首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Reconstituted dikaryons of Pisolithus sp. (Pers.) Coker & Couch from South Africa influenced growth parameters (shoot length, shoot/root ratio and leaf area), nutrition and physiological indicators (transpiration rate, stomatal conductance and xylem water potential) of maritime pine (Pinus pinaster Ait.) seedlings during drought and recovery from drought. Seedlings colonized with certain dikaryons were more sensitive to water stress and showed less mycorrhiza formation under water stress than seedlings colonized with other dikaryons. Control (uninoculated) seedlings were significantly smaller than those inoculated with dikaryons. Transpiration rate, stomatal conductance and xylem water potential varied among mycorrhizal treatments during the water stress and recovery periods. After rewatering, the controls and seedlings inoculated with dikaryon 34 x 20 had a weaker recovery in transpiration rate, stomatal conductance and xylem water potential than the other treatments and appeared to have experienced damage due to the water stress. Concentrations of various elements differed in the shoots of Pinus pinaster colonized by the various dikaryons. It is suggested that breeding of ectomycorrhizal fungi could constitute a new tool for improving reforestation success in arid and semi-arid zones.  相似文献   

2.
We studied diurnal changes in water conduction during soil dehydration in 37-month-old seedlings of one Virginia pine (Pinus virginiana Mill.) and two loblolly pine (P. taeda L.) sources, one from North Carolina (NC) and the other from the "Lost Pines" areas of Texas (TX), in an environmentally controlled growth chamber. For seedlings of similar biomass, the TX source had higher values of transpiration, needle conductance, and plant hydraulic conductivity under well-watered conditions than the NC source. Under dry soil conditions, the TX source had lower values of water conduction than the NC source. The Virginia pine source responded similarly to the TX source under both well-watered and dry soil conditions. For all three pine sources, gradients between soil and needle water potentials were greatest when the seedlings were moderately stressed. The TX and Virginia pine sources had higher gradients and lower daytime needle water potentials under moderate stress conditions than the NC source. Predawn needle water potentials did not differ among the pine sources. We conclude that the TX and Virginia pine sources have decreased daytime needle water potentials and increased water potential gradients during the daytime under moderate stress conditions, but with no disruption of recovery at predawn. The greater rates of transpiration and water conduction by the TX source compared with the NC source under well-watered conditions suggest a means by which growth can be maximized prior to the onset of drought, thereby enhancing survival of loblolly pines in drought-prone environments.  相似文献   

3.
Drought stress is the main cause of mortality of holm oak (Quercus ilex L.) seedlings in forest plantations. We therefore assessed if drought hardening, applied in the nursery at the end of the growing season, enhanced the drought tolerance and transplanting performance of holm oak seedlings. Seedlings were subjected to three drought hardening intensities (low, moderate and severe) for 2.5 and 3.5 months, and compared with control seedlings. At the end of the hardening period, water relations, gas exchange and morphological attributes were determined, and survival and growth under mesic and xeric transplanting conditions were assessed. Drought hardening increased drought tolerance primarily by affecting physiological traits, with no effect on shoot/root ratio or specific leaf mass. Drought hardening reduced osmotic potential at saturation and at the turgor loss point, stomatal conductance, residual transpiration (RT) and new root growth capacity (RGC), but enhanced cell membrane stability. Among treated seedlings, the largest response occurred in seedlings subjected to moderate hardening. Severe hardening reduced shoot soluble sugar concentration and increased shoot starch concentration. Increasing the duration of hardening had no effect on water relations but reduced shoot mineral and starch concentrations. Variation in cell membrane stability, RT and RGC were negatively related to osmotic adjustment. Despite differences in drought tolerance, no differences in mortality and relative growth rate were observed between hardening treatments when the seedlings were transplanted under either mesic or xeric conditions.  相似文献   

4.
Isoprene emissions were studied in one-year old sweetgum (Liquidambar styraciflua L.) seedlings during nine drying-rewatering cycles extending over five months. Each drying cycle lasted to the point of leaf wilting. Growth was essentially stopped in response to the first drying cycle, though seedling survival and capacity to recover turgor on rewatering remained high throughout the entire nine cycles. Photosynthetic rates of leaves were inhibited by the drying treatments. Under severe drought, isoprene emission rates of leaves were also inhibited, though isoprene emission was generally less sensitive to drought than photosynthesis. The lower drought sensitivity of isoprene emission compared with photosynthesis resulted in a higher percentage of fixed carbon lost as isoprene as seedlings became more stressed. During the recovery phase of the drying-rewatering cycles, isoprene emission rates in several seedlings were higher than in well-watered control seedlings. Following the ninth drying-rewatering cycle, sustained daily watering resulted in recovery of isoprene emission rates to control values within four days. Photosynthetic rates only recovered to 50% of control values after seven days. We conclude that the mechanisms regulating photosynthetic rate and isoprene emission rate are differentially influenced by limited water supplies. The results are consistent with past studies that predict a protective role for isoprene emission during stress, particularly protection from excessive leaf temperatures during drought.  相似文献   

5.
Water potentials, transpiration rates and abscisic acid (ABA) levels in shoots of black spruce (Picea mariana (Mill.) BSP), white spruce (Picea glauca (Moench) Voss) and jack pine (Pinus banksiana Lamb.) seedlings were monitored during periods of drought and recovery from drought. Abscisic acid contents of shoots increased during the period of drought as water potentials decreased. The increase in levels of ABA was closely associated with a decrease in rates of transpiration. In the spruces, the levels of ABA peaked and then fell while plant water potentials continued to decrease, whereas in jack pine, the level of ABA rose throughout the drought treatment. After rewatering, the levels of ABA in all three conifers fell concurrent with a rise in transpiration rates. At the end of the three-day recovery period, ABA levels and transpiration rates in the spruces were either at or near control levels, whereas the concentration of ABA in jack pine remained approximately twice the control level, and transpiration was only 60% of the control rate. A compound tentatively identified as phaseic acid followed trends similar to those for ABA.  相似文献   

6.
We examined the extent of osmotic adjustment and the changes in relative water content (RWC) and transpiration rate (i.e., relative stomatal function) that occur in water-deficit-conditioned 6-year-old Thuja occidentalis L. (eastern white cedar) trees in response to a severe drought. Trees conditioned by successive cycles of mild or moderate nonlethal water stress (conditioning) and nonconditioned trees were exposed to drought (i.e., -2.0 MPa predawn water potential) to determine if water deficit conditioning enhanced tolerance to further drought stress. Following drought, all trees were well watered for 11 days to evaluate how quickly osmotic potential, RWC and transpiration rate returned to preconditioning values. Both nonconditioned trees and mildly conditioned trees exhibited similar responses to drought, whereas moderately conditioned trees maintained higher water potentials and transpiration rates were 38% lower. Both conditioned and nonconditioned trees exhibited a similar degree of osmotic adjustment (-0.39 MPa) in response to drought relative to the well-watered control trees. The well-watered control trees, nonconditioned trees and mildly conditioned trees had similar leaf RWCs that were about 3% lower than those of the moderately conditioned trees. Following the 11-day stress relief, there were no significant differences in osmotic potential between the well-watered control trees and any of the drought-treated trees. Daily transpiration rates and water potential integrals (WPI) of all drought-treated trees approached those of the well-watered control trees during the stress relief period. However, the relationship between cumulative transpiration and WPI showed that previous exposure to drought stress reduced transpiration rates. Leaf RWC of the moderately conditioned trees remained slightly higher than that of the nonconditioned and mildly conditioned trees.  相似文献   

7.
土壤干旱胁迫及复水对紫叶矮樱光合特性的影响   总被引:1,自引:0,他引:1  
以盆栽3年生紫叶矮樱为试材,采用称重控水法,研究土壤干旱胁迫及复水对紫叶矮樱光合特性的影响。结果表明:干旱条件下,随着胁迫程度的加重,紫叶矮樱的叶水势、净光合速率、蒸腾速率、气孔导度和胞间CO2浓度下降,叶绿素、花青苷含量和水分利用效率先升高再降低;复水后,叶水势、净光合速率、蒸腾速率、叶绿素含量、花青苷含量和水分利用效率升高,表明紫叶矮樱具有胁迫后补偿生长特征。  相似文献   

8.
Barnes AD 《Tree physiology》2002,22(10):733-740
One-year-old loblolly pine (Pinus taeda L.) seedlings from four seed sources (Arkansas, Georgia, Texas and Virginia) grown in 1-m-deep sand-filled pits in two water regimes (well-watered and drought) were studied, to gain insight into the process of seedling establishment. Whole-plant transpiration was measured biweekly from July to December. Whole-plant harvests were conducted at 6-week intervals from April to December. Whole-plant transpiration and transpiration per unit leaf and root area were affected by treatment, seedlot and phenology. Seedlings of the Arkansas seedlot maintained significantly higher transpiration rates per unit leaf and root area during drought than seedlings of the Virginia, Georgia or Texas seedlots, but did not accumulate greater biomass. The high transpiration rates of the Arkansas seedlings were attributed to their deep root systems. Allometric relationships indicated that, relative to the whole plant, biomass allocation to needles of drought-treated seedlings was enhanced during the summer (allometric ratio 1.09), whereas allocation to roots was enhanced in the spring and fall (allometric ratios of 1.13 and 1.09, respectively). Relative to the whole plant, biomass allocation to needles of well-watered seedlings was enhanced throughout the experiment (allometric ratio of 1.16 declining to 1.05), whereas the allometric ratio of root to total biomass was 0.89 or less throughout. Allometric relationships also indicated variation in biomass partitioning to roots in three soil layers (0-30, 30-60 and 60-100 cm), which differed among harvests in each soil layer. Root growth in both well-watered and drought-treated seedlings was concentrated in the top soil layer in the spring, shifted to the middle and bottom soil layers in the summer, and then increased in the top soil layer in the fall. Compared with well-watered seedlings, drought-treated seedlings had higher rates of root growth in the bottom soil layer in the fall, a characteristic that would confer tolerance to future periods of limited soil water availability.  相似文献   

9.
The capacity of radiata pine seedlings to overcome planting shock in wet and dry conditions and their dependence on previous history was analysed by studying post-planting resumption of gas exchange and photochemical reactions, and survival 2 months later. Even under well-irrigated soil conditions, seedlings showed the effects of stress: gas exchange was reduced, but a clear difference between soil-plugged (PR) seedlings and bare-root (BR) seedlings was observed. Drought enhanced the severity of photosynthesis deprivation. Photochemical reactions, analysed by chlorophyll a fluorescence parameters, were not affected by planting shock in conditions of available soil water, but altered dramatically when drought stress was raised, suggesting structural damage of photosynthetic machinery. Despite the dramatic sensitivity of radiata pine to water availability, rewatering produced remarkable recovery, indicating good photosynthetic components repair capacity, which depended, however, on stock quality at the moment of planting. The ability of radiata pine to cope with drought in terms of post-planting performance depended on both storage conditions and water availability at the planting site. These findings provide information for tree physiologists and foresters as to how the management of radiata pine seedlings before planting can affect post-planting performance potential under wet or dry environmental conditions.  相似文献   

10.
桉树的抗旱性研究进展   总被引:9,自引:0,他引:9  
在干旱和半干旱地区,为了成功地栽培桉树,许多学者从不同角度对桉树种群的抗旱性机理和它们对不同干旱环境的反应进行了研究和探讨。结果认为,桉树种群的遗传基因能适应于干旱的环境。生长在水分短缺条件下的植株,是通过各种途径保持组织水含量在细胞免受伤害的临界值以上而达到其适应。一般来说,具有旱生植物特征的桉树种群对干旱的适应能力较强,它们能够生存在较干旱的环境条件下,但不可能从湿润的气候环境中取得生长优势。  相似文献   

11.
Kaya Z  Adams WT  Campbell RK 《Tree physiology》1994,14(11):1277-1289
We tested the hypothesis that intermittent (lammas) shoot growth in Douglas-fir (Pseudotsuga menziesii var menziesii (Mirb.) Franco) seedlings from dry regions of southwest Oregon is adaptively significant. Seedlings from open-pollinated families (160 total) from two inland (dry) and two coastal (wet) sources were grown under either well-watered or intermittent drought conditions (temporary drought followed by rewatering) for two growing seasons. In the first growing season, the results supported the hypothesis: the frequency of a second flush was genetically controlled (although weakly, h(f) (2) 相似文献   

12.
How temperate trees respond to drier summers, as predicted by climate change models for parts of Europe and eastern North America, will depend on the drought susceptibility of the root systems. We investigated the importance of the genetic constitution for the belowground drought response of European beech (Fagus sylvatica L.), in four populations from regions differing in precipitation (520-970 mm year(-1)). Saplings were grown at ample (10 vol.%; well-watered) or reduced (5 vol.%; drought treatment) soil water content in the G?ttingen Rhizolab Facility for two consecutive summers, and the responses of fine root biomass, root morphology, root depth distribution, and fine root production and turnover were investigated by a combined mini-rhizotron and harvest technique approach. In the drought treatment, total root mass per plant was reduced by 30-40% as a result of: (1) a reduction in median fine root lifespan by roughly 50% and hence an increase in fine root turnover; and (2) a 10-fold reduction in relative fine root growth rate (productivity per standing root biomass). The root:shoot ratio did not increase with drought. Although beech plants originating from drier climates tended to reduce their root biomass in response to drought less than those from wetter climates, analyses of variance revealed no significant influence of genotype on root mass, morphology, growth rate or turnover. However, most fine root traits showed marked differences between the well-watered and drought treatments. We conclude that beech saplings respond to summer drought primarily by shortening root lifespan, whereas root system structure and root:shoot carbon partitioning pattern are unaltered. Beech fine root growth and turnover exhibited high phenotypic plasticity, but genotypic variation was of minor importance. In contrast, genotype had a strong influence on leaf and shoot morphogenesis and growth.  相似文献   

13.
短期干旱和复水对麻栎幼苗光合及叶绿素荧光的影响   总被引:2,自引:0,他引:2  
麻栎是鲁中山区森林植被恢复的重要阔叶树种之一,本文以1年生麻标幼苗为试验对象,研究短期干旱和复水对其光合及叶绿素荧光等生理生态特征的影响。结果表明:在干旱胁迫初期,干旱组的各项指标均优于对照组,说明过高的土壤含水量并不利于麻栎幼苗的生长;随着土壤干旱程度的进一步加剧,幼苗的气孔导度减少,导致光合和蒸腾作用的下降,水分利用效率升高;胁迫末期各项光合指标均降到最低。从叶绿素荧光参数可以看出,干旱胁迫并未使幼苗的光合机构发生伤害,幼苗在适宜的水分条件时产生光合能力上调,当水分匮缺时,以叶黄素循环为主的非光化学淬灭耗散掉过剩的光能达到保护光合机构的目的。复水后麻栎幼苗的各项生理生态指标恢复正常,但气孔导度的增大存在一定的滞后效应,导致了水分利用效率的反冲,同时叶黄素库仍然维持较高水平,麻栎幼苗通过物理和化学的双重保护来抵御干旱胁迫和进行胁迫后的恢复。  相似文献   

14.
Drought is considered the main environmental factor limiting productivity in eucalyptus plantations in Brazil. However, recent studies have reported that exposure to water deficit conditions enables plants to respond to subsequent stresses. Thus, this study investigates the ecophysiological acclimatization of eucalyptus clones submitted to recurrent water deficit cycles. Eucalyptus seedlings were submitted to three recurrent water deficit cycles and anatomical, morphological and physiological changes were analyzed. The results were:(1) Eucalyptus seedlings responded to water deficits by directing carbohydrates to root and stem growth;(2) Size and number of stomata were reduced;(3) Stomatal conductance decreased which allowed the plants to reduce water losses through transpiration,increasing instantaneous water use efficiency;(4) The relationship between gas exchanges and available water contents allowed the seedlings to uptake the retained soil water athigher tensions;and,(5) Physiological recovery from subsequent water deficits became faster. As a result of these changes, the eucalyptus seedlings recovered from the same degree of water stress more rapidly.  相似文献   

15.
Two-year-old Corsican pine (Pinus nigra ssp. laricio var. Corsicana) seedlings were either well watered or subjected to a moderate drought for one month before being lifted from the nursery bed on October 9 and transplanted. Well-watered, non-transplanted seedlings served as controls. Needle predawn water potential (Psi(wp)), non-structural carbohydrate concentrations and plant development (survival, bud break, shoot elongation) were assessed before and during the first growing season after transplanting. On April 16, just before bud break, Psi(wp) was lower for the well-watered + transplanted and drought-conditioned + transplanted seedlings (Psi(wp) = -1.45 and -1.83 MPa, respectively) than for the controls (Psi(wp) = -0.56). There was a close relationship between the Psi(wp) measured on April 16 and bud break, shoot elongation and plant survival during the following growing period. Above a Psi(wp) of -1.1 MPa, all plants developed normally. Between -1.1 MPa and -1.6 MPa, bud break, and thus shoot elongation, did not occur in all plants. Between -1.6 MPa and -2.1 MPa, the plants were characterized by the absence of shoot growth, but mortality was zero. Below -2.1 MPa, there was a large increase in plant mortality. On April 16, starch concentrations were markedly lower in the roots of transplanted seedlings than in the controls. There was a positive correlation between Psi(wp) and root starch concentration. The Psi(wp) (-2.3 MPa) at which complete starch depletion was observed in the roots corresponded to the Psi(wp) below which plants did not survive. These results suggest that mechanisms specifically linked to altered water status and metabolic processes associated with altered carbohydrate status are involved in transplanting stress; however, it was not possible to disentangle the two effects. Drought conditioning did not lead to a marked increase in soluble carbohydrate concentrations, as reported for other species, and did not increase plant tolerance to transplanting stress.  相似文献   

16.
Ecotypic variations in leaf conductance, soil-to-leaf hydraulic conductance, components of tissue water potential, hydraulic architecture parameters and xylem embolism were examined in greenhouse-grown two-year-old Aleppo pine (Pinus halepensis Mill.) seedlings from six origins representing the geographic range of the species in Italy. Cortical resin composition of the seedlings was also determined. Measurements were made on well-watered seedlings and on seedlings subjected to recurring severe drought. Drought-stressed seedlings had lower mean leaf conductances, transpiration rates and soil-to-leaf hydraulic conductances than well-watered seedlings. They also exhibited more negative osmotic potentials, higher relative water deficit at incipient plasmolysis, but a similar maximum modulus of elasticity. Drought-stressed seedlings showed a higher degree of xylem embolism, a lower Huber value, lower leaf specific conductivity and lower specific conductivity than well-watered seedlings. Drought-stressed seedlings of provenances from more xeric habitats (Tremiti, Porto Pino and Mottola) had greater leaf conductances, transpiration rates and soil-to-leaf hydraulic conductances than drought-stressed seedlings of provenances from more mesic habitats (Imperia, Otricoli and Vico del Gargano). They also showed higher osmotic adjustment and a lower degree of xylem embolism. Among provenances, there were no significant differences in hydraulic architecture parameters in response to the drought treatment; however, Tremiti and Porto Pino seedlings displayed smaller drought-induced reductions in specific conductivity and leaf specific conductivity, respectively, than seedlings from other provenances. These differences suggest that seedlings from xeric provenances, especially Tremiti, have greater resistance to desiccation than seedlings from mesic provenances. No clear association was found between terpene variability and the other traits investigated, although terpene composition was related to the geographical distribution of the provenances. We conclude that the drought-tolerance responses of Tremiti make it a more suitable provenance than the others for establishment on sites prone to severe soil water deficits.  相似文献   

17.
We used a Scholander pressure chamber to assess the effects of various extraction methods under different environmental conditions on element concentrations in xylem sap of 3-year-old Picea abies (L.) Karst. seedlings. Sap from excised shoots contained higher element concentrations when extracted at low than at high over-pressures. When comparing plants differing in water status, we found that a high extraction over-pressure introduced a systematic error into the data. For example, in well-watered non-transpiring plants relative to unwatered transpiring plants, potassium concentrations were 70% higher in sap extracted at 0.1 MPa over-pressure, but only 10% higher in sap extracted at 1.0 MPa over-pressure. Moreover, treatment effects depended on the time of day when the sap was extracted. Increased water flux in transpiring plants relative to non-transpiring plants resulted in reduced xylem sap element concentrations when samples were collected after 9 h of transpiration, but not after 4 to 6 h of transpiration. Drought had little effect on xylem sap element concentrations, indicating that rates of element release into xylem conduits, element depletion by growing tissues, and water flow maintained a balance that may prevent nutrient stress during short-term drought.  相似文献   

18.
A glasshouse experiment was performed with Acacia auriculiformis seedlings to investigate the effects of decreased soil water potential on phyllode extension, abscission and solar conversion efficiency, e. Six-month-old seedlings were subjected for 39 days to one of four treatments: well watered (soil water potential maintained above -0.5 MPa), moderately drought stressed (soil water potential maintained above -1.5 MPa), severely drought stressed (soil water potential maintained above -2.5 MPa) and well watered but pruned to maintain a leaf area approximating that of the severely drought-stressed treatment. Aboveground biomass accumulation decreased by 21% below that of the well-watered controls in the moderately drought-stressed seedlings and by 47% in the severely drought-stressed seedlings as a result of both decreased interception of solar radiation and lower e. Differences in phyllode extension rate, rather than in phyllode abscission, were primarily responsible for the differences in interception of solar radiation among treatments. Decreases in phyllode extension rate and water use occurred simultaneously in response to decreasing soil water potential. Specific leaf area decreased and water use efficiency increased in response to drought stress.  相似文献   

19.
Drought resistance of Ailanthus altissima (Mill.) Swingle is a major factor underlying the impressively wide expansion of this species in Europe and North America. We studied the specific mechanism used by A. altissima to withstand drought by subjecting potted seedlings to four irrigation regimes. At the end of the 13-week treatment period, soil water potential was -0.05 MPa for well-watered control seedlings (W) and -0.4, -0.8 and -1.7 MPa for drought-stressed seedlings (S) in irrigation regimes S1, S2 and S3, respectively. Root and shoot biomass production did not differ significantly among the four groups. A progressively marked stomatal closure was observed in drought-stressed seedlings, leading to homeostasis of leaf water potential, which was maintained well above the turgor loss point. Root and shoot hydraulics were measured with a high-pressure flow meter. When scaled by leaf surface area, shoot hydraulic conductance did not differ among the treated seedlings, whereas root hydraulic conductance decreased by about 20% in S1 and S2 seedlings and by about 70% in S3 seedlings, with respect to the well-watered control value. Similar differences were observed when root hydraulic conductance was scaled by root surface area, suggesting that roots had become less permeable to water. Anatomical observations of root cross sections revealed that S3 seedlings had shrunken cortical cells and a multilayer endodermal-like tissue that probably impaired soil-to-root stele water transport. We conclude that A. altissima seedlings are able to withstand drought by employing a highly effective water-saving mechanism that involves reduced water loss by leaves and reduced root hydraulic conductance. This water-saving mechanism helps explain how A. altissima successfully competes with native vegetation.  相似文献   

20.
Stomatal conductance, transpiration and xylem pressure potential of African locust bean (Parkia biglobosa (Jacq.) Benth.) seedlings subjected from the sixth week after emergence to four weeks of continuous soil drought did not differ from those of well-watered, control plants until two-thirds of the available soil water had been used. In both well-watered and drought-treated plants, stomatal conductance was highest early in the day when vapor pressure deficits were low, but decreased sharply by midday when evaporative demand reached its highest value. There was no increase in stomatal conductance later in the day as vapor pressure deficit declined. The relationship between transpiration rate and xylem pressure potential showed non-linearity and hysteresis in both control and drought-treated plants, which seems to indicate that the plants had a substantial capacity to store water. The rate of leaf extension in African locust bean seedlings subjected to six consecutive 2-week cycles of soil drought declined relative to that of well-watered, control plants, whereas relative root extension increased. It appears that African locust bean seedlings minimized the impact of drought by: (1) restricting transpiration to the early part of the day when a high ratio of carbon gain to water loss can be achieved; (2) utilizing internally stored water during periods of rapid transpiration; (3) reducing the rate of leaf expansion and final leaf size in response to soil drought without reducing the rate of root extension, thereby reducing the ratio of transpiring leaf surface area to absorbing root surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号