首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 552 毫秒
1.
JH Choy  SJ Kwon  GS Park 《Science (New York, N.Y.)》1998,280(5369):1589-1592
The free modulation of interlayer distance in a layered high-transition temperature (high-Tc) superconductor is of crucial importance not only for the study of the superconducting mechanism but also for the practical application of high-Tc superconducting materials. Two-dimensional (2D) superconductors were achieved by intercalating a long-chain organic compound into bismuth-based high-Tc cuprates. Although the intercalation of the organic chain increased the interlayer distance remarkably, to tens of angstroms, the superconducting transition temperature of the intercalate was nearly the same as that of the pristine material, suggesting the 2D nature of the high-Tc superconductivity.  相似文献   

2.
Analysis of the many experiments on high-temperature superconductivity indicate several essential aspects of any theory. The conductivity and other transport properties as a function of disorder, temperature, and frequency point to a non-Fermi liquid-like behavior, whereas photoemission experiments and magnetic properties indicate the presence of a Fermi surface in momentum space. To reconcile this apparent contradiction, a new type of electron liquid, called a Luttinger liquid, has been postulated, and the present article aims to show the need for this postulate. Theory and experiment indicate that the suitable phenomenological electronic structure model of the CuO layers is that of the one-band Hubbard model. It is also argued that experiment clearly indicates that interlayer interactions strongly affect the superconducting transition temperature, T(c), consistent with the fact that no theoretical calculations on two-dimensional Hubbard models have resulted in the prediction of high transition temperatures, and that anyon models are not favored by experiment.  相似文献   

3.
Quantum confinement of itinerant electrons in atomically smooth ultrathin lead films produces strong oscillations in the thickness-dependent film energy. By adding extra electrons via bismuth alloying, we showed that both the structural stability and the superconducting properties of such films can be tuned. The phase boundary (upper critical field) between the superconducting vortex state and the normal state indicates an anomalous suppression of superconducting order just below the critical temperature, Tc. This suppression varies systematically with the film thickness and the bismuth content and can be parametrized in terms of a characteristic temperature, Tc* (less than Tc), that is inversely proportional to the scattering mean free path. The results indicate that the isotropic nature of the superconductive pairing in bulk lead-bismuth alloys is altered in the quantum regime.  相似文献   

4.
In the interlayer theory of high-temperature superconductivity, the interlayer pair tunneling energy (similar to the Josephson or Lawrence-Doniach energy) is the motivation for superconductivity. This connection requires two experimentally verifiable identities: the coherent normal-state conductance must be smaller than the "Josephson" coupling energy, and the Josephson coupling energy must be equal to the condensation energy of the superconductor. The first condition is well satisfied in the only case that is relevant, (La, Sr)2CuO4, but the second condition has been questioned. It is satisfied for all dopings in (La,Sr)2CuO4 and also in optimally doped Hg(Ba)2CuO5, which was measured recently, but seems to be strongly violated in measurements on single crystals of Tl2Ba2CuO6.  相似文献   

5.
One of the most intriguing features of some high-temperature cuprate superconductors is the interplay between one-dimensional "striped" spin order and charge order, and superconductivity. We used mid-infrared femtosecond pulses to transform one such stripe-ordered compound, nonsuperconducting La(1.675)Eu(0.2)Sr(0.125)CuO(4), into a transient three-dimensional superconductor. The emergence of coherent interlayer transport was evidenced by the prompt appearance of a Josephson plasma resonance in the c-axis optical properties. An upper limit for the time scale needed to form the superconducting phase is estimated to be 1 to 2 picoseconds, which is significantly faster than expected. This places stringent new constraints on our understanding of stripe order and its relation to superconductivity.  相似文献   

6.
The electrical properties of organic molecular crystals, such as polyacenes or C60, can be tuned from insulating to superconducting by application of an electric field. By structuring the gate electrode of such a field-effect switch, the charge carrier density, and therefore also the superfluid density, can be modulated. Hence, weak links that behave like Josephson junctions can be fabricated between two superconducting regions. The coupling between the superconducting regions can be tuned and controlled over a wide range by the applied gate bias. Such devices might be used in superconducting circuits, and they are a useful scientific tool to study superconducting material parameters, such as the superconducting gap, as a function of carrier concentration or transition temperature.  相似文献   

7.
Recent c axis-polarized infrared measurements in the high-transition temperature (high-T(c)) cuprate superconductor (La,Sr)(2)CuO(4) can be interpreted on the basis that the entire condensation energy comes from the interlayer Josephson coupling. This gives a parameter-free determination of penetration depth lambda and coherence length xi for this superconductor that are in agreement with experiment.  相似文献   

8.
Angle-resolved photoemission experiments reveal evidence of an energy gap in the normal state excitation spectrum of the cuprate superconductor Bi2Sr2CaCu2O8+delta. This gap exists only in underdoped samples and closes around the doping level at which the superconducting transition temperature Tc is a maximum. The momentum dependence and magnitude of the gap closely resemble those of the dx2-y2 gap observed in the superconducting state. This observation is consistent with results from several other experimental techniques, which also indicate the presence of a gap in the normal state. Some possible theoretical explanations for this effect are reviewed.  相似文献   

9.
Detailed studies indicate a superconducting gap in the high-temperature superconductor Bi(2)Sr(2)CaCu(2)O(8). Photoemission measurements with high energy and angle resolution isolate the behavior of a single band as it crosses the Fermi level in both the normal and superconducting states, giving support to the Fermi liquid picture. The magnitude of the gap is 24 millielectron volts.  相似文献   

10.
何俊  赵岩  井岗  李建君 《油气储运》2019,(6):649-654,661
目前,在盐穴储气库造腔过程中,处理不溶物夹层的方式多为使其充分浸泡至弱化后自然垮塌,但对于厚度超过10 m的巨厚不溶物隔层,使其垮塌十分困难,巨厚隔层垮塌的极限跨度可达60 m左右,通过浸泡使其垮塌需要的时间长,造腔效率低,还可能损坏厚隔层下部的造腔管柱。以淮安储气库某井地质参数为例,提出一种在允许巨厚隔层存在的基础上进行造腔的新思路,即在隔层上下分别造腔,上部常规造腔、下部造水平腔,上下部的腔体在水平方向错开分布,以保证巨厚隔层作为下部水平腔顶板的稳定性。模拟结果表明:这种造腔方式比同等盐层条件下可多造约5×104 m3腔体,并且避免了下部造腔管柱被垮塌隔层损坏的风险。此外,提出在地面采用丛式井技术布井,以降低征地和钻机搬家安装费用,并使用移动式钻机优化钻井程序,改善造腔过程中钻井作业的经济性。  相似文献   

11.
Optical data are reported on a spectral weight transfer over a broad frequency range of Bi2Sr2CaCu2O8+delta, when this material became superconducting. Using spectroscopic ellipsometry, we observed the removal of a small amount of spectral weight in a broad frequency band from 10(4) cm(-1) to at least 2 x 10(4) cm(-1), due to the onset of superconductivity. We observed a blue shift of the ab-plane plasma frequency when the material became superconducting, indicating that the spectral weight was transferred to the infrared range. Our observations are in agreement with models in which superconductivity is accompanied by an increased charge carrier spectral weight. The measured spectral weight transfer is large enough to account for the condensation energy in these compounds.  相似文献   

12.
As an emergent electronic material and model system for condensed-matter physics, graphene and its electrical transport properties have become a subject of intense focus. By performing low-temperature transport spectroscopy on single-layer and bilayer graphene, we observe ballistic propagation and quantum interference of multiply reflected waves of charges from normal electrodes and multiple Andreev reflections from superconducting electrodes, thereby realizing quantum billiards in which scattering only occurs at the boundaries. In contrast to the conductivity of conventional two-dimensional materials, graphene's conductivity at the Dirac point is geometry-dependent because of conduction via evanescent modes, approaching the theoretical value 4e(2)/pih (where e is the electron charge and h is Planck's constant) only for short and wide devices. These distinctive transport properties have important implications for understanding chaotic quantum systems and implementing nanoelectronic devices, such as ballistic transistors.  相似文献   

13.
We report that the doping and temperature dependence of photoemission spectra near the Brillouin zone boundary of Bi(2)Sr(2)CaCu(2)O(8+delta)exhibit unexpected sensitivity to the superfluid density. In the superconducting state, the photoemission peak intensity as a function of doping scales with the superfluid density and the condensation energy. As a function of temperature, the peak intensity shows an abrupt behavior near the superconducting phase transition temperature where phase coherence sets in, rather than near the temperature where the gap opens. This anomalous manifestation of collective effects in single-particle spectroscopy raises important questions concerning the mechanism of high-temperature superconductivity.  相似文献   

14.
Optical spectra of high-transition-temperature superconductors in the mid-infrared display a gap of in-plane conductivity whose role for superconductivity remains unresolved. Femtosecond measurements of the mid-infrared reflectivity of YBa(2)Cu(3)O(7-delta) after nonequilibrium optical excitation are used to demonstrate the ultrafast fill-in of this gap and reveal two gap constituents: a picosecond recovery of the superconducting condensate in underdoped and optimally doped material and, in underdoped YBa(2)Cu(3)O(7-delta), an additional subpicosecond component related to pseudogap correlations. The temperature-dependent amplitudes of both contributions correlate with the antiferromagnetic 41-millielectronvolt peak in neutron scattering, supporting the coupling between charges and spin excitations.  相似文献   

15.
Angle-resolved photoemission data from the cuprate superconductor Bi2Sr2CaCu2O8+delta above and below the superconducting transition temperature Tc reveal momentum-dependent changes that extend up to an energy of about 0.3 electron volt, or 40kTc (where k is the Boltzmann constant). The data suggest an anomalous transfer of spectral weight from one momentum to another, involving a sizable momentum transfer Q approximately (0.45pi, 0). The observed Q is intriguingly near the charge-order periodicity required if fluctuating charge stripes are present.  相似文献   

16.
土壤剖面中砂质夹层的储水作用及机理研究   总被引:11,自引:0,他引:11  
探讨土壤剖面中砂质夹层的水分行为,试验采用模拟土柱进行研究。土柱的剖面组成是:中壤土夹10cm厚的松砂土于20、50、80、110cm深处;中壤土夹5、10、15、20、25cm厚的松砂土于30cm深度以下。用限量供水与足量供水两种方式处理上述土柱,观测剖面各层(每层10cm)土壤含水量、水分入渗速率和累积入渗量等。  相似文献   

17.
A modulated structure has been fabricated from high transition temperature superconductors where the individual CuO(2) planes are composed of alternating superconducting and insulating strips. This structure is made by growing a-axis-oriented YBa(2)Cu(3)O(7)/PrBa(2)Cu(3)O(7) superlattices by 90 degrees off-axis sputtering on (100)SrTiO(3) and (100)LaAlO(3) substrates. Superlattice modulation is observed to a modulation wavelength of 24 angstroms (12 angstroms-YBa(2)Cu(3)O(7)/12 angstroms-PrBa(2)Cu(3)O(7)), both by x-ray diffraction and by cross-sectional transmission electron microscopy. Rutherford backscattering spectroscopy indicates a high degree of crystalline perfection with a channeling minimum yield of 3 percent. Quasi-one-dimensional conductivity should be obtainable in these structures.  相似文献   

18.
Fluctuations are important near phase transitions, where they can be difficult to describe quantitatively. Superconductivity in mesoscopic rings is particularly intriguing because the critical temperature is an oscillatory function of magnetic field. There is an exact theory for thermal fluctuations in one-dimensional superconducting rings, which are therefore expected to be an excellent model system. We measured the susceptibility of many rings, one ring at a time, by using a scanning superconducting quantum interference device that can isolate magnetic signals that are seven orders of magnitude smaller than applied flux. We find that the fluctuation theory describes the results and that a single parameter characterizes the ways in which the fluctuations are especially important at magnetic fields where the critical temperature is suppressed.  相似文献   

19.
In plant factories, the plant microclimate is affected by the control system, plant physiological activities and aerodynamic characteristics of leaves, which often leads to poor ventilation uniformity, suboptimal environmental conditions and inefficient air conditioning. In this study, interlayer cool airflow(ILCA) was used to introduce room air into plants' internal canopy through vent holes in cultivation boards and air layer between cultivation boards and nutrient solution surface(interlayer). By using optimal operating parameters at a room temperature of 28℃, the ILCA system achieved similar cooling effects in the absence of a conventional air conditioning system and achieved an energy saving of 50.8% while bringing about positive microclimate change in the interlayer and nutrient solution. This resulted in significantly reduced root growth by 41.7% without a negative influence on lettuce crop yield. Future development in this precise microclimate control method is predicted to replace the conventional cooling(air conditioning) systems for crop production in plant factories.  相似文献   

20.
The electrostatic energy of the 2M(1) muscovite structure, KAl(2)(Si(3)Al)- O(10)(OH)(2), has been calculated as a function of the orientation of the hydroxyl group (O-H distance = 0.97 angstrom). The minimum in the electrostatic energy occurs when the OH bond makes an angle of 18 degrees with the cleavage plane and an angle of 31 degrees with the b-axis (in the a-b plane), which is 2.5 degrees away from the orientation of the transition moment as determined from infrared measurements on single crystals. If the K+ ion is excluded from the calculation, the O-H bond makes an angle of 53 degrees with the cleavage plane. This indicates the strong influence that the interlayer cation exerts on the hydroxyl hydrogen in mica structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号