首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
Urban forests are important for the health of cities. These forests face high anthropogenic pressure, including demands on their multi-functional role. Therefore, the impact of pests-induced disturbances may be greater for urban forests than forests outside of cities. Monitoring of pests in their native environment is an important tool for the management of urban forests. To better understand how pest population density is affected by the forest environment, we used the Oak bark beetle, Scolytus intricatus, as a model organism. The study was carried out in 2014–2015 in the urban forests of Pardubice City, Czech Republic. Pest population density was studied at three levels: branch, tree and patch. The increasing branch diameter was identified as an important variable with a threshold of 70 mm for entrance holes and 45 mm for emergence holes. Increasing host tree diameter at breast height with a threshold of 46.8 cm was statistically significant at the tree level in terms of the number of entrance holes. Increasing spring canopy openness was identified as an important variable at the patch level with a threshold of 50.78% and had a decreasing trend for the number of reared adults and their total body size. Big oak trees with thick branches under closed spring canopy are the most susceptible to attack by S. intricatus. Based on our findings, we propose that the maintenance of mature oaks under open canopies is important for urban forest management. Avoiding mixed plantings of oaks and conifers should promote these open canopies and lead to multiple advantages regarding oak silviculture.  相似文献   

2.
Urban forests are increasingly valued for multiple benefits such as amenity, cultural values, native biodiversity, ecosystem services, and carbon sequestration. Urban biodiversity in particular, is the new focus although global homogenisation is undermining regional differentiation. In the northern hemisphere (e.g., Canada and USA) and in the southern hemisphere, particularly in countries like South Africa, Australia, South America and New Zealand, local biodiversity is further impacted by historical colonisation from Europe. After several centuries, urban forests are now composed of synthetic and spontaneous mixtures of native species, and exotic species from around the temperate world (e.g., Europe, North and South America, South Africa, Asia). As far as we are aware no-one has carried out in-depth study of these synthetic forests in any Southern Hemisphere city. Here we describe the composition, structure, and biodiversity conservation imperatives of urban temperate forests at 90 random locations in Christchurch city, New Zealand.We document considerable plant diversity; the total number of species encountered in the 253 sampled urban forest patches was 486. Despite this incredibly variable data set, our ability to explain variation in species richness was surprisingly good and clearly indicates that total species richness was higher in larger patches with greater litter and vegetation cover, and taller canopy height. Species richness was also higher in patches surrounded by higher population densities and closer to very large native forest patches. Native species richness was higher in patches with higher soil pH, lower canopy height, and greater litter cover and in patches closer to very large native forest patches indicating dispersal out of native areas and into gardens. Eight distinct forest communities were identified by Two-Way INdicator SPecies ANalysis (TWINSPAN) using the occurrence of 241 species that occurred in more than two out of all 253 forest patches.Christchurch urban forest canopies were dominated by exotic tree species in parklands and in street tree plantings (linear parkland). Native tree and shrub species were not as common in public spaces but their overall density high in residential gardens. There was some explanatory power in our data, since less deprivation resulted in greater diversity and density, and more native species, which in turn is associated with private ownership. We hypothesise that a number of other factors, which were not well reflected in our measured environmental variables, are responsible for much of the remaining variation in the plant community structure, e.g., advertising, peoples choice. For a more sustainable asset base of native trees in New Zealand cities we need more, longer-lived native species, in large public spaces, including a greater proportion of species that bear fruit and nectar suitable for native wildlife. We may then achieve cities with ecological integrity that present multiple historical dimensions, and sequester carbon in legible landscapes.  相似文献   

3.
Birds can serve as useful model organisms to investigate community level consequences of forestry practices. In this study we investigated the relationships between wintering bird communities and habitat and landscape characteristics of lowland managed forests in Northern Italy. This area is characterized by the spread of the black locust, an alien species that has been favored by forestry practices at the expense of natural oak forests. Birds were censused in winter by point counts in randomly selected plots of 50 m radius. We first addressed bird community–habitat relationships by means of habitat structure measurements, then we investigated bird community–landscape relationships by using GIS techniques. We used generalized linear models (GLM) to test for the effects of habitat and landscape variables on bird community parameters (namely bird species richness, diversity and abundance). Bird community parameters were influenced by oak biomass and tree age, and by oak area and core area, while the other forest habitat types showed less influence. In forest management terms, the main conclusion is that the retention of native oaks is the keyfactor for the conservation of winter bird diversity in local deciduous woods. At the habitat level black locust harvesting may be tolerated, provided that old, large, native oaks are retained in all local woodlots to preserve landscape connectivity and foraging resources. At the landscape meso-scale, large native oak patches, should be preserved or, where necessary, restored. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Forests within and adjacent to cities are important habitats for native species and provide vital ecosystem services to cities and their residents. Herbaceous plants represent over 80% of all plant species in these forests, yet little is known about the long-term effects of management and landscape context on the understory of suburban forests. In this study, we used a 30-year dataset to fill this knowledge gap and evaluate the effect of prescribed burns on native forest herbs in suburban forest preserves of DuPage County, Illinois, USA. We also evaluated how the amount and configuration of forest habitat at multiple spatial scales affects native herb richness, gains, and losses in these forests over 30 years. We found that forests managed with prescribed burns increased in native herb richness over time, while unburned forests did not. Managed forests now have more native herb species than unburned forests. We also found that habitat amount in the surrounding landscape, but not the configuration of that habitat, had a positive effect on native herb richness and species gains over 30 years. Overall, we conclude that prescribed burns are effective in maintaining native forest herb richness in suburban forests. However, additional management actions such as seed augmentation may be required in areas with little surrounding forest herb habitat, as both overall richness and species gains over time are reduced in isolated forests.  相似文献   

5.
Although urban habitats contribute to the conservation of species diversity, urbanization has significantly reduced biodiversity by causing environmental changes such as habitat loss and fragmentation. Therefore, research on urban biodiversity studies has become increasingly important. Historical heritage sites are recognized as important habitats in remnant green spaces in urban areas. We aimed to evaluate the role of historical sites in conserving biodiversity in urban areas. As the land in these historical sites is not modified, they have the potential to conserve biodiversity through continued maintenance activities such as mowing and tree cutting. In Japan, Tamagawa-josui, a waterway that runs from west to east through the Tokyo megacity (35° 40′ N, 139° 25′ E), has been recognized as a civil engineering heritage landmark that preserves water utilization technology from the early modern period (1600s, Edo-era). The present study examined the relationships between plant diversity and green space in a historic site of a megacity (i.e., Tamagawa-josui) and determined the factors that influence plant diversity. Specifically, we examined the relationships between plant species indices (species richness and species compositions) and environmental factors (management, environmental conditions, and landscape factors). The present study analyzed spatial changes in the plant species composition in Tamagawa-josui. We demonstrated that tree canopy openness was positively correlated with plant species richness, and the increased disturbance associated with developing historical sites as urban parks was negatively correlated with native plant species richness. In addition, there was significant species turnover in the plant community from upstream to downstream in Tamagawa-josui, which could largely be explained by spatial factors. We demonstrated that historical sites can provide potential habitats for the conservation of the plant species diversity, which is based on the effectiveness of the management of their vegetation.  相似文献   

6.
7.
This study explores the relationships between an increase in tree cover area (i.e., natural and planted-tree land covers) and changes in forest carbon storage and the potential of a landscape to provide habitat for native floristic biodiversity. Four areas experiencing an increase in tree cover were analyzed. We developed a metric estimating the potential to support native biodiversity based on tree cover type (plantation or natural forests) and the landscape pattern of natural and anthropogenic land covers. We used published estimates for forest and plantation carbon stocks for each region. Focus regions in northwestern Costa Rica, northern Vietnam, southern Chile and highland Ecuador all showed an increase in tree cover area of 390?%, 260?%, 123?% and 418?%, respectively. Landscapes experiencing increases in natural secondary forest also experienced an increase in carbon stored above and below ground, and in the potential to support native floristic biodiversity. Study landscapes in Chile and Ecuador experiencing an expansion of exotic plantations saw their carbon stock decrease along with their potential to support native floristic biodiversity. This study shows that an increase in forest area does not necessarily imply an increased provision of ecosystem services when landscapes are reforesting with monoculture plantations of exotic tree species. Changes in the support of native biodiversity and the carbon stored in pulp rotation plantations, along with other ecosystem services, should be fully considered before implementing reforestation projects.  相似文献   

8.
Huston’s Dynamic Equilibrium Hypothesis predicts that the response of biodiversity to disturbance varies with productivity. Because disturbance is thought to break competitive advantage of dominant species in productive ecosystems, species richness is predicted to increase with disturbance frequency in productive systems. Recovery of plant biomass following disturbance is also predicted to be faster in productive systems. Here we provide the first test of Huston’s hypothesis in the context of setting harvest rates in managed forests for achieving biodiversity objectives. We examined predictions relating to vegetation and bird response to disturbance and succession in productive and less productive forests in western Oregon and Washington, USA. We found that measurements of understory cover and shrub diversity were higher in young, productive stands than less productive stands of similar age. Later-seral forests in productive environments (mean age = 67 years) had less variable and more complete canopy closure than similar-age forests in less favorable settings. At the stand scale, bird abundance and richness decreased with canopy closure in highly productive forests whereas bird abundance and richness increased with canopy closure in less productive forests. At the landscape scale, bird abundance and richness within stands increased with increasing levels of disturbance in the surrounding landscape within highly productive forests, whereas bird abundance and richness decreased with increasing disturbance in the surrounding landscape within less productive forests. Our results indicate that bird response to disturbance varies across levels of productivity and suggest that bird species abundance and associated species richness will be maximized through relatively more frequent disturbance in highly productive systems.  相似文献   

9.
We used an integrated modeling approach to simulate future land cover and predict the effects of future urban development and land cover on avian diversity in the Central Puget Sound region of Washington State, USA. We parameterized and applied a land cover change model (LCCM) that used output from a microsimulation model of urban development, UrbanSim, and biophysical site and landscape characteristics to simulate land cover 28 years into the future. We used 1991, 1995, and 1999 Landsat TM-derived land cover data and three different spatial partitions of our study area to develop six different estimations of the LCCM. We validated model simulations with 2002 land cover. We combined UrbanSim land use outputs and LCCM simulations to predict changes in avian species richness. Results indicate that landscape composition and configuration were important in explaining land cover change as well as avian species response to landscape change. Over the next 28 years, urban land cover was predicted to increase at the expense of agriculture and deciduous and mixed lowland forests. Land cover changes were predicted to reduce the total number of avian species, with losses primarily in native forest specialists and gains in common synanthropic species such as the American Crow (Corvus brachyrhynchos). The integrated modeling framework we present has potential applications in urban and natural resource planning and management and in assessing of the effects of policies on land development, land cover, and avian biodiversity.  相似文献   

10.
Cities around the world are investing in urban forest plantings as a form of green infrastructure. The aim is that these plantations will develop into naturally-regenerating native forest stands. However, woody plant recruitment is often cited as the most limiting factor to creating self-sustaining urban forests. As such, there is interest in site treatments that promote recruitment of native woody species and simultaneously suppress woody non-native recruitment. We tested how three, common site treatments—compost, nurse shrubs, and tree species composition (six-species vs. two-species)—affected woody plant recruitment in 54 experimental plots beneath a large-scale tree planting within a high-traffic urban park. We identified naturally regenerating seedling and sapling species and measured their abundance six-years after the site was planted. This enabled us to examine initial recruitment dynamics (i.e. seedlings) and gain a better understanding of seedling success as they transition to the midstory (i.e. saplings). Seedling and sapling recruitment (native and total) was greater in areas with higher canopy cover. The combination of the nurse shrub treatment with compost and species composition (six-species) treatments increased seedling recruitment by 47% and 156%, respectively; however, the nurse shrub treatment by itself decreased seedling recruitment by 5% and native seedling recruitment by 35%. The compost treatment alone had no effect on the total number of recruits but resulted in 76% more non-native seedlings. The sizes of these treatment effects were strongly dependent on whether the forest plantings were in open areas, versus areas with existing tree canopy, the latter condition facilitating recruitment. Our findings therefore suggest that combinations of site treatments, paired with broad canopy tree species, may be most effective for promoting regeneration of native species resulting in more self-sustaining urban forests.  相似文献   

11.
We hypothesized that the spatial configuration and dynamics of periurban forest patches in Barcelona (NE of Spain) played a minor role in determining plant species richness and assemblage compared to site conditions, and particularly to both direct (measured at plot level) and potential (inferred from landscape metrics) human-associated site disturbance. The presence of all understory vascular plants was recorded on 252 plots of 100 m2 randomly selected within forest patches ranging in size from 0.25 ha to 218 ha. Species were divided into 6 groups, according to their ecology and conservation status. Site condition was assessed at plot level and included physical attributes, human-induced disturbance and Quercus spp. tree cover. Landscape structure and dynamics were assessed from patch metrics and patch history. We also calculated a set of landscape metrics related to potential human accessibility to forests. Results of multiple linear regressions indicated that the variance explained for non-forest species groups was higher than for forest species richness. Most of the main correlates corresponded to site disturbance variables related to direct human alteration, or to landscape variables associated to indirect human effects on forests: Quercus tree cover (a proxy for successional status) was the most important correlate of non-forest species richness, which decreased when Quercus tree cover increased. Human-induced disturbance was an important correlate of synanthropic and total species richness, which were higher in recently managed and in highly frequented forests. Potential human accessibility also affected the richness of most species groups. In contrast, patch size, patch shape and connectivity played a minor role, as did patch history. We conclude that human influence on species richness in periurban forests takes place on a small scale, whereas large-scale effects attributable to landscape structure and fragmentation are comparatively less important. Implications of these results for the conservation of plant species in periurban forests are discussed.  相似文献   

12.

Context

Protected areas are a cornerstone of the global strategy for conserving biodiversity, and yet their efficacy in comparison to unprotected areas is rarely tested. In the highly fragmented forests of temperate regions, landscape context and forest history may be more important than protection status for plant species diversity.

Objectives

To determine whether there are differences in plant diversity between protected areas and private lands while controlling for landscape context, forest age, and other important factors.

Methods

We used a database of 156 one-hectare forest plots distributed over 120,000 km2 in the fragmented forests of southern Ontario to test whether protected areas and private forests differed in native species richness, relative abundance of exotic species, and the probability of finding species of conservation concern.

Results

Plots with more forest on the surrounding landscape had higher native species richness, lower abundance of exotic species, and greater probability of supporting at least one species of conservation concern. Young forests tended to have higher abundance of exotics, and were less likely to support species of conservation concern. Surprisingly, privately owned forests had greater native species richness and were more likely to support species of conservation concern once these other factors were accounted for. In addition, there were significant interactions between ownership type, forest history, and landscape context.

Conclusions

Our results highlight the importance of privately owned forests in this region, and the need to consider forest history and landscape context when comparing the efficacy of protected areas versus private land for sustaining biodiversity.
  相似文献   

13.
The vascular plant species richness of upland urban forest patches in St. Paul and Minneapolis, Minnesota, was found to be positively related to their size. There was no significant relationship between species richness and the distance of these patches to other patches. Mowing and trampling reduced species richness of patches, whereas planting increased richness. Landscape richness can be maintained at a relatively high level by leaving even small unmown forested patches within a more disturbed matrix. However, maximizing landscape diversity would require leaving large forest stands unmown. It is suggested that cultivation be deliberately used as a mechanism for increasing native species richness in urban forests.  相似文献   

14.
Understanding how urban forests developed their current patterns of tree canopy cover, species composition, and diversity requires an appreciation of historical legacy effects. However, analyses of current urban forest characteristics are often limited to contemporary socioeconomic factors, overlooking the role of history. The institutions, human communities, and biophysical conditions of cities change over time, creating layers of legacies on the landscape, shifting urban forests through complex interactive processes and feedbacks. Urban green spaces and planted trees can persist long after their establishment, meaning that today’s mature canopy reflects conditions and decisions from many years prior. In this synthesis article, we discuss some of the major historical human and biophysical drivers and associated legacy effects expressed in present urban forest patterns, highlighting examples in the United States and Canada. The bioregional context – native biome, climate, topography, initial vegetation, and pre-urbanization land use – represents the initial conditions in which a city established and grew, and this context influences how legacy effects unfold. Human drivers of legacy effects can reflect specific historical periods: colonial histories related to the symbolism of certain species, and the urban parks and civic beautification movements. Other human drivers include phenomena that cut across time periods such as neighborhood urban form and socioeconomic change. Biophysical legacy effects include the consequences of past disturbances such as extreme weather events and pest and disease outbreaks. Urban tree professionals play a major role in many legacy effects by mediating the interactions and feedbacks between biophysical and human drivers. We emphasize the importance of historical perspectives to understand past drivers that have produced current urban forest patterns, and call for interdisciplinary and mixed methods research to unpack the mechanisms of long-term urban forest change at intra- and inter-city scales.  相似文献   

15.

Context

Natural regenerating forests are rapidly expanding in the tropics. Forest transitions have the potential to restore biodiversity. Spatial targeting of land use policies could improve the biodiversity benefits of reforesting landscapes.

Objective

We explored the relative importance of landscape attributes in influencing the potential of tree cover increase to restore native woody plant biodiversity at the landscape scale.

Methods

We developed land use scenarios that differed in spatial patterns of reforestation, using the Pangor watershed in the Ecuadorian Andes as a case study. We distinguished between reforestation through natural regeneration of woody vegetation in abandoned fallows and planted forests through managed plantations of exotic species on previously cultivated land. We simulated the restoration of woody plant biodiversity for each scenario using LANDIS-II, a process-based model of forest dynamics. A pair-case comparison of simulated woody plant biodiversity for each scenario was conducted against a random scenario.

Results

Species richness in natural regenerating fallows was considerably higher when occurring in: (i) close proximity to remnant forests; (ii) areas with a high percentage of surrounding forest cover; and (iii) compositional heterogeneous landscapes. Reforestation at intermediate altitudes also positively affected restoration of woody plant species. Planted exotic pine forests negatively affected species restoration.

Conclusions

Our research contributes to a better understanding of the recolonization processes of regenerating forests. We provide guidelines for reforestation policies that aim to conserve and restore woody plant biodiversity by accounting for landscape attributes.
  相似文献   

16.
Little is known about urban forest planning, management and its benefits in emerging countries. The uneven distribution of tree canopy cover and parks in urban area is related to environmental justice, especially with disadvantaged socio-economic and marginated communities. However, the inequity of urban forest in many cities of emerging countries where often found irregular and unregulated land use patterns and social and socio-economic inequities, is hardly highlighted. This study explores the inequity of distribution of tree canopy cover and public park in Cali, Colombia. Utilizing the traditional socio-economic indices, the stratification, linear regression analysis is conducted to describe relationship between total tree canopy cover, tree canopy cover of various land use types, number of parks and park area per capita. The result demonstrates that lower income communities have lower tree canopy cover, fewer parks and smaller park area than higher income communities. This paper discusses importance of accounting for urban forests and ecosystem service in city planning efforts and better strategies of reducing inequity in emerging countries. Addressing the inequity of urban forest could be a better strategy to create resilient, sustainable, safe and livable cities in emerging countries.  相似文献   

17.
Urban areas have increased greatly in recent decades, which has resulted in habitat loss. However, the promotion of urban green spaces could have a profound effect on biodiversity. Traditional fruit orchards are an important land-use type with the potential to host myriad organisms. Our goal was to determine the most important factors that influence orchard biodiversity in the million city of Prague (the capital of the Czech Republic). We used a multitaxon approach to evaluate the effect of orchard restoration in a landscape context. Restoration had a positive impact on species diversity, specifically, the diversity of orthopterans and butterflies. Moreover, landscape context determined the biodiversity of orthopterans, butterflies, and birds but not that of lichens. Our study underlines the importance of both the internal and external structures of traditional fruit orchards for species richness and composition. The results of our study support the restoration of traditional fruit orchards as a suitable management practice for promoting city biodiversity. Furthermore, orchard restoration can improve the attractiveness of suburban areas. Such areas often lack sufficient urban greening. Thus, restoration in these areas can also increase future recreational value.  相似文献   

18.
Selective logging of tropical forests imposes spatial pattern on the landscape by creating a mosaic of patches affected by different intensities of disturbance. To understand the ecological impacts of selective logging it is therefore necessary to explore how patterns of tree species composition are affected by this patchy disturbance. This study examines the impacts of selective logging on species composition and spatial patterns of vegetation structure and tree diversity in Sabah, Borneo. We compare tree diversity between logged and unlogged forest at three scales: species richness within plots, species turnover among plots, and total species richness and composition of plots combined. Logging had no effect on tree diversity measured at the smallest scale. Logged forest had a greater rate of species turnover with distance, so at a large spatial scale it supported more tree species than the relatively homogeneous unlogged area. Tree species composition also differed significantly between the two types of forest, with more small dipterocarps and large pioneers in logged forest, and more large dipterocarps in unlogged forest. Our results emphasize the importance of sampling at a sufficiently large scale to represent patterns of biodiversity within tropical forest landscapes. Large areas of production forest in SE Asia are threatened with conversion to commercial crops; our findings show that selectively logged forest can retain considerable conservation value.  相似文献   

19.
Worldwide forests fragmentation has lead to a massive increase of habitat edges, creating both negative and positive impacts on birds. While busy highways dissecting forested areas create edges which are known to reduce bird densities due to the disturbing effect of noise, the impacts of logging forest roads with low traffic volumes have rarely been studied. In this study, we compared species richness and similarity of canopy, cavity and shrub guilds of birds along low-traffic forest roads, in forest interior, and at forest edges in secondary forests in central Europe, where the forests have passed through extensive changes toward uniformly compact growths dominated by production conifers. Although we found tree diversity as positively affecting bird richness across all habitats, the bird richness along forest roads was higher than in forest interior but lower than along forest edges. The shrub guild of birds along forest roads resembled this guild along forest edges while canopy and cavity guilds at the roads were more similar to these guilds in forest interior. Forest interior had the highest probability for some guild to be absent. We conclude that low-traffic roads lead to increase of habitat heterogeneity in structurally poor forests and attract birds due to additional habitat attributes—including better light conditions—that are scarce in forest interior. Therefore, broader support for higher structural diversification of uniform plantations in central European production forests would benefit bird communities inhabiting these areas.  相似文献   

20.
Vacant land, a product of population and economic decline resulting in abandonment of infrastructure, has increased substantially in shrinking cities around the world. In Cleveland, Ohio, vacant lots are minimally managed, concentrated within low-income neighborhoods, and support a large proportion of the city’s urban forest. We quantified abundance, richness, diversity, and size class of native and exotic tree species on inner-city vacant lots, inner-city residential lots, and suburban residential lots, and used i-Tree Eco to model the quantity and economic value of regulating ecosystem services provided by their respective forest assemblages. Inner-city vacant lots supported three times as many trees, more exotic than native trees, and greater tree diversity than inner-city and suburban residential lots, with the plurality of trees being naturally-regenerated saplings. The urban forest on inner-city vacant lots also had two times as much leaf area and leaf biomass, and more tree canopy cover. The quantity and monetary value of ecosystem services provided by the urban forest was greatest on inner-city vacant lots, with exotic species contributing most of that value, while native taxa provided more monetary value on residential lots. The predominately naturally-regenerated, minimally managed exotic species on vacant land provide valuable ecosystem services to inner-city neighborhoods of Cleveland, OH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号