首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 674 毫秒
1.
Technology for storing carbon in the subsoil of agricultural land using organic filter materials in underdrains was evaluated as an activity for sequestering CO2 to mitigate global warming. First, the quantity of carbon remaining in wood chips and rice husks in underdrains was determined over 11 years after construction. Moreover, the quantity of CO2 emissions from the construction of two underdrain types was calculated. Then, a survey was conducted to investigate the effect on greenhouse gas emissions of the filter material. The results indicate that greenhouse gas emissions would not increase. The quantity of storage carbon in the wood chip filter material of underdrains during their 15-year service life was estimated to be 6.76 tCO2eq ha?1. Rice husks, in contrast, were found ineffective in storing carbon. Therefore, the selection of the filter material for underdrains is important. The value of storage carbon in the wood chip filter material is similar to the amount of carbon sequestered by no-till farming, which is now being implemented as a global warming countermeasure based on soil management in agricultural land.  相似文献   

2.
The contribution of rice production to the three major greenhouse gases CO2, CH4 and N2O in 1990, the base year of the Kyoto protocol is investigated for Japan. For the CO2 assessment, we use a top-down life cycle approach, CH4 is assessed using the Japanese GHG emission inventory and N2O is assessed according to the ratio of rice area divided by the total area of agricultural soils. In total, 1.6% of greenhouse gas (GHG) emissions in 1990 originated from rice production. Next, we assess regional variations in nine rice-producing regions, based on the CO2 data of 1990. General trends in rice production from 1960 to 2000 and data from the Japanese GHG emission inventory since 1990 are used to assess variations in time. The rice-related GHG emissions decreased to 1.05% of the total GHG emissions in 2001 and will be less than half the 1990 level in 2012, mainly due to the decrease in rice production. Contrary to the trend in GHG emissions of rice, overall GHG emissions increased as rice production fulfils important roles, in mitigating global warming and in adapting to changing climates. The protection of rice production is required to counter the increase of GHG emissions in transportation, waste and domestic sectors and to minimize problems related to landscape, water and natural hazard management.  相似文献   

3.

With the aim of assessing differentiation of greenhouse gas emissions as manipulated by plastic film mulching (PFM) from paddy field from a year-round perspective, we determined net ecosystem CO2 exchange (NEE, CO2 flux), CH4 and N2O fluxes from a rice–rapeseed rotation field. PFM and non-mulching (NM) treatments were set from 2014 to 2017 (May 2014 to April 2015, May 2015 to April 2016 and May 2016 to April 2017 were set as Annual 1, Annual 2 and Annual 3, respectively) in Southwest China. Compared with NM, CH4 emissions were increased by 60.00% (P?<?0.05), 111.54% (P?<?0.05) and 62.07% (P?<?0.05) under PFM in Annual 1, 2 and 3, respectively. Additionally, PFM delayed the peaks of CH4 fluxes by 5–10 days during rice season. However, PFM did not affect N2O emissions on the annual basis. PFM reduced the net carbon loss from soil during rice season while had insignificant influence on soil carbon sequestration capacity during fallow and rapeseed seasons. Overall, the mean annual net ecosystem greenhouse gas exchange among three annuals was 32.11% lower under PFM than under NM. Moreover, PFM slightly increased crop yields of both rice and rapeseed. Accordingly, PFM recommended the suitable agricultural management in the rice–rapeseed rotation field for simultaneously alleviating global warming and maintaining crop yields.

  相似文献   

4.
Conventional puddled transplanted rice (TPR) is a major source of greenhouse gas (GHG), particularly methane, causing global warming. Direct-seeded rice (DSR) is a feasible alternative to mitigate methane emission, besides saving water and labor. A 2-year field experiment was carried out to quantify GHG mitigation and water- and labor-saving potentials of the DSR crop compared to TPR in three villages in Jalandhar district of Punjab, India. The InfoRCT simulation model was used to calculate the emission of CO2 besides CH4 and N2O in different districts of Punjab, India. Total global warming potential (GWP) in transplanted rice in various districts of Punjab ranged from 2.0 to 4.6 t CO2 eq. ha?1 and in the DSR it ranged from 1.3 to 2.9 t CO2 eq. ha?1. Extrapolation analysis showed that if the entire area under TPR in the state is converted to DSR, the GWP will be reduced by 33 %, and if 50 % area is converted to DSR the GWP will be reduced by 16.6 % of the current emission. The DSR crop saved 3–4 irrigations compared to the transplanted rice without any yield penalty. Human labor use also reduced to 45 % and tractor use to 58 % in the DSR compared to TPR.  相似文献   

5.
Lowering carbon footprint of durum wheat by diversifying cropping systems   总被引:1,自引:0,他引:1  
Improving cropping systems may help mitigate greenhouse gas emissions. This study determined the carbon footprint of durum wheat (Triticum turgidum L.) produced in diverse cropping systems. Durum was grown in rotation systems which had different combinations of oilseed, pulse, and cereal crops at five site-years in Saskatchewan, Canada. Total greenhouse gas emissions from the decomposition of crop residues along with various production inputs were used for the estimation of carbon footprint. On average, emissions from the decomposition of crop straw and roots accounted for 25% of the total emissions, those from the production, transportation, storage, and delivery of fertilizers and pesticides to farm gates and their applications 43%, and emissions from farming operations 32%. Durum wheat preceded by an oilseed crop (Brassica napus or Brassica juncea) the previous year had carbon footprint of 0.33 kg CO2e kg−1 of grain, or 7% lower than durum in cereal-cereal-durum system. Durum preceded by a biological N-fixing crop (Cicer arietinum chickpea, Lens culinaris lentil, or Pisum sativum pea) the previous year lowered its carbon footprint by 17% compared with durum preceded by a cereal crop. Durum produced in a pulse-pulse-durum system had carbon footprint 0.27 kg CO2e kg−1 of grain, 34% lower than durum grown in cereal-cereal-durum systems. Diversifying cropping systems with oilseeds and biological N-fixers significantly lowered carbon footprint of durum wheat.  相似文献   

6.
A field experiment was conducted at the farm of Yangzhou University, Yangzhou, China, to study the effects of organic fertilizers made from maize straw on rice grain yield and the emission of greenhouse gases. Four organic fertilizer treatments were as follows: maize straw (MS), compost made from maize straw (MC), methane-generating maize residue (MR), and black carbon made from maize straw (BC). These organic fertilizers were applied separately to paddy fields before rice transplanting. No organic fertilizer was applied to the control (CK). The effects of each organic fertilizer on rice grain yield and emission of greenhouse gases were investigated under two conditions, namely, no nitrogen (N) application (ON) and site-specific N management (SSNM). Rice grain yields were significantly higher in the MS, MC and MR treatments than those in CK under either ON or SSNM. The MS treatment resulted in the highest grain yield and agronomic N use efficiency. However, no significant difference was observed for these parameters between the BC treatment and CK. The changes in the emissions of methane (CH4) carbon dioxide (CO2), or nitrous oxide (N20) from the fields were similar among all organic fertilizer treatments during the entire rice growing season. The application of each organic fertilizer significantly increased the emission of each greenhouse gas (except N20 emission in the BC treatment) and global warming potential (GWP). Emissions of all the greenhouse gases and GWP increased under the same organic fertilizer treatment in the presence of N fertilizer, whereas GWP per unit grain yield decreased. The results indicate that the application of organic fertilizer (MS, MC or MR) could increase grain yield, but also could enhance the emissions of greenhouse gases from paddy fields. High grain yield and environmental efficiency could be achieved by applying SSNM with MR.  相似文献   

7.
Water management is known to be a key factor on methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) emissions from paddy soils. A field experiment was conducted to study the effect of continuous irrigation (CI) and intermittent irrigation (II) on these emissions. Methane, CO2, and N2O emissions from a paddy soil were sampled weekly using a semi-static closed chamber and quantified with the photoacoustic technique from May to November 2011 in Amposta (Ebro Delta, NE Spain). Intermittent irrigation of rice paddies significantly stimulated (N2O + N2)–N emission, whereas no substantial N2O emission was observed when the soil was re-wetted after the dry phase. The cumulative emission of (N2O + N2)–N was significantly larger from the II plots (0.73 kg N2O–N ha?1 season–1, P < 0.05) than from the CI plots (?1.40 kg N2O–N ha?1 season?1). Draining prior to harvesting increased N2O emissions. Draining and flooding cycles controlled CO2 emission. The cumulative CO2 emission from II was 8416.35 kg CO2 ha?1 season?1, significantly larger than that from CI (6045.26 kg CO2 ha?1 season?1, P < 0.05). Lower CH4 emission due to water drainage increased CO2 emissions. The soil acted as a sink of CH4 for both types of irrigation. Neither N2O–N nor CH4 emissions were affected by soil temperature. Global warming potential was the highest in II (4738.39 kg CO2 ha?1) and the lowest in CI (3463.41 kg CO2 ha?1). These findings suggest that CI can significantly mitigate the integrative greenhouse effect caused by CH4 and N2O from paddy fields while ensuring the highest rice yield.  相似文献   

8.
Macropores resulting from soil pedogenesis, biological activity, and agricultural practices play important roles in soil water, chemical and gas transport; however, seldom studies focus on the effect of soil macropores on CO2 behavior. In this study, a 150-day soil column incubation experiment was conducted to investigate the CO2 behavior in a homogeneous soil column and a soil column with an artificial macropore, which have the same total porosity. The results showed that the cumulative CO2 fluxes observed in the soil with a macropore (57.2 g m?2) were higher than those in the homogeneous soil (52.7 g m?2). The soil cumulative CO2 fluxes measured using column incubation can fit the kinetic model, and a higher carbon mineralization rate in the soil with the macropore was found. The results of the incubation experiment also suggest that macropore increased the gas diffusivities, and thus decreased the CO2 concentrations in the soil profile. This study proposed a simulation experiment and quantified the effect of macropore on soil CO2 behavior, which could help to understand the mechanism of CO2 emission from soil with macropores especially caused by agricultural practices.  相似文献   

9.
《Plant Production Science》2013,16(3):307-315
Abstract

The effects of elevated carbon dioxide concentration ([CO2]) on silica deposition on husk epidermis of rice (Oryza sativa L. cv. Akitakomachi) during the flowering stage were investigated in this study. The study was motivated by the concept that the rice yield maybe affected by global warming as a result of elevated [CO2] environment since sterility of rice is related to the panicle silica content that influences transpiration, and elevated [CO2] could affect plant transpiration. Silica deposition analysis was focused on the flowering stage of the rice crop grown hydroponically under two [CO2] conditions: 350 μmol mol-1 (ambient) and 700 μmol mol-1 (elevated). Silica deposition on the husk epidermis from three parts of the panicle at four flowering stages were examined using a scanning electron microscope (SEM) combined with an energy dispersive X-ray microanalyzer (EDX). The results demonstrated that elevated [CO2] significantly suppressed silica deposition on the husk epidermis at the lower part of the panicle, and at the early flowering stage when 1/3 of the panicle emerged from the leaf sheath. In the transverse section analysis of the husk, silica deposition on the husk epidermis under elevated [CO2] was less than that under ambient [CO2] at the late flowering stage. The less silica deposition observed on the husks at the late flowering stage under elevated [CO2] might be related to the suppressed transpiration from the panicle by elevated [CO2] found in a previous study.  相似文献   

10.
Vietnam is one of the world’s top two rice exporting countries. However, rice cultivation is the primary source of agriculture’s greenhouse gas (GHG) emissions in Vietnam. In particular, strategies are required to reduce GHG emissions associated with the application of organic and inorganic fertilisers. The objective of this study was to assess the effects of various combinations of biochar (BIOC), compost (COMP) and slow-release urea (SRU) on methane (CH4) and nitrous oxide (N2O) emissions. In total, 1170 gas samples were collected from closed gas chambers in rice paddies at Thinh Long commune and Rang Dong farm in northern Vietnam between June and October 2014. The gas samples were analysed for CH4-C and N2O-N fluxes using gas chromatography. The application of BIOC alone resulted in the lowest CH4 emissions (4.8–59 mg C m?2 h?1) and lowest N2O emissions (0.15–0.26 µg N m?2 h?1). The combined application of nitrogen–phosphorus–potassium (NPK) + COMP emitted the highest CH4 (14–72 mg C m?2 h?1), while ½NPK + BIOC emitted the highest N2O (1.03 µg N m?2 h?1 in the TL commune), but it was the second lowest (0.495 µg N m?2 h?1) in the RD farm. Green urea and orange urea reduced N2O emissions significantly (p < 0.05) compared to white urea, but no significant differences were observed with respect to CH4 emissions. SRU fertilisers and BIOC alone measured the lowest greenhouse gas intensity, i.e. <2.5 and 3 kg CO2 eq. kg?1 rice grain, respectively. Based on these results, application of fertilisers in the form of BIOC and/or orange or green urea could be a viable option to reduce both CH4 and N2O emissions from rice paddy soils.  相似文献   

11.
Rice is a major agricultural crop and accounts for 40 % of the total food grain production of India. A field experiment was conducted for two successive seasons (December–June, 2012–13 and December–June, 2013–14) to assess the efficiency of rice varieties for methane (CH4) emission in relation to atmospheric carbon fixation, partitioning of carbon, and storage in the soil. Six high yielding rice varieties, Bahadur, Cauvery, Dinanath, Joymoti, Kanaklata, and Swarnabh were grown under irrigated condition. Results of the present investigation depicted differences in photosynthetic rate among the varieties accompanied by differential ability for plant biomass partitioning between the shoots and the roots. Stomatal frequency of flag leaf at panicle initiation stage was found to have strong influence on photosynthesis. Low CH4-emitting rice varieties, Bahadur and Dinanath, were found to have lower size of the xylem vessels than the high CH4-emitting rice varieties, Joymoti and Kanaklata, and found to influence the CH4 flux. Soil organic carbon storage of 0.505 Mg C ha?1 y?1 in the plough layer of soil (0–15 cm) confirmed that irrigated rice ecosystem is an effective sink of carbon. These findings suggest that selection of suitable rice varieties with higher photosynthetic efficiency and lower emission of CH4 can be a suitable biological mitigation of this greenhouse gas. Although an inverse relationship of CH4 with carbon dioxide (CO2) efflux was observed, irrigated rice ecosystem has a good potential to store substantial amount of carbon in the soil.  相似文献   

12.
Methodologies for simulating impacts of climate change on crop production   总被引:2,自引:0,他引:2  
Ecophysiological models are widely used to forecast potential impacts of climate change on future agricultural productivity and to examine options for adaptation by local stakeholders and policy makers. However, protocols followed in such assessments vary to such an extent that they constrain cross-study syntheses and increase the potential for bias in projected impacts. We reviewed 221 peer-reviewed papers that used crop simulation models to examine diverse aspects of how climate change might affect agricultural systems. Six subject areas were examined: target crops and regions; the crop model(s) used and their characteristics; sources and application of data on [CO2] and climate; impact parameters evaluated; assessment of variability or risk; and adaptation strategies. Wheat, maize, soybean and rice were considered in approximately 170 papers. The USA (55 papers) and Europe (64 papers) were the dominant regions studied. The most frequent approach used to simulate response to CO2 involved adjusting daily radiation use efficiency (RUE) and transpiration, precluding consideration of the interacting effects of CO2, stomatal conductance and canopy temperature, which are expected to exacerbate effects of global warming. The assumed baseline [CO2] typically corresponded to conditions 10-30 years earlier than the date the paper was accepted, exaggerating the relative impacts of increased [CO2]. Due in part to the diverse scenarios for increases in greenhouse gas emissions, assumed future [CO2] also varied greatly, further complicating comparisons among studies. Papers considering adaptation predominantly examined changes in planting dates and cultivars; only 20 papers tested different tillage practices or crop rotations. Risk was quantified in over half the papers, mainly in relation to variability in yield or effects of water deficits, but the limited consideration of other factors affecting risk beside climate change per se suggests that impacts of climate change were overestimated relative to background variability. A coordinated crop, climate and soil data resource would allow researchers to focus on underlying science. More extensive model intercomparison, facilitated by modular software, should strengthen the biological realism of predictions and clarify the limits of our ability to forecast agricultural impacts of climate change on crop production and associated food security as well as to evaluate potential for adaptation.  相似文献   

13.
Intercropping has been a globally accepted practice for forage production, however, consideration of multiple performance criteria for intercropping including forage production, feed use efficiency and ruminal greenhouse gas emissions needs to be further investigated. A two-year field study was conducted to evaluate forage dry matter (DM) yield, nutritive value, feeding values and land-use efficiency as well as ruminal carbon dioxide (CO2) and methane (CH4) emissions of intercropped orchardgrass (Dactylis glomerata) and alfalfa (Medicago sativa) sown in five intercropping ratios (100:0, 75:25, 50:50, 25:75, and 0:100, based on seed weight) and three nitrogen (N) fertilizer levels (0, 50, and 100 kg ha−1). Increasing alfalfa proportion and N fertilizer level increased soil nutrients and the two-year total DM yield. Intercropping increased both land and nitrogen use efficiency (NUE) compared with monocultures. Greater NUE was obtained when N fertilizer was applied at 50 kg ha−1, compared with 100 kg ha−1. Increasing the proportion of alfalfa in intercrops increased the crude protein yield and rumen undegraded protein yield. Harvested forage intercrops were incubated with ruminal fluid for 48 h. Degraded DM yield, CO2 and CH4 emissions increased with increasing alfalfa proportion in intercrops. Overall, the 75:25 of orchardgrass-alfalfa intercrops was recommended as the best compromise between high forage productivity, superior feed use efficiency and low ruminal greenhouse gas emissions through complementary effects. The results indicate that the appropriate N fertilization level would be 50 kg ha−1 for acquiring higher nitrogen use efficiency and forage productivity.  相似文献   

14.
Many papers on measurements of greenhouse gases (GHGs) emission in rice paddies during a rice cropping season have been published. During a non-cropping season between Nov. and Apr., we investigated direct and indirect GHGs emissions in rice paddies. The indirect GHGs emission was evaluated as the amount of dissolved gases leaching from the paddy fields. Water management practices for the experiment were (1) continuous flooding (CF) and (2) non-flooding (NF). Although the direct CO2 emission in the CF treatment was remained nearly zero during the non-cropping period, direct CO2 emission in the NF treatment was continuously observed throughout the non-cropping period. The concentration of dissolved N2O in the NF treatment was below the detection limit of the instrument during the non-cropping period except immediately after the flooding and before the drainage. The concentration of dissolved N2O kept approximately 2 µg L?1 during the non-cropping period in the CF treatment. The direct CH4 emission and dissolved CH4 were not observed during the non-cropping period. Total gas emission in the NF treatment was 10 times as large as that in the CF treatment. Direct CO2 emission accounted for more than 90 % of the total emission in both treatments.  相似文献   

15.
Agricultural management plays an important role in the storage of carbon in soils. The behavior of soil CO2 in an Andisol in two different tillage systems (no tillage and tillage) was studied. Soil-column incubation experiments were performed for a period of 150 days to conduct this study. Soil CO2 flux, under no-tillage and tillage treatments, was observed to be 0.557 and 0.616 gCO2-C m?2 d?1, respectively. The cumulative CO2 flux under tillage treatment was observed to be higher than that under no-tillage treatment, but no distinct difference in the soil carbon stock was observed between both treatments. The soil CO2 concentration under no-tillage treatment was clearly much higher than that under tillage treatment, except at a depth of 2.5 cm. Tillage decreased soil dry bulk density and enhanced soil air-filled porosity. Soil gas diffusivity, which depends on air-filled porosity, was increased by tillage at a depth of 0–15 cm, which contributed to their lower soil CO2 concentration. CO2 flux through the soil profile, calculated from the CO2 concentration, decreased with depth. Compared to the deep soils, the surface soil (0–5 cm) showed greater variation in CO2 flux. The CO2 production at depths of 0–10 cm accounted for 62.2 and 51.7 % of the whole CO2 production of the 0–30-cm soil profile for no-tillage and tillage treatments. CO2 production was higher for soil under no tillage at depths of 0–10 cm, but contrary results were observed for soil at depths of 10–30 cm.  相似文献   

16.
《Journal of Crop Improvement》2013,27(1-2):393-399
SUMMARY

Increased atmospheric concentrations of CO2 may lead to increases in agricultural soil carbon and nitrogen storage, but the impact is likely to be small and is uncertain due to limitations in other resources (e.g., nutrients, water) and interactions with climatic changes. Since only a small percentage of carbon added to the soil becomes stabilised, the impact of CO2 fertilisation of crops is considered to be very small compared to deliberate efforts to increase soil carbon by improved agricultural management. Even if agricultural soil carbon stocks are increased, carbon credits cannot be claimed under the Kyoto Protocol since the increases are not directly human-induced, a condition which must be met in order for any carbon sink to be included in emission reduction targets.  相似文献   

17.
Effects and fate of biochar from rice residues in rice-based systems   总被引:8,自引:0,他引:8  
Although crop residues constitute an enormous resource, actual residue management practices in rice-based systems have various negative side effects and contribute to global warming. The concept of a combined bioenergy/biochar system could tackle these problems in a new way. Rice residues would be used for energy production, thereby reducing field burning and the use of fossil fuels, and the biochar by-product could help to improve soils, avoid methane emissions, and sequester carbon in soils. To examine some of these promises, we conducted field experiments from 2005 to 2008 in three different rice production systems. Objectives were to study the effect of biochar from rice husks on soil characteristics, assess the stability of carbonized rice residues in these different systems, and evaluate the agronomic effect of biochar applications. The results showed that application of untreated and carbonized rice husks (RH and CRH) increased total organic carbon, total soil N, the C/N ratio, and available P and K. Not significant or small effects were observed for soil reaction, exchangeable Ca, Mg, Na, and the CEC. On a fertile soil, the high C/N ratio of CRH seemed to have limited N availability, thereby slightly reducing grain yields in the first three seasons after application. On a poor soil, where the crop also suffered from water stress, soil chemical and physical improvements increased yields by 16-35%. Together with a parallel study including methane and CO2 emission measurements at one site, the results strongly suggest that CRH is very stable in various rice soils and systems, possibly for thousands of years. However, the study also showed that CRH was very mobile in some soils. Especially in poor sandy soil, about half of the applied carbon seemed to have moved below 0.30 m in the soil profile within 4 years after application. We concluded that biochar from rice residues can be beneficial in rice-based systems but that actual effects on soil fertility, grain yield, and soil organic carbon will depend on site-specific conditions. Long-term studies on biochar in field trials seem essential to better understand biochar effects and to investigate its behavior in soils.  相似文献   

18.
We studied the effects of water regimes and nutrient amendments on CH4 and N2O emissions in a 2 × 3 factorial, completely randomised growth chamber experiment. Treatments included continuously flooded (CF) and alternate wetting and drying (AWD), and three organic amendments: no amendment-control, rice straw (RS) and biochar (BC). Compound fertiliser was applied to all treatments. Rice was grown in columns packed with a paddy soil from Cambodia. Results revealed faster mineralisation of organic carbon (RS and BC) when applied in water-saturated conditions lasting for 2 weeks instead of flooding. This resulted in lower total CH4 emissions in treatments under AWD than those under the CF water regime, namely 44 % in RS treatments and 29 % in BC treatments. Nitrous oxide fluxes were generally non-detectable during the experimental period except after fertilisation events, and the total N2O–N emissions accounted for on average 1.7 % of the total applied mineral fertiliser N. Overall, the global warming potentials (GWPs) were lower in treatments under AWD than those under the CF water regime except for the control treatment with only mineral fertiliser application. Grain yields were slightly higher in treatments under AWD than the CF water regime. Hence, the yield-scaled GWP was also lower in the treatments under the AWD water regime, namely 51 % in RS, 59 % in BC and 17 % in control treatments. Control treatments had the lowest GWP, but provided the highest yield. The yield-scaled GWP under these treatments was therefore lower than under the other treatments.  相似文献   

19.
A field experiment was conducted to investigate effects of tillage practices [no-tillage (NT) and conventional intensive tillage (CT)] and oilseed rape residue returning levels (0, 3000, 6000, 9000 kg dry matter ha?1) on methane (CH4) and carbon dioxide (CO2) emissions and grain yield from paddy fields during the 2011 rice growing season after 2 years oilseed rape-rice rotation in central China. The experiment was established following a split-plot design of a randomized complete block with tillage practices as the main plots and residue returning levels as the sub-plots. NT significantly decreased CO2 and CH4 emissions by 38.8 and 27.3 % compared with CT, respectively. Residue returning treatments released significantly more CO2 and CH4 by 855.5–10410 and 51.5–210.5 kg ha?1 than no residue treatments, respectively. The treatments of 3,000 and 6,000 kg ha?1 residue returning significantly increased rice grain yield by 37.9 and 32.0 % compared with the treatment of no residue returning, respectively. Compared with NT, CT increased yield-scaled emissions of CH4 and CO2 by 16.0 %. The treatments of 6,000 and 9,000 kg ha?1 residue returning significantly increased yield-scaled emissions of CH4 and CO2 by 18.1 and 61.5 %, respectively, compared with the treatment of no residue returning. Moreover, the treatment of NT in combination with 3,000 kg ha?1 residues had the lowest yield-scaled emissions of CH4 and CO2 across tillage and residue treatments. In this way, this study revealed that the combination of NT with 3,000 kg ha?1 residues was a suitable strategy for optimizing carbon emissions and rice grain yield.  相似文献   

20.
The area grown with processing potato crops in the Argentinian Pampas has been increasing steadily since 1995. The aim of this work was to assess the effects of N, P and S upon yield and tuber quality and their impact on CO2 emissions assessed with the Cool Farm Tool-Potato. During the spring-summer growing seasons 2008/2009 and 2009/2010, ten fertilization experiments to individually assess N, P and S effects were carried out in the southeast region of the Argentinian Pampas. Nitrogen (four N rates), phosphorus (four P rates) and sulfur (three S rates) were applied at planting and tuber initiation; at combined rates of 0, 50, 100 and 150 kg N ha?1, and at rates of 0, 25, 50 and 100 kg P ha?1 and 0, 10 and 20 kg S ha?1. N and P had a positive effect on total tuber yield, but tuber dry matter concentration (DMC) decreased at higher N rates. The fraction of marketable tubers suitable for processing into French fries increased with the addition of N, showed no variations with P fertilization, and decreased when S was applied. French fry colour, length/width (L:W) ratio and tuber defects were not affected by N, P and S fertilization. With regard to CO2 emissions assessed with the Cool Farm Tool-Potato, results showed that the higher the N rates the higher the CO2 emissions, but they decreased at higher yields. P and S rates did not have an impact on the CO2 emissions, which also decreased at higher yields. Under the production system of the Pampas, N should be split between planting and tuber initiation, and intermediate P rates should be applied all at planting, in order to improve crop yield and quality and to reduce CO2 emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号