首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to investigate the effects of an early (February; F) or delayed (April; A) primary spring grazing date and two stocking rates, high (H) and medium (M), on the grazing management, dry matter (DM) intake of grass herbage and milk production of spring‐calving dairy cows grazing a perennial ryegrass sward in the subsequent summer. Sixty‐four Holstein‐Friesian dairy cows (mean of 58 d in milk) were assigned to one of four grazing treatments (n = 16) which were imposed from 12 April to 3 July 2004. Cows on the early spring‐grazing treatment were grazed at 5·5 cows ha?1 (treatment FH) and 4·5 cows ha?1 (treatment FM) while cows on the late‐grazing treatment were grazed at 6·4 cows ha?1 (treatment AH) and 5·5 cows ha?1 (treatment AM). The organic matter digestibility and crude protein concentration of the grass herbage were higher on the early‐grazing treatment than on the late‐grazing treatment. The cows on the FM treatment had significantly (P < 0·001) higher milk (24·5 kg), solids‐corrected milk (22·5 kg), fat (P < 0·01, 918 g) and protein (831 g) yields than the other three treatments. Cows on the FM treatment had a higher (P < 0·001) DM intake of grass herbage by 2·3 kg DM per cow per day than cows on the AH treatment, which had a DM intake significantly lower than all other treatments (15·2 kg DM per cow per day). The results of the present study showed that grazing in early spring has a positive effect on herbage quality in subsequent grazing rotations. The study also concluded that early spring‐grazed swards stocked at a medium stocking rate (4·5 cows ha?1; FM) resulted in the highest DM intake of grass herbage and milk production.  相似文献   

2.
The objectives of this experiment were to study the effects of different grazing managements in spring on herbage intake and performance of summer-calving dairy cows and to examine the effects of regrowth in early June on herbage intake and cow performance. Four spring-grazing treatments were applied to predominantly perennial ryegrass swards: Control (C), sward grazed by cows to 6–8 cm sward surface height (SSH); CG16, sward grazed by cows to 3–4 cm SSH in May and allowed to regrow to a target SSH of 16cm in early June; CG8, sward grazed by cows to 3–4 cm SSH in May and allowed to regrow to 8cm in early June; and SG8, sward grazed by sheep to 2–3 cm SSH in May and allowed to regrow to 8 cm in early June, All swards were continuously stocked by summer-calving (May and July) primiparous and multiparous cows from 16 June to 7 September, to a target SSH of 8–10cm. Spring treatments bad marked effects on herbage intakes and milk production. Estimated in July by n alkane analysis, the mean herbage intake ± s.e.d. of cows on each treatment were 1·8, 1·4, 1·4 and 3·0 ± 0·31 kg dry matter (DM) 100 kg live weight (LW)?1 d?1 (P < 0·01) for treatments C, CG16, CG8 and SG8 respectively. Measured in August, intakes were 1·8, 20, 2·1 and 2·4 ± O·33kg DM 100kg LW?1 d?1 respectively. Severe spring grazing led to increased milk yield and reduced milk fat content from summer-calving cows fed 5·2 kg d?1 of a proprietary concentrate. Average milk yields for the eleven experimental cows on each treatment were 24·3, 23·4, 26·2 and 29·0 ± 1·20 kgd?1 (P < 0·01) for C, CG16, CG8 and SG8, and average milk fat contents were 45·4. 42·4, 43·9 and 40·9 ± 1·02gkg?1 (P<0·05) respectively. The results suggest that severe grazing of swards in early season could improve herbage intake and milk yield of summer-calving cows in mid- and late season. The most favourable spring treatment in this respect was severe grazing by sheep. However, this advantage could be negated in midseason by lax grazing at that time.  相似文献   

3.
This experiment examined the effects of grazing severity and degree of silage restriction during early turnout of dairy cows to pasture in spring on animal performance. Forty late‐winter‐calving Holstein Friesian dairy cows were allocated to one of five treatments between 7 March and 17 April 1997. The treatments involved early turnout of cows to grass for 2 h per day at two residual sward heights and two silage allowances, plus a control treatment, in a randomized block design. Dairy cows on the control treatment remained indoors throughout the experiment and were offered grass silage ad libitum. Dairy cows on all treatments were also offered 6 kg d–1 of a concentrate on a flat‐rate basis, split equally between the morning and afternoon milkings. Offering cows access to pasture in early spring for 2 h per day resulted in increases in both milk (P < 0·001) and protein yield (P < 0·01). On average, over all grazing treatments, cows produced an additional 2·6 kg milk per day compared with the control treatment (28·5 vs. 25·9 kg d–1, s.e.m. 0·43). Furthermore, these increases in milk yield were obtained even when silage was restricted indoors (28·4 vs. 25·9 kg d–1) and cows grazed down to a residual sward height of 40 mm (28·1 vs. 25·9 kg d–1). Protein yield was higher (P < 0·01) with dairy cows grazing pasture compared with cows indoors (848 vs. 707 g d–1, s.e.m. 28·9). Silage intake was significantly (P < 0·001) reduced when cows were turned out to pasture. In conclusion, early turnout of dairy cows to pasture in spring for 2 h per day reduced silage intake and increased milk yield and protein yield relative to those fully housed and offered grass silage with a low level of concentrates.  相似文献   

4.
Two factorial design experiments were carried out in the spring of 1994 and 1995, each of 6 weeks, to quantify the effects of sward height (SH), concentrate level (CL) and initial milk yield (IMY) on milk production and grazing behaviour of continuously stocked dairy cows. In Experiment 1, forty‐five Holstein Friesian cows were in five groups with initial milk yields of 16·9, 21·1, 28·0, 31·5 and 35·5 kg d–1, grazed sward heights were 3–5, 5–7 and 7–9 cm (LSH, MSH and HSH respectively), and concentrates were fed at rates of 0, 3 and 6 kg d–1. In Experiment 2, 48 cows were in two groups with IMY of 21·3 and 35·5 kg d–1, grazed sward heights were 3–5 and 7–9 cm (LSH and HSH), and concentrates were fed at 0 and 6 kg d–1 and ad libitum. Multiple regression models were used to quantify the effects of the three variables on milk yield persistency (MYP), estimated herbage dry‐matter (DM) intake (HDMI), grazing time (GT) and rate of DM intake (RI). The partial regression coefficients showed that increased SH led to increased MYP (Experiment 1 P < 0·001, Experiment 2 P < 0·05), increased HDMI (P < 0·01, P < 0·01), increased GT (P < 0·001, P < 0·05) and increased RI (P < 0·001, P < 0·05). Increasing CL led to increased MYP (NS, P < 0·001), decreased HDMI (P < 0·001, P < 0·001), decreased GT (NS, P < 0·001) and decreased RI (P < 0·001, P < 0·001). Higher IMY level of cows decreased MYP (P < 0·001, P < 0·001), increased HDMI (P < 0·001, P < 0·001), increased GT (P < 0·001, P < 0·05) and increased RI (P < 0·05, P < 0·01). The models were highly significant (P < 0·001), and accounted for 0·48–0·87 of the total variance. The partial regression coefficients quantified the extent to which GT and RI by cows respond positively to higher IMY, and negatively to increased CL, but respond differently (GT declines in response to a higher RI) with increasing SH.  相似文献   

5.
An experiment was conducted to test the hypothesis that for cows with high levels of milk yield, rotational grazing produces higher milk yields than continuous grazing. The comparison of grazing systems was made at two levels of milk yield (initially 20·3 and 32·5 kg d?1), and interactions with sward height and concentrate level were also examined. The study used 48 multiparous Holstein Friesian cows over a period of 62 d. Mean milk yield, its persistency and composition, live weight, body condition score and liveweight gain were not significantly affected by grazing system at either level of milk yield. There were no significant interactions between grazing system and sward height or concentrate level for any milk production measurement. Mean estimated herbage and total dry matter (DM) intake (P < 0·01), grazing time (P < 0·05) and ruminating time (P < 0·01) were significantly greater on the continuous grazing system. The cows in the higher milk yield group and those grazed at the higher sward height had a significantly (P < 0·05) higher estimated daily herbage DM intake and rate of herbage intake on the continuous grazing system than those on the rotational grazing system. There was no evidence to support the hypothesis that rotational grazing systems support higher levels of milk production than continuous grazing for cows of high milk yield. The shorter grazing time on the rotational grazing system indicated that cows may anticipate the timing of the daily movement of the electric fence, and this reduces their time spent grazing residual herbage.  相似文献   

6.
Two studies were conducted to examine the effects of incorporating small quantities of straw in the diets of dairy cows. In Experiment 1, forty Holstein Friesian dairy cows were used in a 2 × 4 factorial design experiment, with factors examined consisting of two parities (primiparous and multiparous animals) and four levels of straw inclusion in the diet (0, 0·08, 0·16 and 0·24 of forage dry matter). The basal forage offered in this study was grass silage, and the primiparous and multiparous animals were supplemented with 9·0 and 11·0 kg concentrate d–1 respectively. In Experiment 2, forty‐eight Holstein Friesian dairy cows were used in a 2 × 3 factorial design experiment, with factors examined consisting of two basal forage types (grass silage and zero‐grazed grass) and three levels of straw inclusion (0, 1·0 and 2·0 kg d–1). All animals were offered 7·0 kg d–1 of a concentrate supplement. Both experiments were partially balanced changeover designs, consisting of two, 4‐week periods. In Experiment 1, the total dry‐matter intake followed a significant quadratic relationship (P < 0·05), increasing with low levels of straw inclusion and decreasing at higher levels of inclusion. With increasing levels of straw inclusion, there was a linear decline in milk yield (P < 0·001) and milk protein concentration (P < 0·05), but milk fat concentration was unaffected (P > 0·05). In Experiment 2, the effect of straw inclusion on total dry‐matter intake was quadratic (P < 0·001), with intakes being maximum at the 1·0‐kg level of straw inclusion. Milk yield exhibited a linear decrease (P < 0·001) with increasing level of straw inclusion. Milk fat concentration was lowest at the 1·0 kg rate of straw inclusion (P < 0·05), but milk protein concentration was unaffected by straw inclusion. There were no significant interactions between basal forage type and level of straw inclusion for any of the variables examined (P > 0·05). Despite small increases in total dry‐matter intake at a low level of straw inclusion, there was no evidence that straw inclusion improved either nutrient utilization or animal performance. The reduction in milk yield observed with straw inclusion reflects, to a large extent, a reduction in metabolizable energy intake.  相似文献   

7.
Twelve multiparous Holstein–Friesian dairy cows in early lactation were used to investigate the potential of using perennial ryegrass (Lolium perenne) with a high concentration of water‐soluble carbohydrates (WSC) to increase the efficiency of milk production. Ad libitum access to one of two varieties of zero‐grazed herbage was given continuously for 3 weeks: treatment High Sugar (HS), an experimental perennial ryegrass variety (Ba11353) bred to contain a high concentration of WSC, harvested in the afternoon; or Control, a standard variety of perennial ryegrass (cv. AberElan), harvested in the morning. All dairy cows also received 4 kg d?1 of a standard dairy concentrate. Dairy cows given the HS diet treatment consumed 2·8 kg dry matter (DM) d?1 more than Control dairy cows (P < 0·01), and the DM digestibility of the diet on the HS treatment was significantly greater than that of the diet on the Control treatment (0·75 vs. 0·72; s.e.d. 0·010; P < 0·05). Excretion of urinary purine derivatives (PD) tended (P < 0·1) to be higher from dairy cows on the HS treatment, implying increased microbial protein flow to the duodenum, although there was no significant difference in the apparent efficiency of rumen fermentation of either dietary nitrogen (N) or DM expressed as a ratio to urinary PD. Milk yields and milk composition were not significantly affected by dietary treatment, although true protein yields of milk were higher (P < 0·05) from dairy cows given the HS treatment. The proportion of dietary N excreted in urine was significantly lower from HS cows, although the values were low for both treatments (0·20 g g?1 vs. 0·27 g g?1; s.e.d. 0·020; P < 0·05). It is concluded that increased DM intakes by dairy cows given the HS treatment led to increased milk protein outputs. With a proportional decrease in urinary N excretion, the use of perennial ryegrass with a high WSC concentration, in the context of the harvesting regime used in this study, may help to reduce N pollution from dairy systems into which it is incorporated.  相似文献   

8.
Milk fatty acids (FA) were compared in mid‐lactation dairy cows in four feeding systems combining grazing management and supplementation. The four treatments were factorial combinations of compressed herbage grazed to 3·7 or 4·6 cm post‐grazing height, with or without concentrate feeding (3·6 kg cow?1 d?1). Milk yield and composition were measured for four groups of eight Friesian × Jersey dairy cows over 3 weeks in mid‐lactation for cows that had grazed treatments for 64 d from early spring. Milk yield was higher in cows fed concentrate plus herbage (23·9 kg d?1 cow?1) than cows fed herbage only (20·3 kg d?1 cow?1). Milk fat percentage was higher in cows fed herbage only (5·5%) than that fed herbage plus concentrate (5·1%). Milk protein percentage was higher in cows fed herbage plus concentrate (4·0%) than that fed herbage only (3·7%). The concentrations of conjugated linoleic acids c9, t11, C18:0, C18:1 t11 and C18:2 t9, c12 FA were lower where concentrate was fed. The concentrations of C18:1 t10, C18:1 t5, t8 and C18:2 c9, c12 FA were higher where concentrate was fed. The concentrations of C18:1 c6, C18:1 c9, C18:1 t9 and C18:3 c6,9,15 were unaffected by concentrate feeding. Post‐grazing herbage height had no significant effect on milk yield or concentration of milk FA. Provided dairy cows are harvesting leafy material of similar nutrient and FA concentration, post‐grazing herbage height does not appear to alter milk FA and the supply of high energy concentrates is more influential on milk FA profiles.  相似文献   

9.
This study examined productivity, nitrogen (N) flows and N balances in grassland‐based systems of dairy production in Ireland. There were four stocking densities of dairy cows on grass/white clover pastures and four inputs of N as fertilizers, concentrates and biological fixation over 2 years; 2001 and 2002. Annual stocking densities were 1·75, 2·10, 2·50 and 2·50 cows ha?1. Associated N inputs were 205, 230, 300 and 400 kg ha?1 respectively. There were eighteen cows per system. Cows calved within a 12‐week interval in spring with a mean calving date of 28 February and lactation extended until mid‐December in each year. There were no differences in annual milk yield (6337 kg cow?1; s.e.m. 106·1), live weight or body condition score. Pre‐grazing N concentrations in herbage increased (P < 0·001) with increasing N input, whereas there were no differences in N concentrations in silage reflecting optimum N inputs for silage production. Grazed herbage accounted for 0·64, silage 0·26 and concentrates 0·10 of annual dry matter consumed by the cows. Annual intakes of N ranged from 144 to 158 kg cow?1 and were mostly influenced by N concentration in grazed herbage. Annual output of N in milk and liveweight change was 38 kg cow?1 and was not different between systems. Annual N surpluses increased with increasing N inputs from 137 to 307 kg ha?1, whereas the proportion of N inputs recovered in products declined from 0·34 to 0·24. More efficient N use was associated with lower N inputs and in particular lower N concentrations in grazed herbage.  相似文献   

10.
The study was designed to test the hypothesis that grazing management in early season could alter sward structure to facilitate greater animal performance during critical periods. The effects of grazing a mixed perennial ryegrass/white clover sward at different sward surface heights, by cattle or sheep, in early season on sward composition and structure, and on the performance of weaned lambs when they subsequently grazed these swards in late season were determined. In two consecutive years, from mid‐May until mid‐July, replicate plots (three plots per treatment) were grazed by either suckler cows and calves or ewes and lambs at 4 or 8 cm sward surface heights (Phase 1). From mid‐August (Year 1) or early August (Year 2), weaned lambs continuously grazed, for a period of 36 d (Year 1) or 43 d (Year 2) (Phase 2), the same swards maintained at 4 cm (treatment 4–4), 8 cm (treatment 8–8) or swards which had been allowed to increase from 4 to 8 cm (treatment 4–8). Grazing by both cattle and sheep at a sward surface height of 4 cm compared with 8 cm in Phase 1 resulted in a higher (P < 0·001) number of vegetative grass tillers per m2 in Phase 2, although the effect was more pronounced after grazing by sheep. Sheep grazing at 8 cm in Phase 1 produced a higher number of reproductive tillers per m2 and a greater mass of reproductive stem (P < 0·001) than the other treatment combinations. The mass of white clover lamina was higher under cattle grazing (P < 0·05), especially on the 8‐cm treatment, and white clover accounted for a greater proportion of the herbage mass. These effects had mainly disappeared by the end of Phase 2. On the 4–4 and 8–8 sward height treatments the liveweight gain of the weaned lambs was higher (P < 0·05) on the swards previously grazed by cattle than those grazed by sheep. The proportion of white clover in the diet and the herbage intake also tended to be higher when the weaned lambs followed cattle. However, there was no difference in liveweight gain, proportion of white clover in the diet or herbage intake between swards previously grazed by cattle or sheep on the 4–8 sward height treatment. It is concluded that grazing grass/white clover swards by cattle compared with sheep for the first half of the grazing season resulted in less reproductive grass stem and a slightly higher white clover content in the sward, but these effects are transient and disappear from the sward by the end of the grazing season. They can also be eliminated by a short period of rest from grazing in mid‐season. Nevertheless these changes in sward structure can increase the performance of weaned lambs when they graze these swards in late season.  相似文献   

11.
The effect of the proportion of Calluna vulgaris cover on diet composition, intake and performance of sheep grazing hill vegetation communities in northern Spain is examined. A total of 591 non‐lactating Gallega ewes grazed for five consecutive grazing seasons (June to September) on replicated plots of hill pastures (1700 m.a.s.l.) composed principally of Festuca, Agrostis, Nardus and Calluna spp. but with different proportions of Calluna vulgaris cover, either 0·3 (C0·3) or 0·7 (C0·7) of the total area. In 1 year, twenty‐eight ewes suckling single lambs also grazed the plots. The mean stocking density over the 5 years was 8·7 ewes ha–1. On treatment C0·3, daily liveweight gains (33 g d–1) of non‐lactating ewes were significantly (P < 0·001) greater than on treatment C0·7 (12 g d–1). Likewise in lactating ewes the difference in mean daily liveweight change was 40 g d–1 (–5 vs. –45 g d–1 for C0·3 and C0·7 treatments respectively; P < 0·001). Liveweight gains of lambs were only 80–100 g d–1 from June to August and lambs only maintained live weight during August and September. The effect of lactational status on liveweight changes was not significant. Liveweight gains of non‐lactating ewes increased significantly (P < 0·001) from the first to the last year of the experiment on both treatments. The composition of the diet was significantly affected by treatment (P < 0·001), with a higher proportion of grass species on the C0·3 treatment and a higher digestibility of the diet in the first half of the grazing season (P < 0·001). The proportion of C. vulgaris in the diet was significantly (P < 0·001) higher on the C0·7 treatment and increased significantly (P < 0·001) from July to September on both treatments. There were no significant differences in the composition of the diet selected by lactating and non‐lactating ewes. The results demonstrate that on hill vegetation communities, in which the grass components (Festuca rubra, Agrostis capillaris, and Nardus stricta) cover at least 0·3 of the area and on which the preferred grass component (Festuca and Agrostis spp.) is maintained at a sward height of at least 2·5 cm, non‐lactating ewes can increase their live weight and body condition, but this increase is influenced by the proportion and quantity of species of grass in the diet, which is affected in turn by the species of grass available and their nutritive quality. However, ewes suckling lambs were not able to maintain their live weight and body condition except when Calluna cover was 0·3 and grass height was more than 3·5 cm. It is concluded that these indigenous vegetation communities can be used in sheep production systems to complement the use of improved pastures at other times of year. In particular, they can be utilized during the non‐lactating period (summer) to increase body condition before the beginning of the mating period in autumn.  相似文献   

12.
The objective of this study was to examine the performance of grazing Holstein–Friesian dairy cows when equal quantities of concentrates were offered using either a flat‐rate or a feed‐to‐yield allocation strategy. The study involved fifty‐six cows (twenty primiparous and thirty‐six multiparous) and continued for 122 d, with concentrate feed levels adjusted on five occasions during the study (every four weeks approximately). Total concentrate intake over the duration of the study was 463 and 525 kg cow?1 (3·8 and 4·3 kg cow?1 d?1) for multiparous and primiparous animals respectively. Concentrate allocation strategy had no effect on average daily milk yield, milk fat or protein content, milk‐fat‐plus‐protein yield or end‐of‐study live weight and body condition score (P > 0·05). In conclusion, concentrate allocation strategy had minimal impact on the overall performance of these mid/late lactation cows when concentrate feed levels were modest and grass availability was high.  相似文献   

13.
Abstract In 1993 and 1994, 40 cows in early lactation in early spring were assigned randomly to four feeding treatments. One group of cows was kept indoors with access to grass silage ad libitum, plus 6 kg of concentrate daily. The other three groups had access to grass pasture (5–6 h per day in 1993 and 11–12 h per day in 1994) plus grass silage similar to that fed to the previous group while indoors plus 6, 4 or 2 kg of concentrate daily. The average daily allocations of herbage (> 3·5 cm) were 8·5 and 14·0 kg DM cow?1 day?1 in 1993 and 1994 respectively. The treatments were applied for 8 weeks (26 February to 23 April) in 1993, and 7 weeks (11 March to 29 April) in 1994. Cows with access to pasture had lower (P < 0·001) silage dry‐matter (DM) intakes and higher (P < 0·001) total forage DM intakes in both years than those kept indoors. This resulted in significantly higher yields of milk, fat, protein and lactose. Similarly, milk protein concentration was higher (P < 0·05 in 1993; P < 0·001 in 1994). There was a significant linear increase in total DM intake in both years with increased concentrate supplementation. In 1993, there was a linear increase in milk (P < 0·01), fat (P < 0·01), protein (P < 0·001) and lactose (P < 0·01) yields with increased concentrate supplementation. In 1994, only milk protein yield (P < 0·05) was increased. Concentrate supplementation had no effect on milk composition or liveweight change. Cows with access to grazed grass had higher liveweight gains (P < 0·05) than those kept indoors in both years. In 1993, increasing the energy intake increased the processing qualities of the milk produced. The results showed that access to grass pasture resulted in higher milk production, in reduced silage requirement and in reduced level of concentrate supplementation required for a given level of milk production with spring‐calving cows in early lactation compared with those kept indoors.  相似文献   

14.
The effects of sward surface height (SSH) and daily herbage allowance (HA) on the defoliation pattern and grazing mechanics of early lactation dairy cows grazing on irrigated perennial ryegrass–white clover pasture were studied. The hypothesis tested was that SSH and HA affect intake and diet selection through their effects on the pattern of defoliation which is influenced by the resistance to prehension bites. Factorial combinations of two initial SSH (14 and 28 cm) and two daily HA (35 and 70 kg DM cow?1 d?1) were examined in a replicated experiment. The peak longitudinal tensile force required to break the sward portion encompassed in a 100 cm2 area [bite fracture force (BFF100)] was measured as an index of the resistance to prehension. The volume of herbage defoliated and herbage intake increased with SSH (P < 0·05) and HA (P < 0·01). Corresponding to an increase in HA from 35 to 70 kg DM cow?1 d?1, there was a proportional increase in the total defoliation area (TDA) and intake by 0·24 and 0·55 in the short sward compared with 0·16 and 0·32 in the tall sward respectively. The results of this experiment suggest that a consistent spatial pattern of reduction of the canopy exists during defoliation by cows and that the volume of sward canopy defoliated is the major variable affecting herbage intake. The BFF increased down the sward profile at a rate that was higher (P < 0·05) for the taller sward than for the shorter sward. It is proposed that a relatively lower resistance to prehension in the short sward compared with the tall sward explains the greater proportionate increase in TDA and intake corresponding to an increase in HA. The rate at which BFF100 increases down the sward profile is suggested as a sward physical variable that can influence the defoliation process. The estimated time and energy costs of prehension bites are discussed in the context that larger bites are handled more efficiently than smaller bites.  相似文献   

15.
A four‐treatment (UG‐UG, UG‐G, LG‐G and HG‐G) experiment (involving sixteen plots: 3·0 × 7·0 m) examined the effect of early spring grazing intensity on particulate phosphorus (PP) losses in surface run‐off. Ten dairy cows fitted with manure collection ‘bags’ grazed during two short‐term grazing events, Grazing‐1 (23 February) and Grazing‐2 (6 April). During Grazing‐1, two treatments remained ungrazed (UG‐), while treatments LG‐ and HG‐ were lightly grazed and heavily grazed respectively. At Grazing‐2, three treatments were grazed to a similar intensity (‐G), while one remained ungrazed (‐UG). Run‐off was generated at two and 16 days after Grazing‐1 and Grazing‐2 using rainfall simulators (40 mm h?1) and analysed for a range of P fractions. Grazing had no effect on either dissolved reactive phosphorus (DRP) concentrations or dissolved unreactive P concentrations (mean, 0·15 and 0·16 mg L?1 respectively) in run‐off. However, PP concentrations increased (< 0·05) following Grazing‐1 (0·39, 0·53 and 0·72 mg L?1 with UG‐, LG‐ and HG‐ respectively, Day‐2 Rainfall event), with these effects still evident following Grazing‐2, especially with HG‐G (3·25 mg L?1). The risk of PP loss in run‐off can be substantially reduced by removing cows from pastures before significant damage to the soil takes place.  相似文献   

16.
The effect of sward structure of four temperate grass species on the bite mass of cattle was evaluated. Micro‐swards (79 cm × 47 cm; approximately the area of a feeding station) of orchardgrass (Dactylis glomerata L.), quackgrass [Elymus repens (L.) Gould], meadow fescue [Schedonorus pratensis (Huds.) P. Beauv] and reed canarygrass (Phalaris arundinacea L.) were offered to Holstein dairy cows in short‐term grazing sessions in 2006 and 2007 using a 4 × 4 Latin square design. Cows were allowed to take fifty bites in each session. Bite mass was calculated by dividing the adjusted change in weight of the micro‐sward by the number of bites. Sward surface height, bulk density and distribution of herbage dry matter (DM) in the canopy were measured pre‐ and post‐grazing. Sward structure differed among the grass species within years but bite mass (on a fresh or DM basis) was not affected. Higher surface heights and bulk densities in 2006 compared with 2007 (averaged across grass species) resulted in greater bite masses of DM in 2006. Values were 25·7 cm vs. 17·0 cm for surface height; 1219 g m?3 vs. 926 g m?3 for bulk density; and 1·05 g DM bite?1 vs. 0·50 g DM bite?1 for 2006 and 2007 respectively. Within the context of this study, differences between years in bite mass, associated with greater changes in sward structure, were more important than differences among grass species.  相似文献   

17.
The botanical composition, intake and digestibility of the diet consumed by mature lactating and non‐lactating cows grazing a native white grass (Cortaderia pilosa) plant community in the Falkland Islands was measured in four periods between September 1998 and June 1999. Five lactating and five non‐lactating cows were used in the summer, autumn and winter; five non‐lactating cows were used in the spring. Different cows were used in each period. Plant cuticle patterns in the faeces of cattle were used, in conjunction with the patterns of concentrations of n‐alkanes in the faeces, to estimate the botanical composition of the diet and predicted concentrations of C32‐ and C33‐alkanes in the herbage allowed herbage intake and digestibility to be estimated using the n‐alkane technique. White grass, sedges and rushes comprised 0·78, 0·64 and 0·63 of the diet in autumn, winter and spring respectively. Fine grasses, smooth‐stalked meadow grass (Poa pratensis L.), annual meadow grass (Poa annua L.), bent grass (Agrostis capillaris L.), native fescue (Festuca magellanica Lam.), Yorkshire fog (Holcus lanatus L.), wavy hair grass [Deschampsia flexuosa (L) Trin.] and early hair grass (Aira praecox L.), were consumed at the expense of sedges and rushes in summer and this coincided with the period of greatest estimated metabolizable energy and crude protein intakes by cows. Lactating cows suffered substantial liveweight loss during autumn and winter and this reflected the low quality of the diet consumed. Phosphorus intakes were insufficient and there was an estimated deficiency of vitamin D in the winter and early spring in cattle that were grazed with the experimental cows. The nutrient restrictions imposed on cattle by the low quality of native pasture during autumn and winter are likely to impair the reproductive potential of breeding females and methods should be investigated to improve the diet consumed by cows during these critical periods if cattle systems are to become sustainable in the Falkland Islands.  相似文献   

18.
Eighty winter‐calving dairy cows of mixed parity were managed in four grassland‐based systems of milk production (F‐F, F‐C, C‐F and C‐C) over a full lactation (year 1) and during the winter period of the subsequent lactation (year 2). During the winter periods cows on systems F‐F and F‐C were offered silages of high feeding value, supplemented with 6·0 kg d?1 of concentrate [crude protein (CP), 307 g kg?1 dry matter (DM)] through an out‐of‐parlour feeding system, while cows on systems C‐F and C‐C were offered silages of medium feeding value, supplemented with c. 12·8 kg d?1 of concentrate (CP, 204 g kg?1 DM), in the form of a complete diet. After 25 February in year 1, cows on systems F‐F and C‐F were given access to grazing for periods of increasing duration, achieving full turnout on 17 April. Thereafter, until 21 October, these cows were offered a high daily allowance of herbage within a flexible grazing system (23·0 kg DM per cow, measured above a height of 4·0 cm), supplemented with 0·5 kg d?1 of a ‘high magnesium’ concentrate. Cows on systems F‐C and C‐C (year 1) commenced grazing on 1 April, achieving full turnout on 17 April. Thereafter, until 20 October, these cows were managed on a restricted allowance of herbage in a rotational paddock grazing system, with concentrates (average allocation, 3·9 kg d?1) being offered according to yield. In year 2, cows on systems F‐F and C‐F were given access to grazing for periods of increasing duration, from 11 March to 8 April, at which point the study was terminated. With systems F‐F, F‐C, C‐F and C‐C, mean feed inputs and milk outputs (per animal) during year 1 of the study were as follows: total concentrate DM intakes [881, 1272, 1729 and 2171 kg (s.e.m. 96·1)]; total silage DM intakes [1722, 1713, 1047 and 1154 kg (s.e.m. 70·7)], total grass DM intakes (3245, 2479, 3057 and 2481 kg) and total milk outputs [7541, 7527, 7459 and 7825 kg (s.e.m. 305·8)] respectively. Stocking rates associated with each of the four systems were 2·2, 2·5, 2·6 and 2·9 cows per hectare respectively. Performance of dairy cows on the systems during the winter of year 2 was similar to that recorded during year 1. The results of this study indicate that similar levels of milk output, DM intakes, tissue changes and plasma metabolite profiles can be achieved from grassland‐based systems involving very different combinations of grass silage, grazed grass and concentrate feeds.  相似文献   

19.
The effect of sward surface height (SSH) on grazing behaviour and intake by lactating Holstein Friesian cows on continuously stocked grass pastures maintained at mean heights of 5, 7 and 9 cm was studied during the growing season. Intake rate was estimated over periods of 1 h by weighing animals before and after grazing, with a correction made for insensible weight loss. Grazing behaviour during that hour and over 24 h was recorded automatically using sensors to measure jaw movements. Although maintained at the overall mean SSH, swards had a patchy appearance with short, frequently grazed areas interspersed with taller, infrequently grazed areas, which is typical of pastures continuously stocked with cattle. Daily organic matter (OM) intake, calculated as the product of daily grazing time and intake rate, was greater at a SSH of 7 cm than at 5 or 9 cm (14·1 vs. 10·5 and 12·1 kg respectively). On the 5-cm sward, OM intake per grazing jaw movement (GJM) was reduced compared with that on the 7-cm sward (0·182 vs. 0·264 g respectively), and because cows were unable either to increase significantly GJM rate (95·8 vs. 90·1 GJM min?1) or the proportion of GJM that were bites (0·80 vs. 0·81) OM intake rate was reduced (16·9 vs. 23·5 g min?1). Cows were unable to increase their grazing time significantly (628 vs. 604 min d?1) to compensate for the reduction in intake rate, and as a result daily intakes were lower. Cows grazing the 9-cm sward also incurred a reduction in OM intake GJM?1 compared with those on the 7-cm sward (0·237 vs. 0·264 g respectively) and therefore there was a reduction in OM intake rate (21·6 vs. 23·5 g min?1). These animals did not compensate by increasing the time spent grazing (581 min d?1), probably owing to an increased ruminating requirement per kg of herbage ingested compared with those on 7 cm SSH (2264 vs. 1780 ruminating jaw movements respectively). The results show that SSH can significantly influence intake rate, but, while the cow's only effective strategy to compensate for any reduction in intake rate is to increase grazing time, this may be limited by the requirement for ruminating and non-grazing, non-ruminating activities, which is influenced by qualitative and quantitative aspects of the herbage ingested, whereas the cows' only effective strategy to compensate for any reduction in intake rate is to increase grazing time.  相似文献   

20.
Eight multiparous Holstein–Friesian dairy cows in late lactation were used to investigate the potential of using perennial ryegrass with a high concentration of water‐soluble carbohydrate (WSC) to increase the efficiency of milk production. After a pretreatment period on a common pasture, the cows were each given ad libitum access to one of two varieties of zero‐grazed grass continuously for 3 weeks. Treatments were: high sugar (HS), an experimental perennial ryegrass variety bred to contain high concentrations of WSC; or control, a standard variety of perennial ryegrass (cv. AberElan) containing typical concentrations of WSC. The two grass varieties were matched in terms of heading date. All animals also received 4 kg day–1 standard dairy concentrate. Grass dry matter (DM) intake was not significantly different between treatments (11·6 vs. 10·7 kg DM day–1; s.e.d. 0·95 for HS and control diets respectively), although DM digestibility was higher on the HS diet (0·71 vs. 0·64 g g–1 DM; s.e.d. 0·23; P < 0·01) leading to higher digestible DM intakes for that diet. Milk yield from animals offered the HS diet was higher (15·3 vs. 12·6 kg day–1; s.e.d. 0·87; P < 0·05) and, although milk constituent concentrations were unaffected by treatment, milk protein yields were significantly increased on the HS diet. The partitioning of feed N was significantly affected by diet, with more N from the HS diet being used for milk production (0·30 vs. 0·23 g milk N g–1 feed N; s.e.d. 0·012; P < 0·01) and less being excreted in urine (0·25 vs. 0·35; s.e.d. 0·020; P < 0·01). In a separate experiment, using the same grasses harvested earlier in the season, the fractional rate of DM degradation, measured by in situ and gas production techniques, was higher for the HS grass than for the control. It is concluded that increased digestible DM intakes of the HS grass led to increased milk yields, whereas increased efficiency of utilization of the HS grass in the rumen resulted in the more efficient use of feed N for milk production and reduced N excretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号