首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
为了研究水分胁迫对露天膜下滴灌辣椒生长、产量形成和水分利用效率的影响,在辣椒苗期和开花坐果期均分别施加轻度水分胁迫(65%~75%田间持水量)、中度水分胁迫(55%~65%田间持水量)和重度水分胁迫(45%~55%田间持水量),全生育期充分供水处理(75%~85%田间持水量)为对照,分别测定各水分处理辣椒不同生育期末生长指标(株高、茎粗、叶面积指数和单株干物质积累量)以及青果总产量和水分利用效率,并用三次曲线模拟了辣椒各生长指标在全生育期内的动态变化过程。结果表明:三次曲线能够较好地反映不同水分处理下辣椒各生长指标随时间的动态变化。苗期和开花坐果期一定程度水分胁迫能导致辣椒在水分胁迫时段株高、茎粗和叶面积指数显著(P0.05)小于CK组,后期复水后,由于辣椒产生补偿性生长,苗期轻度和中度水分胁迫处理以及开花坐果期轻度水分胁迫处理辣椒,各生长指标增长速率在一定时间内超过CK组,最终辣椒产量和单株结果数均与CK组之间无显著差异(P0.05),且辣椒平均单果重分别比CK组显著高18.48%,22.49%,14.14%。苗期和开花坐果期水分胁迫,均能提高辣椒根冠比和果实干物质分配指数并减少辣椒全生育期灌水量和耗水量,特别是苗期中度水分胁迫处理,在不显著降低产量的情况下,灌水量和耗水量分别比CK组显著低12.36%和11.51%,且水分利用效率、灌溉水利用效率均最高,分别比CK显著高8.61%和9.66%,因此,在苗期施加中度水分胁迫,后期充分灌水是实现绿洲辣椒节水、高产和高效栽培的一种较优灌溉方式。  相似文献   

2.
高产小麦耗水特性及干物质的积累与分配   总被引:39,自引:1,他引:38  
在2005—2006年和2006—2007年小麦生长季降水量分别为128.0 mm和246.4 mm条件下, 采用不同灌水量处理, 研究了高产条件下冬小麦的耗水特性和小麦干物质的积累与分配。结果表明, 底水和拔节水分别灌溉60 mm处理(W2)在两个生长季获得了最高的籽粒产量, 2005—2006年生长季其水分利用效率和灌溉水的利用效率均显著高于其他灌水处理; 2006—2007年生长季, 其水分利用效率较高, 降水量、灌水量和土壤供水量分别占农田耗水量的47.32%、23.04%和29.64%; 与不灌水处理(W0)相比, 灌水处理显著提高开花后干物质的积累量和开花后干物质积累量对籽粒的贡献率, 以W2处理最高, 分别达8 241.59 kg hm-2和84.18%。灌水量过多显著减少光合产物向籽粒的分配, 使产量降低。随灌水量增加, 小麦全生育期耗水量显著增大, 灌水量占农田耗水量的比例增加, 降水量和土壤供水量占农田耗水量的比例均降低, 以土壤供水量所占比例降低最大。综合考虑小麦的籽粒产量和水分利用效率, 在本试验条件下, 以底水和拔节水各60 mm的灌溉量为最优。在小麦生长季降雨量为246.4 mm条件下, 仅灌60 mm底水亦可获得较高的籽粒产量, 其土壤供水量占农田耗水量的比例和灌溉水的利用效率高于底水和拔节水处理。  相似文献   

3.
孟维伟  张永丽  马兴华  石玉  于振文 《作物学报》2009,35(10):1884-1892
在2004—2005和2005—2006小麦生长季,以济麦20、泰山23和泰山22为试验材料,研究了不灌水(W0)、拔节水60 mm (W1)、拔节水60 mm+开花水60 mm (W2)和拔节水60 mm+开花水60 mm+灌浆水60 mm (W3) 4个灌水处理条件下小麦耗水特性、旗叶光合作用和产量变化。结果表明,2004—2005生长季,济麦20和泰山23均以W2处理籽粒产量最高,耗水量和灌水效率分别高于和低于W1处理;两品种的水分利用效率均以W1和W2处理高于其他处理,其中济麦20的W1和W2处理无显著差异,而泰山23的W1处理高于W2处理。2005—2006生长季,济麦20和泰山22分别以W1和W2处理获得最高籽粒产量,两处理的耗水量(451.3 mm和459.2 mm)无显著差异;两品种的水分利用效率均以W0处理最高,W3处理最低,其中济麦20的W1处理高于W2处理,而泰山22在两处理间无显著差异。随灌水量的增加,土壤供水量和降水量占总耗水量的百分率降低,灌水量占总耗水量的百分率增大。济麦20的W0处理的旗叶光合速率和磷酸蔗糖合成酶活性在灌浆初期与W1和W2和W3处理无显著差异,灌浆中后期显著降低,但W0处理有利于蔗糖向籽粒转移,灌浆后期旗叶中蔗糖滞留较少,这是W0处理的粒重显著高于其他处理的生理原因之一。综合考虑籽粒产量、水分利用效率和灌水效率,在未灌底墒水条件下,济麦20和泰山23以拔节水灌60 mm或拔节水和开花水各灌60 mm为节水高产的模式;在灌底墒水60 mm条件下,济麦20以拔节水灌60 mm、泰山22以拔节水灌60 mm或拔节水和开花水各灌60 mm为节水高产的模式。  相似文献   

4.
为了研究不同生育期水分亏缺对膜下滴灌辣椒生长、产量和水分利用效率的影响,在辣椒苗期和开花坐果期对辣椒均分别进行轻度(65%~75%Field capacity,FC)和中度(55%~65%FC)水分调亏,在盛果期和后果期进行轻度水分调亏,以全生育期充分供水处理(75%~85%FC)为对照。同时构建辣椒Jensen模型水分生产函数并求解。研究结果表明,对照处理辣椒青果总产量最大,为36 203. 90 kg/hm2,苗期轻度和中度水分调亏以及后果期轻度水分调亏对辣椒青果总产量无显著影响(P 0. 05),其余水分调亏处理辣椒总产量比对照显著减少10. 45%~13. 32%。盛果期轻度水分调亏和后果期轻度水分调亏使水分调亏时段的辣椒青果含水率分别比对照显著降低5. 75,5. 83个百分点(P 0. 05)。各水分处理辣椒灌溉水利用效率(IWUE)和水分利用效率(WUE)相差不大,苗期中度水分调亏以及后果期轻度水分调亏处理的辣椒WUE分别比CK显著增加11. 63%和9. 41%。由求解得的Jensen辣椒水分生产函数可知,辣椒开花坐果期水分敏感指数最大,为0. 517。因此,开花坐果期是辣椒的需水临界期,此生育期缺水对辣椒产量影响较大,为保证辣椒高产,应充分供水(75%~85%FC)。  相似文献   

5.
灌水控制下限对冬小麦产量及水分利用效率的影响   总被引:4,自引:0,他引:4  
通过对冬小麦全生育期实施不同土壤水分控制下限,研究冬小麦的耗水规律,分析水分胁迫对其生长发育和产量形成的影响,并建立了产量与水分关系的数学模型。结果表明,不同水分处理的冬小麦耗水规律基本一致,但日耗水强度和总耗水量各处理间差别明显。各生育时段耗水量占全生育期总耗水量的百分比以孕穗灌浆期最大,达到45%;其次为拔节期,在20%左右;越冬期最小,只有4.0%~10.0%。土壤水分控制下限为55%的处理冬小麦水分利用效率最高,约为1.75kg/m3,对应的耗水量在350~400mm之间。  相似文献   

6.
对滴灌条件下,不同供水方式对温室桃树耗水量、产量及水分利用效率的影响进行了系统研究,结果表明,随着灌水次数和灌水量的增加,滴灌温室桃树各物候期阶段耗水量呈增加趋势;在整个年生长周期中,各处理土壤水分消耗的变化均呈双峰曲线,需水高峰期分别出现在花芽分化期和果实发育期;在各灌水处理中,T4处理产量和水分利用效率最高,分别达41 521.5 kg/hm2和54.46 kg/(mm.hm2);日光温室桃树耗水量与产量、水分利用效率间均呈二次曲线关系,经相关性分析,相关系数分别为0.894 9,0.915 3,达0.01极显著相关水平。  相似文献   

7.
灌水模式对夏玉米耗水特性和干物质积累及分配的影响   总被引:4,自引:3,他引:1  
为明确夏玉米的耗水特性,于2009年度在人工遮雨棚内进行盆栽试验,研究了土壤含水量对玉米生长发育的影响。在2010年玉米生长季降水量为446.2 mm的条件下,采用不同灌水量处理(试验共设3个处理,雨养:W0,全生育期不灌水;调亏灌溉:W1,保持田间土壤相对含水量为80%;大水漫灌:W2),研究了夏玉米的田间耗水特性和干物质积累与分配规律。结果表明,2009年盆栽条件下,80%的土壤含水量有利于干物质的积累和籽粒产量的形成,可获得170.76 g/株的籽粒产量。2010年田间试验表明,W0、W1、W2处理干物质积累量分别为:310.83、321.5、325.59 g/株,产量分别为:9255.85、9747.29、9635.72 kg/hm2。与W0相比,灌水处理显著提高了夏玉米的干物质积累量和籽粒产量。2灌水处理间比较发现,W1处理获得了高的籽粒产量,水分利用效率显著亦高于W2处理,其水分利用效率分别为21.47、19.39 kg/(hm2?mm)。随灌水量的增加,夏玉米的干物质积累量显著提高,但是灌水量过多显著减少光合产物向籽粒的分配,使产量降低。夏玉米全生育期耗水量显著随灌水量增加增大,耗水强度提高。在自然降雨量为446.2 mm条件下,雨养处理耗水量最低,水分利用效率高于灌水处理,但其穗粒数和千粒重较低,最终获得籽粒产量低于2灌水处理。综合考虑夏玉米的籽粒产量和水分利用效率,在本试验条件下,以保持田间含水量为80%的灌溉量为最优。  相似文献   

8.
影响高粱高产的因素很多,包括品种、水肥、土质及气候等因素,为探究高粱的高产性能,寻找影响高粱高产的突破口,本研究运用单因素随机区组设计的方法对粒用高粱拔节期和灌浆期的最大需水量及其一生的耗水特性进行了研究。结果表明:随着灌水量的增加,耗水量增加,穗长和枝梗数显著性地增加,但灌水量120~140mm的穗长和枝梗数差异不显著;籽粒千粒重和产量显著性地增加,灌水量100~140mm的千粒重和产量差异不显著。高粱拔节期最大需水量为120mm;开花灌浆期最大需水量为100mm;高粱拔节前耗水48.74mm,占总耗水量的10%~15%;拔节~抽穗耗水140.51~177.12mm,占总耗水的35%~43%,抽穗-成熟耗水137.65~272.27mm,占总耗水的42%~55%;水分生产效率随耗水量的增大,呈现先升后降的趋势,灌浆期灌水100mm处理的水分生产效率为最高,最高可达29.49kg/(hm2·mm)。  相似文献   

9.
为了研究气候变化情景下农作物种植应对措施,采用分期播种法,对高海拔旱作区春油菜生长过程中耗水量变化和降水、温度的影响试验。结果表明,高海拔旱作区油菜全生育期耗水量在254~286 mm之间,抽薹-开花期耗水占全生育期的6.9%~10.3%,开花-成熟期耗水占全生育期的32.3%~58.2%。抽薹-开花期耗水量与产量相关极显著(r=0.890);开花-成熟期耗水量与产量相关显著(r=0.764),期间耗水量每增加1 mm油菜产量增加37.9 kg/hm2。不同播期耗温比与产量相关达极显著水平(r=0.844),耗温比每增加1单位,油菜产量增加86.4 kg/hm2。不同播期油菜水分利用效率与产量呈极显著正相关(r=0.981),水分利用效率每增加1单位,油菜产量增加313.5 kg/hm2。  相似文献   

10.
灌溉方式和播期对玉米水分动态与水分利用效率的影响   总被引:6,自引:1,他引:5  
为明确不同灌溉方式、不同播期下产量与水分利用效率和耗水量的关系,通过设置滴灌、喷灌、漫灌3种灌水处理和3期分期播种的对比试验,在浇底水前、播种、收获和每旬未每区用土钻法取1 m深土样,用烘干称重法测定土壤含水率,用对比分析的方法研究同一品种在滴灌、喷灌、漫溉条件下和不同播期玉米需水耗水规律。结果表明,滴灌的土壤水分分布及变化对玉米生长最有利,喷灌次之,漫灌最差。滴灌实产最高,耗水量最小,水分利用效率最高,产量次高耗水最少的第三期玉米用水效率最高。滴灌在保证玉米需水的前提下储水能力最强,是干旱缺水地区的高效灌水方式。晚播、晚熟玉米品种有更好、更大的生产潜力和可推广性,就水热匹配来看晚播、晚熟玉米品种也是提高水分利用效率的一种途径。滴灌平均实产较喷灌增加1.69%,较漫灌增加6.53%,耗水量较喷灌减少2.9%,较漫灌减少16.1%,水分利用效率较喷灌增大4.7%,较漫灌增大26.9%,第三期平均实产较第一期增加2.76%,较第二期减少2.81%,耗水量较第一期减少18.2%,较第二期减少18.3%,水分利用效率较第一期增大25.6%,较第二期增大19%。  相似文献   

11.
为探寻黄淮海平原井灌区冬小麦适宜的调亏灌溉控制指标,通过3季(2015-2017年)不同灌水下限与灌水定额(30、60、90、120和180mm)2因素组合试验,研究调亏灌溉对冬小麦产量及作物水分利用效率的影响。灌水下限分别为:轻旱(LD),冬小麦苗期至返青期、拔节期、抽穗期和灌浆成熟期田间持水量分别为田间持水量(field capacity,FC)的50%、55%、60%和50%;中旱(MD),冬小麦苗期至返青期、拔节期、抽穗期和灌浆成熟期田间持水量分别为田间持水量的40%、50%、55%和45%。研究结果表明,随灌水定额的增加,产量呈先增加后下降趋势,水分利用效率呈下降趋势。90mm灌水定额下,随灌水下限的增加,冬小麦产量呈增加趋势。基于CRITIC赋权的TOPSIS法构建冬小麦综合效益多目标优化模型获得的结果与产量和作物水分利用效率分析法获得的结论具有一致性,均表明LD60处理最优。综合考虑,为实现本地区冬小麦稳产与水资源高效利用的双重目标,冬小麦适宜采用轻旱胁迫下灌水定额为60mm的调亏灌溉控制指标。本结论可为黄淮海平原井灌区冬小麦的管理提供科学依据。  相似文献   

12.
土壤水分下限对番茄光合速率、品质及产量的影响   总被引:1,自引:0,他引:1  
通过盆栽试验,研究了土壤水分下限对番茄苗期、初花期和结果期的光合速率、蒸腾速率及果实品质、产量和水分利用效率的影响,试验结果表明,当土壤水分下限控制在苗期45%、初花期55%、结果期75%田间持水量范围内,可以提高果实品质,获得较高的产量和水分利用效率。  相似文献   

13.
为了给澳洲坚果在干旱地区进行抗旱节水生态园的建设提供理论依据。通过田间不同的灌水处理试验,研究澳洲坚果的耗水规律及耗水量与产量关系。研究结果表明:开花座果期、果实膨大期和果实油份积累期是澳洲坚果需水的关键期。其耗水量与产量不是无穷的简单的直线关系,并不是耗水量越大,产量越大。适宜的生育期灌溉定额为2806.09 mm,开花座果期54.22 mm,果实膨大期 104.47 mm和果实油份积累期226.69 mm。开花座果期灌水周期为10 d/次,果实膨大期和果实油份积累期为8 d/次。在澳洲坚果需水的关键期合理匹配水资源是实现澳洲坚果高产优质的基础和关键。  相似文献   

14.
针对胶东地区冬小麦生育期内降雨和灌溉水资源明显不足问题,通过研究滴灌条件下灌溉制度对土壤水分、冬小麦生长及水分利用的影响,探究该地区冬小麦最优灌溉模式。试验实施从2016到2019年,共3季冬小麦,灌溉方式为滴灌,共设置4种处理:T1:不灌水;T2:拔节期灌水40 mm;T3:开花期灌水40 mm;T4:拔节期和开花期分别灌水40 mm。结果表明:(1)拔节期灌溉(T2和T4)在0~30、30~60、60~90 cm土壤体积含水量分别为16.0%、25.5%、25.1%,比不灌水处理(T1)分别提高25.9%、5.5%、4.7%,贮水量为204.9 mm,比不灌水处理(T1)提高6.5%,叶面积指数为2.9,比不灌水处理(T1)提高26.3%,生物量为6124.8 kg/hm2,比不灌水处理(T1)提高29.0%。(2)开花期灌溉(T3和T4)在0~30、30~60、60~90 cm土壤体积含水量分别为12.8%、22.7%、22.8%,与不灌水处理(T1)相比分别提高36.6%、11.2%、6.7%,贮水量为188.7 mm,比不灌水处理(T1)提高12.8%,叶面积指数为2.2,比不灌水处理(T1)提高24.3%,生物量为10781.0 kg/hm2,比不灌水处理(T1)提高24.2%;(3)与不灌水处理(T1)相比,3年的试验结果表明拔节期灌溉(T2)可提高产量16.5%,耗水量增加13.0%,水分利用效率增加2.7%,开花期灌溉(T3)产量增加26.4%,耗水量增加13.3%,水分利用效率增加11.0%,两次灌溉(T4)产量增加22.7%,耗水量增加23.9%,但是水分利用效率降低2.0%。不同灌水处理(T2、T3和T4)3年结果相比较,T3比T2的叶面积指数增加5.8%,生物量增加5.7%,产量增加9.0%,耗水量之间无显著差异,水分利用效率增加8.7%,灌溉水利用效率增加138.5%。与T4处理相比,T3处理的生物量和产量接近,耗水量降低8.7%,但是水分利用效率增加13.4%,灌溉水利用效率平均增加160.4%。综合考虑不同灌溉制度对冬小麦生长发育、产量及水分利用的影响,滴灌条件下在开花期灌水(T3处理)可作为胶东半岛砂姜黑土区冬小麦最优灌溉制度。  相似文献   

15.
针对冀西北坝上芸豆主产区,对不同水肥条件下芸豆的耗水量及产量进行了研究,为芸豆高产高效生产技术集成提供理论依据。研究结果表明,在鼓粒期及时灌水,可以促进子粒灌浆,达到增加产量的目的;与追肥相比,施用基肥平均增产38.0%,初花期追肥比鼓粒期追肥增产15.1%;基肥-鼓粒期灌水处理的水分利用效率最高,为7.2kg/(hm 2·mm)。  相似文献   

16.
旨在研究影响小麦产量的最佳灌溉与施氮方式组合。以‘定西42号’春小麦为材料,采用水氮互作的方法,设4种灌溉量(单位面积水深50 mm、100 mm、150 mm、200 mm)和3种施肥方式(拔节期施纯氮肥40 kg/hm 2、开花期施纯氮肥40 kg/hm 2、拔节期和开花期施纯氮肥40 kg/hm 2和50 kg/hm 2)。(1)灌溉量150 mm与开花期施氮肥40 kg/hm 2处理时,小麦产量都最高。(2)灌溉量150 mm时各个土层含水量最高,不同施氮处理,各个土层含水量高低顺序为分蘖期<开花期<拔节期。(3)小麦植株耗水量随灌溉量增加而增加、水分利用效率随灌溉量增加而减少。(4)分蘖期灌溉量150 mm时各个土层硝态氮含量最高;拔节期,0~10 cm土层铵态氮和硝态氮含量最高;开花期,灌溉量150 mm和追施纯氮肥40 kg/hm 2时各个土层硝态氮和铵态氮含量最高。灌溉量150 mm和开花期施纯氮肥40 kg/hm 2方式搭配,对甘肃陇中黄土高原春小麦产量、土壤有效氮含量和水分节约最有益。  相似文献   

17.
北疆干旱荒漠地区春小麦与苜蓿灌溉制度研究   总被引:1,自引:0,他引:1  
新疆北部阿勒泰草原的农牧业生产主要是在荒漠瘠薄的戈壁地上开发和发展起来的,作物灌溉制度的确定,对于北疆地区水资源合理开发利用、农田灌溉管理以及自然植被生态恢复等工作有着重要的现实意义。通过对联合国“2817项目”春小麦和苜蓿灌溉试验数据进行分析比较,初步得到达到该地区小麦和苜蓿高产的灌溉制度。结果表明,春小麦应采用“量少次多”的灌溉制度,灌溉定额为433 mm,灌水次数为10次,其中最优灌水定额抽穗前60 mm,其他生育阶段灌水定额为30~45 mm;苜蓿打3茬灌溉定额为849 mm,灌水次数为15次,第1茬的第1水灌水定额在60 mm,第2、3茬的第1水灌水定额为67 mm,其他水灌水定额在40~60 mm。研究显示,春小麦达到高产的处理是土壤含水量为田间持水量的70%;苜蓿达到高产的最优方案是幼苗期、蔓枝延长期和开花成熟期的土壤含水量为田间持水量的65%、45%和45%。  相似文献   

18.
陇中半干旱区马铃薯集雨限灌效应研究   总被引:6,自引:1,他引:5  
采用大田试验与实验室分析相结合的方法,研究了集雨限灌对旱作马铃薯田蒸散量、灌水利用率、产量、产量性状及薯块品质的影响。结果表明,集雨限灌45 mm条件下马铃薯水分利用效率(WUE)显著提高,在此基础上增加灌水量,WUE降低;苗期限灌处理的WUE和灌水利用效率(IWUE)均高于薯块膨大期;苗期限灌45 mm处理综合用水效率较高。限灌可提高旱作马铃薯产量、大薯率与中薯率,降低小薯率,苗期限灌有利于大薯率的提高,薯块膨大期限灌有利于中薯率的提高;限灌降低马铃薯单株结薯数,可提高单株薯产量;超过45 mm随限灌量的增加,产量增加不显著,绿薯率和烂熟率显著增加。限灌能降低马铃薯薯块淀粉含量,提高薯块蛋白质含量。苗期限灌45 mm为半干旱区马铃薯最佳集雨限灌模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号