首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Procedures from 2 methods, one for aflatoxins B1 and M1 in eggs and one for aflatoxicol in milk, blood, and liver, have been combined to determine the 3 toxins in eggs. The sample is blended with sodium chloride-saturated water and this mixture is then blended with acetone. After separation from the solid residue, the aqueous acetone extract is defatted with petroleum ether. The toxins are next partitioned into chloroform and separated from interferences on a silica gel column. Aflatoxicol is determined by fluorescence measurement after separation on a C18 reverse phase liquid chromatographic column, and aflatoxins B1 and M1 are determined by fluorescence densitometry after separation on a silica gel thin layer chromatographic plate. In a recovery study with eggs, mean recoveries of aflatoxicol added at levels of 0.1, 0.05, and 0.025 ng/g were 87, 77, and 78%, respectively. Mean recoveries of aflatoxins B1 and M1 added at a level of 0.1 ng/g were 75 and 87%, respectively, and at an added level of 0.05 ng/g were 86 and 75%. The within-laboratory precision (repeatability) ranged from 2 to 13%.  相似文献   

2.
beta-Cyclodextrin enhances the fluorescence of aflatoxins B1 and G1 in aqueous systems. This effect was utilized in developing a unique reverse-phase liquid chromatographic (LC) method for determination of aflatoxins B1, B2, G1, and G2 (B1 detection limit 1 ppb), without preparing derivatives of B1 and G1. The aflatoxins are dissolved in methanol or the mobile phase for injection onto the LC system. Using a mobile phase of methanol-beta-cyclodextrin (1 + 1), the aflatoxins are resolved on a C18 column. Fluorescence of the aflatoxins is enhanced by post-column introduction of an aqueous concentrated beta-cyclodextrin solution. All 4 aflatoxins elute within 10 min in the order G2, G1, B2, B1. Fluorescence responses for B1 and G1 standards were linear over the concentration range 0.5-10 ng, yielding correlation coefficients (r) of 0.9989 and 1.000, respectively. The average peak response ratio for G1:B1 for the mobile phase-enhancement solution described was 0.765 with a coefficient of variation (CV) of 0.98%. CVs were 6.2, 9.0, and 7.5% for multiple assays of aflatoxin B1 in 3 samples of naturally contaminated corn. For samples of corn spiked to a total B1 content of 8.3 ng/g, average B1 recovery was 90% (CV 11.7%).  相似文献   

3.
An international collaborative study involving 14 collaborators from 5 different countries was conducted to test a rapid liquid chromatographic (LC) method for detecting aflatoxins M1 and M2 in fluid milk. Each collaborator prepared artificially contaminated milk samples (0.078-1.31 ng M1/mL and 0.030-0.13 ng M2/mL) by adding solutions containing various concentrations of aflatoxins M1 and M2 to fresh milk. Recoveries ranged from 85.2 to 102.5% (av. 93.7%) for aflatoxin M1 and from 99.5 to 126.7% (av. 109.8%) for aflatoxin M2. Coefficients of variation averaged 21.4% (M1) and 35.9% (M2). An analysis of variance was calculated from combined data to determine variance components. The within-laboratory variations (So) (repeatability) were 27.9% (M1) and 23.9% (M2), and the among-laboratory variations (Sx) (reproducibility) were 44.5% (M1) and 64.7% (M2). No visual differences were determined between normal or reverse phase LC for contaminated samples; however, there were an insufficient number of collaborators using normal phase to give meaningful separate statistical data. For 26 observations of uncontaminated milk, 3 false M1 positives were reported for normal phase LC determinations and 2 false M1 positives were reported for reverse phase LC determinations. Three normal phase and 11 reverse phase false M2 positives were reported for 104 observations in uncontaminated milk. The reverse phase LC method for determination of aflatoxins M1 and M2 in fluid milk has been adopted official first action.  相似文献   

4.
High pressure liquid chromatographic determination of aflatoxins in corn.   总被引:1,自引:0,他引:1  
A high pressure liquid chromatographic (HPLC) method is proposed for determining aflatoxins in corn. The sample is extracted with methanol-10% NaCl (4 + 1), pigments are precipitated with zinc acetate, and the extract is cleaned up on a small (2 g) silica gel column. Aflatoxins in the purified extract are resolved by normal phase HPLC on a microparticulate (10 micrometer) silica gel column with water-saturated chloroform-cyclohexane, acetonitrile solvent, and detected by fluorescence on a silica gel-packed flowcell. The method was compared with chloroform-water extraction of the official CB method on 15 samples of contaminated corn. In 5 of the 6 samples containing aflatoxins B1, B2, G1, and G2, methanol-10% NaCl extracted more aflatoxin than did cloroform-water, as measured both by HPLC and by thin layer chromatography. In samples containing only B1 and B2, the 2 extraction solvents were virtually equivalent. Agreement was good between HPLC and TLC for each extraction solvent. Average recovery of aflatoxins B1, B2, G1, and G2 added to yellow cornmeal at 3 levels was greater than 90%.  相似文献   

5.
A method is described for rapid cleanup followed by reverse-phase liquid chromatographic (LC) quantitation of aflatoxins in raw peanuts. A modified minicolumn cleanup is used for sample preparation, and a preliminary estimation of aflatoxin content by minicolumn can be made so that highly contaminated samples can be diluted before LC analysis. The use of the simple, quick minicolumn cleanup eliminates the need for further column or cartridge cleanup, thus greatly reducing sample preparation time. Sensitive quantitation is achieved using a phenyl column, a mobile phase of water-tetrahydrofuran (80 + 20, v/v), and postcolumn derivatization with water-saturated iodine followed by fluorescence detection. The recoveries of aflatoxins B1, B2, G1, and G2 from peanut meal spiked at 3 levels ranged from 71.7 to 88.3% (average 80%) with coefficients of variation from 2.7 to 10.4%.  相似文献   

6.
A liquid chromatographic (LC) technique has been developed that uses the Mycosep multifunctional cleanup (MFC) column. MFC columns provide a rapid 1-step extract purification. They are designed to retain particular groups of compounds that may create interferences in analytical methods. At the same time, MFC columns allow compounds of interest to pass through. In the method presented, test samples are extracted in a blender with acetonitrile-water (9 + 1). A portion of the extract is forced through an MFC column designed especially for analysis of numerous mycotoxins. Analytical interferences are retained, while aflatoxins pass through the column. Aflatoxins B1 and G1 are converted to their hemiacetals by heating a mixture of purified extract and water-trifluoroacetic acid-acetic acid (7 + 2 + 1) at 65 degrees C for 8.5 min. An aliquot of this mixture is analyzed by isocratic LC with acetonitrile-water mobile phase and fluorescence detection. A detection limit of less than 0.5 ng/g for aflatoxin B1 was obtained. Average recoveries greater than 95% total aflatoxins (B1, B2, G1, and G2) and coefficients of variation of less than 3% were obtained. The method was successfully applied to the following commodities: corn, almonds, pista-chios, walnuts, peanuts, Brazil nuts, milo, rice, cottonseed, corn meal, corn gluten meal, fig paste, and mixed feeds.  相似文献   

7.
A simple, rapid, and solvent-efficient method for determining aflatoxins in corn and peanut butter is described. Aflatoxins B1, B2, G1, and G2 were extracted from 50 g sample with 200 mL methanol-water (85 + 15). A portion of the extract was diluted with 10% NaCl solution to a final concentration of 50% methanol, and then defatted with hexane. The aflatoxins were partitioned into chloroform. The chloroform solution was evaporated, and the residue was placed on a 0.5 g disposable silica gel column. The column was washed with 3 mL each of hexane, ethyl ether, and methylene chloride. Aflatoxins were eluted with 6 mL chloroform-acetone (9 + 1). The solvent was removed by evaporation on a steam bath, and the aflatoxins were determined using thin layer chromatography (TLC) with silica gel plates and a chloroform-acetone (9 + 1) developing solvent. Overall average recovery of aflatoxin B1 from corn was 82%, and the limit of determination was 2 ng/g. For mass spectrometric (MS) confirmation, aflatoxin B1 in the extract from 3 g sample (20 ng/g) was purified by TLC and applied by direct on-column injection at 40 degrees C into a 6 m fused silica capillary gas chromatographic column. The column was connected directly to the ion source. After injection, the temperature was rapidly raised to 250 degrees C, and the purified extract was analyzed by negative ion chemical ionization MS.  相似文献   

8.
A rapid method is described for extraction and cleanup of raw and processed milk for determination of aflatoxins M1 and M2 by using a C18 Sep-Pak/silica gel cleanup column combination. Aflatoxins are separated by normal phase liquid chromatography and their concentrations are determined by fluorescence detection in a silica gel-packed flow cell. Recoveries ranged from 99 to 103% with coefficients of variation less than 2% for M1 levels of 0.117-1.17 ng/mL added to raw milk. Similar recoveries were obtained for M2. The coefficient of variation for analysis of 5 subsamples of naturally contaminated milk was less than 1%. Agreement with the official method is satisfactory. Each sample requires less than 25 mL solvent and 10 min actual handling time. Sample chromatograms show no interferences in the M1-M2 elution region and no late-eluting peaks, which permits spacing injections at 13-20 min intervals. Aflatoxin levels as low as 0.03 ppb may be determined by this procedure. Extracts have also been analyzed by thin layer chromatography.  相似文献   

9.
A method for the accurate one-dimensional thin layer chromatographic (TLC) determination of aflatoxins B1, B2, G1, and G2 in mixed feeds is presented. The aflatoxins are extracted from the sample with chloroform and purified by solvent partitioning. Each aflatoxin is separated from pulp interference by thin layer chromatography on aluminum-backed silica plates. The separated aflatoxins are detected by fluorescence densitometry. Average recoveries for samples spiked from 10 to 100 ppb B1 and G1 and from 3 to 30 ppb B2 and G2 are 82, 84, 95, and 94% for B1, B2, G1, and G2, respectively. The above recovery data, when analyzed for overall method repeatability, produced relative standard deviations of 6.8, 4.3, 6.9, and 7.6% for B1, B2, G1, and G2, respectively. Minimum detection level is less than 1 ppb for each aflatoxin. B1 is confirmed by trifluoroacetic acid derivative formation on a silica TLC plate.  相似文献   

10.
Three different methods were compared for the determination of total flatoxins in corn and peanuts naturally contaminated with aflatoxins and in corn, peanuts, cottonseed, peanut butter, and poultry feed spiked with aflatoxins B1, B2, and G1. The 3 methods were an enzyme-linked immunosorbent assay (ELISA) screening test; a monoclonal antibody-affinity column-solid-phase separation method; and the AOAC official thin-layer chromatography (TLC) methods for all except poultry feed, for which Shannon's TLC method for mixed feed was used. The ELISA test is designed to provide only positive results for total aflatoxins at greater than or equal to 20 ng/g or negative results at less than 20 ng/g. The affinity column separation is coupled with either bromination solution fluorometry to estimate total aflatoxins or liquid chromatography (LC) to quantitate individual aflatoxins. Fluorodensitometry was used to determine aflatoxins in commodities analyzed by the TLC methods. The LC and TLC results were in good agreement for all the analyses. The results for the affinity column using bromination solution fluorometry were similar except those for cottonseed, which were about 60% higher. The ELISA screening method correctly identified naturally contaminated corn and peanut positive samples. No false positives were found for controls. The correct response for spiked corn, raw peanuts, peanut butter, and cottonseed at greater than or equal to 20 ng aflatoxins/g was about 90%. The correct response for spiked poultry feed at greater than or equal to 20 ng aflatoxins/g was about 50%.  相似文献   

11.
A method is described for simple and rapid determination of aflatoxins in corn, buckwheat, peanuts, and cheese. Aflatoxins were extracted with chloroform-water and were purified by a Florisil column chromatographic procedure. Column eluates were concentrated and spotted on a high performance thin layer chromatographic (HPTLC) plate, which was then developed in chloroform-acetone (9 + 1) and/or ether-methanol-water (94 + 4.5 + 1.5) or chloroform-isopropanol-acetone (85 + 5 + 10). Each aflatoxin was quantitated by densitometry. The minimum detectable aflatoxin concentrations (micrograms/kg) in various test materials were 0.2, B1; 0.1, B2; 0.2, G1; 0.1, G2; and 0.1, M1. Recoveries of the aflatoxins added to corn, peanut, and cheese samples at 10-30 micrograms/kg were greater than 69% (aflatoxin G2) and averaged 91%, B1; 89%, B2; 91%, G1; 78%, G2; and 92%, M1. The simple method described was compared with the AOAC CB method, AOAC BF method, and AOAC milk and cheese method. These methods were applied to corn, peanut, and cheese composites spiked with known amounts of aflatoxins, and to naturally contaminated buckwheat and cheese. Recoveries were much lower for the BF method compared with our simple method and the CB method.  相似文献   

12.
A high pressure liquid chromatographic method has been developed for determining aflatoxins B1, B2, G1, and G2 in peanut butter. The method is based on extraction with acidified aqueous methanol, partition of the aflatoxin into methylene chloride, and purification of the extract on a 2 g silica gel column. The extracted aflatoxins are resolved on a microparticulate (10 micrometer) porous silica gel column in ca 10 min with a water-washed chloroform-cyclohexane-acetonitrile solvent that contains 2% isopropanol. The fluorescence detection system determines aflatoxins B1, B2, G1, and G2 at low levels, i.e., 0.25 ppb B1, 0.5 ppb G1, and 0.2 ppb B2 and G2. Multiple assays of 5 samples of naturally contaminated peanut butters containing total aflatoxins (B1 + B2 + G1 + G2) at levels of 1, 2, 3, 9, and 17 ppb gave intralaboratory coefficients of variation of 7, 4, 4, 11, and 3%, respectively. Samples spiked at levels of 5, 9, and 17 ppb total aflatoxins showed recoveries of 79, 81, and 81%, respectively.  相似文献   

13.
A liquid chromatographic (LC) method was developed for the determination of aflatoxins in feedstuffs containing citrus pulp. The feed-stuff sample is extracted with chloroform, followed by Sep-Pak Florisil cartridge cleanup and Sep-Pak C18 cartridge cleanup. The final eluate (water-acetone, 85 + 15, v/v) is submitted to reverse-phase liquid chromatography with water-methanol-acetonitrile (130 + 70 + 40, v/v/v) as mobile phase and postcolumn derivatization with iodine. Citrus components are removed from the extract efficiently. The limit of detection for aflatoxin B1 is less than 1 microgram/kg. Other aflatoxins can also be detected and measured. Recoveries of aflatoxins B1, B2, G1, and G2 for dairy rations spiked at 13, 5, 10, and 4 micrograms/kg were 87, 86, 81, and 82%, respectively. Corresponding coefficients of variation were 3.1, 3.6, 5.2, and 3.8%, respectively.  相似文献   

14.
A joint project was undertaken by the Food Safety and Inspection Service (FSIS) and the Agriculture Research Service branches of the U.S. Department of Agriculture to determine the presence of aflatoxins in the U.S. meat supply during a drought year. In 1988, high incidences of aflatoxins occurred in corn grown in regions of the Midwest, Southeast, and South. Six states were identified as having serious aflatoxin contamination in their corn crop: Virginia, North and South Carolina, Texas, Iowa, and Illinois. Swine liver and pillars of diaphragm (muscle) tissues were sampled by federal FSIS Inspectors in plants located in these states. A worstcase sampling plan was conducted. Samples were taken in January 1989 from hogs fed corn soon after harvest and in April 1989 from hogs fed corn originally stored and then fed in the spring. A modification of the official AOAC method for the thin-layer chromatography (TLC) determination of aflatoxins in animal tissue was used to permit quantitation by LC with fluorescence detection. The official AOAC TLC confirmation of identity method was used to confirm all positive samples with B1 concentrations greater than 0.04 ppb and M1 concentrations greater than 0.1 ppb. Sixty samples in the January group and 100 samples in the April group were assayed. Concentrations of aflatoxins B1 and M1 in the first group of pig livers ranged from 0.04 to 0.06 ppb. The identity of aflatoxin B1 was confirmed in all positive samples. Aflatoxin M1 could not be confirmed in any of the positive liver samples because the method was insufficiently sensitive for this aflatoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
An enzyme-linked immunosorbent assay (ELISA) screening test (CITE PROBE) was compared to liquid chromatography (LC) for the determination of aflatoxins in naturally contaminated corn samples. The CITE PROBE, with a positive/negative cutoff of 5 ng/g aflatoxin B1, was correct (based on LC results) on 47 of 51 samples. Two of the incorrect responses by the CITE PROBE were false positives on samples containing 4.4 ng/g and 4.1 ng/g aflatoxins by LC. Another incorrect response was a false negative on a sample containing 5.5 ng/g aflatoxins by LC. The fourth incorrect response was a false positive on a sample containing 1.9 ng/g aflatoxins by LC. On the basis of these results, the CITE PROBE was determined to be a reliable screening method for the detection of greater than or equal to 5 ng/g aflatoxins in corn.  相似文献   

16.
Acrolein (2-propenal) and other low molecular weight aldehydes (LMWAs) formed by degradation of the frying medium (triglycerides) were monitored by liquid chromatography (LC) during preparation of fried items. LMWA contents of coatings from codfish and of doughnuts and their volatiles that codistill with steam are monitored by trapping the vapors and distillate from the food matrix in a 2,4-dinitrophenylhydrazine solution. The resulting hydrazones are partitioned from the aqueous phase, first into isooctane and then into acetonitrile for LC analysis. The hydrazones are separated and quantified on a C18 reversed-phase column with acetonitrile-water as the mobile phase. LMWAs are confirmed by gas chromatography/mass spectrometry. No difference was found in LMWA content in coatings from fish fillets fried at 182 or 204 degrees C. Cake doughnuts were higher in acrolein content than yeast-raised doughnuts prepared under similar conditions. Freshness of the frying medium, frying time, and batch size did not seem to influence LMWA production from doughnuts. Results indicated that most of the LMWAs formed codistilled with steam during frying rather than remaining with the food item.  相似文献   

17.
A method is described for confirming the identity of aflatoxins B1 and M1 in dairy products and liver extracts on a thin layer plate. Extracts and standards containing aflatoxins B1 and M1 are spotted on 10 x 10 cm plates, which are developed 2-dimensionally in mixtures of isopropanol-acetone-chloroform. After the first development, trifluoroacetic acid-hexane (1 + 4) is sprayed on that part of the plate containing the separated extract components and the underdeveloped standard spots of B1 and M1, and the plate is heated 6-8 min at 75 degrees C. Then the plate is developed in a second direction, and the reaction products of B1 and M1 with trifluoroacetic acid from the extract are compared with the same derivatives of the respective standards. The method has been used successfully on extracts of milk, cheese, and liver containing 0.1 ng B1 or M1/g and can be completed in 35-45 min.  相似文献   

18.
A collaborative study of a liquid chromatographic method for the determination of aflatoxins B1, B2, G1, and G2 was conducted in laboratories located in the United States, Canada, South Africa, and Switzerland. Twenty-one artificially contaminated raw peanuts, peanut butter, and corn samples containing varying amounts of aflatoxins B1, B2, G1, and G2 were distributed to participating laboratories. The test portion was extracted with methanol-0.1N HCl (4 + 1), filtered, defatted with hexane, and then partitioned with methylene chloride. The concentrated extract was passed through a silica gel column. Aflatoxins B1 and G1 were derivatized with trifluoroacetic acid, and the individual aflatoxins were determined by reverse-phase liquid chromatography with fluorescence detection. Statistical analysis of the data was performed to determine or confirm outliers, and to compute repeatability and reproducibility of the method. For corn, relative standard deviations for repeatability (RSDr) for aflatoxin B1 ranged from 27.2 to 8.3% for contamination levels from 5 through 50 ng/g. For raw peanuts and peanut butter, RSDr values for aflatoxin B1 were 35.0 to 41.2% and 11.2 to 19.1%, respectively, for contamination levels from 5 through 25 ng/g. RSDr values for aflatoxins B2, G1, and G2 were similar. Relative standard deviations for reproducibility (RSDr) for aflatoxin B1 ranged from 15.8 to 38.4%, 24.4 to 33.4%, and 43.9 to 54.0% for corn, peanut butter, and raw peanuts, respectively. The method has been adopted official first action for the determination of aflatoxins B1, B2, G1, and G2 in peanut butter and corn at concentrations greater than or equal to 13 ng total aflatoxins/g.  相似文献   

19.
A chemical cleanup procedure for low-level quantitative determination of aflatoxins in major economically important agricultural commodities using HPLC has been developed. Aflatoxins were extracted from a ground sample with MeOH/H2O (80:20, v/v), and after a cleanup step on a minicolumn packed with Florisil, aflatoxins were quantified by HPLC equipped with a C18 column, a photochemical reactor, and a fluorescence detector. Water/MeOH (63:37, v/v) served as the mobile phase. Recoveries of aflatoxins B1, B2, G1, and G2 from peanuts spiked at 5, 1.7, 5, and 1.7 ng/g were 89.5+/-2.2, 94.7+/-2.5, 90.4+/-1.0, and 98.2+/-1.1, respectively (mean+/-SD, %, n=3). Similar recoveries, precision, and accuracy were achieved for corn, brown and white rice, cottonseed, almonds, Brazil nuts, pistachios, walnuts, and hazelnuts. The quantitation limits for aflatoxins in peanuts were 50 pg/g for aflatoxin B1 and 17 pg/g for aflatoxin B2. The minimal cost of the minicolumn allows for substantial savings compared with available commercial aflatoxin cleanup devices.  相似文献   

20.
ω‐Gliadins were purified from wheat (Triticum aestivum L. ‘Butte’) flour and characterized. Although reversed‐phase HPLC (RP‐HPLC) separated the 1B‐encoded ω‐gliadins into two fractions, 1B1 and 1B2, these fractions had nearly identical amino acid compositions, three similar protein bands in SDS‐PAGE, 10 similar spots in two‐dimensional PAGE, and two similar N‐terminal amino acid sequences. The main components had a range in mass of 48,900–51,500 when estimated by mass spectrometry, significantly less than the mass estimated by SDS‐PAGE. The 1B fractions were digested with thermolysin, the peptides were separated by RP‐HPLC, the peptide mass was determined, and nine peptides from each fraction were sequenced with nearly identical results for the 1B1 and 1B2 digests. A possible consensus sequence of the 1B‐encoded ω‐gliadin internal repeat was QQQXP, where X was F, I, or L in descending order of occurrence. The 1D‐encoded ω‐gliadins were purified by RP‐HPLC as a single fraction that had one band in SDS‐PAGE, two spots in two‐dimensional PAGE, two components with mass of 41,923 and 42,770 detected by mass spectrometry, and two N‐terminal sequences. Circular dichroism (CD) spectra for the 1B and 1D ω‐gliadins were similar and were suggestive of mainly flexible random structure with a significant amount of the left‐handed polyproline II helical conformation in the 1D components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号