal to or greater than those in forage from unlimed plots. Calcitic limestone sources generally increased forage Ca concentrations, but liming with dolomite more often than not depressed Ca concentrations below levels found in the check plots. Dolomite, when applied at the 1,140 kg/ha rate, effectively increased the forage Mg concentration, although the concentration exceeded 0.2% only during the early growth stages. Liming generally showed no significant reduction in the tetany potential of the wheat forage as predicted by the equivalent ratio K/(Ca + Mg).  相似文献   

15.
ABSTRACT

A field study was conducted with the objective of determining response of dry bean (Phaseolus vulgaris L.) to liming and copper (Cu) fertilization applied to an Oxisol. The lime rates used were 0, 12, and 24 Mg ha?1 and Cu rates were 0, 2.5, 5, 10, 20, and 40 kg Cu ha?1. Liming significantly increased common bean grain yield. Liming also significantly influenced soil chemical properties in the top (0–10 cm) as well as in the sub (10–20 cm) soil layer in favor of higher bean yield. Application of Cu did not influence yield of bean significantly. Average soil chemical properties across two soil layers (0–10 and 10–20 cm) for maximum bean yield were pH 6.4, calcium (Ca), 4.2 cmolc kg?1, magnesium (Mg) 1.0 cmolc kg?1, H+Al 3.2 cmolc kg?1, acidity saturation 40.4%, cation exchange capacity (CEC) 8.9 cmolc kg?1, base saturation 63.1%, Ca saturation 45.7%, Mg saturation 18.0%, and Potassium (K) saturation 2.9.  相似文献   

16.
This study was conducted to determine relationships between Al toxicity and mineral uptake of triticale (X Triticosecale, Wittmack), wheat (Triticum aestivum L.), and rye (Secale cereale L.). Two culti‐vars of each species were grown in 1/5‐strength Steinberg solution with 0, 3, 6, or 12 ppm Al added. The solutions were adjusted to pH 4.8 at transplanting and were not adjusted thereafter. The plants were grown in a growth chamber for 19 days before harvesting to determine nutrient solution pH, dry weights, and Al, Ca, Mg, K, and P levels in plants. Increasing Al concentration reduced the final pH of solutions. The addition of 12 ppm Al severely reduced the growth and increased Al concentration of plant tops. The Al levels in roots generally increased with increments of added Al up to 6 ppm. Increasing Al decreased the uptake of Ca, Mg, and P by plant tops more than that of K. Regression analyses indicated that Al toxicity was associated with increasing K/Ca + Mg equivalent ratios and decreasing P concentration in plant tops. Differences between species were: higher Al concentration in rye than wheat with 6 and 12 ppm Al, higher translocation of Ca from roots to tops in wheat than in rye and Mg in triticale and wheat than rye; K/Ca + Mg equivalent ratios associated with 50% reduction in top growth followed the order: triticales > tolerant wheat > sensitive wheat > rye. Differences in mineral uptake associated with Al toxicity in wheat were more indicative of differential Al sensitivity in wheat than in triticale and rye which have higher internal Al tolerance.  相似文献   

17.
石灰与磷肥可以降低华南5种常见蔬菜对镉的吸收量   总被引:7,自引:0,他引:7  
A pot experiment was conducted in artificially Cd-contaminated (5 mg Cd kg-1) soils to investigate the feasibility of using lime (3 g kg-1) or phosphate (80 mg P kg-1) to mitigate uptake of Cd by vegetables.Five common vegetables in South China,including lettuce (Lactuca sativa L.var.ramosa Hort.),Chinese cabbage [Brassica rapa L.subsp.Chinensis (L.) var.parachinensis (L.H.Bailey) Hanect],Chinese broccoli (Brassica oleracea L.var.albiflora Kuntze),white amaranth (Amaranthus tricolor L.) and purslane (Amaranthus viridis L.),were grown in the soils and harvested after 60 d.The results showed that liming significantly reduced Cd uptake by most vegetables by 40%-50% (or a maximum of 70%),mainly due to immobilization of soil Cd.Increased availability of Ca in the soil might also contribute to the Cd uptake reduction as a result of absorption competition between Ca and Cd.Liming caused biomass reduction in white amaranth and purslane,but did not influence growth of the other vegetables.Phosphate decreased Cd uptake by vegetables by 12%-23%.Compared with lime,phosphate decreased,to a smaller extent,the bioavailability of Cd in most cases.Phosphate markedly promoted growth of vegetables.Changes in soil chemistry by adding lime or phosphate did not markedly influence nutrient uptake of vegetables except that lime increased Ca content and phosphate increased P content in shoots of the vegetables.The results suggested that a proper application of lime could be effective in reducing Cd uptake of vegetables,and phosphate could promote growth of the vegetables as well as alleviate the toxicity of Cd.  相似文献   

18.
Abstract

The effects of liming (7 500 kg CaCO3/ha) and rate of urea application (0,50,100, and 200 kg N/ha) and its placement at the surface or at 5 cm depth on grain yield and nutrient uptake by corn grown on an acidic tropical soil (Fluventic Eutropept) were studied. Liming significantly increased grain yield, N uptake, and P and K uptake although Ca and Mg uptake, generally, were unaffected. Sub‐surface application of urea increased N uptake only. Yield response to applied N was observed up to 50 kg N/ha when limed but at all rates in the absence of liming. It therefore, reduced the fertilizer N requirement for optimum grain yield. Liming the acidic soil also reduced exchangeable Al but increased nitrification rate and available P in the soil profile (at least up to 0.6 m depth).  相似文献   

19.
Abstract

Highly weathered tropical soils are characterized by having a predominantly variable charge. Many management practices commonly used in the exploitation of these soils (e.g., liming, phosphate application, and manuring) are known to modify their electrical charge and the sorption/desorption behavior of cations and anions. This process is, at least, partially governed by the charges existing in the soil system. Available information on this subject comes mainly from short‐term laboratory and greenhouse experiments. There is a lack of data regarding the cumulative and long‐term effects of those practices used at farm‐scale levels and on the dynamics and availability of nutrients to the plants under field conditions. In the present work, changes in some electrochemical attributes of a variable charge soil (Oxisol) were studied, as influenced by treatments with phosphate + green manure (Cajanus cajan), phosphate + lime, and phosphate + lime + green manure, applied during a six‐year period. In this period, rice, bean, wheat, or corn, were grown in seventeen successive crops. Phosphate (total 334 ppm P) and phosphate + lime (total 5.5 t ha‐1) were shown to increase net electric charge and soil cation exchange capacity (CEC) at the field pH, and not to affect zero point of charge (ZPC), CEC at pH 7.0, or anion exchange capacity (AEC) of the soil at the field pH. The effects of phosphate + lime were more pronounced than those of phosphate alone. Green manure (total 16 t ha‐1 dry matter), associated to crop residues and phosphate or phosphate + lime, did not influence electrochemical properties.  相似文献   

20.
Faba beans (Vicia faba L) are grown in northern Tunisia where annual rainfall approaches 1200 mm and where the soil acidity is the most limiting factor for plant growth. Aluminum (Al) and manganese (Mn) toxicities provide a hostile environment to root growth. To alleviate such a problem, farmers use selected acid-tolerant species. However, crop yields remain far below their optimal levels. Liming, a practice to eliminate acidity, has never been tried in this area before. This research aimed to evaluate the impact of lime and mineral fertilizers on root nodulation, plant uptake and yield of faba beans using a pot experiment. Treatments were combinations of two rates of calcium carbonate with three rates of superphosphate and three rates of potassium sulfate. Liming produced significantly higher number and weight of nodules on roots as well as higher nitrogen, phosphorus, and potassium contents in plant tissue. Liming also increased shoot growth and bean yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号