首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vacant land, a product of population and economic decline resulting in abandonment of infrastructure, has increased substantially in shrinking cities around the world. In Cleveland, Ohio, vacant lots are minimally managed, concentrated within low-income neighborhoods, and support a large proportion of the city’s urban forest. We quantified abundance, richness, diversity, and size class of native and exotic tree species on inner-city vacant lots, inner-city residential lots, and suburban residential lots, and used i-Tree Eco to model the quantity and economic value of regulating ecosystem services provided by their respective forest assemblages. Inner-city vacant lots supported three times as many trees, more exotic than native trees, and greater tree diversity than inner-city and suburban residential lots, with the plurality of trees being naturally-regenerated saplings. The urban forest on inner-city vacant lots also had two times as much leaf area and leaf biomass, and more tree canopy cover. The quantity and monetary value of ecosystem services provided by the urban forest was greatest on inner-city vacant lots, with exotic species contributing most of that value, while native taxa provided more monetary value on residential lots. The predominately naturally-regenerated, minimally managed exotic species on vacant land provide valuable ecosystem services to inner-city neighborhoods of Cleveland, OH.  相似文献   

2.
Tree diversity is one of the most important components of urban ecosystems, because it provides multiple ecological benefits and contributes to human well-being. However, the distribution of urban trees may be spatially segregated and change over time. To provide insights for a better distribution of tree diversity in a socially segregated city, we evaluated spatial segregation in the abundance and diversity of trees by socioeconomic group and their change over a 12-year period in Santiago, Chile. Two hundred vegetation plots were sampled across Santiago in 2002 and 2014. We found that overall abundance and diversity of urban trees for the entire city were stable over 12 years, whereas species richness and abundance of native tree species increased. There was segregation in tree species richness and abundance by socioeconomic group, with wealthier areas having more species and greater abundance of trees (for all tree species and native species) than poorer ones. Tree community composition and structure varied with socioeconomic group, but we found no evidence of increased homogenization of the urban forest in that 12 years. Our findings revealed that although tree diversity and abundance for the entire city did not change in our 12-year period, there were important inequities in abundance and diversity of urban trees by socioeconomic group. Given that 43% of homes in Santiago are in the lower socioeconomic areas, our study highlights the importance of targeting tree planting, maintenance and educational programs in these areas to reduce inequalities in the distribution of trees.  相似文献   

3.
Hollow-bearing trees provide habitat for diverse taxonomic groups and as such they are recognised for their importance globally. There is, however scant reference to this resource relative within urban forest patches. The functional ecology of habitat remnants along an urbanisation gradient plays an important ecological, social and economic role within urban landscapes. Here we quantify the impacts of urbanisation, landscape, environmental, disturbance (past and present) and stand variables on hollow-bearing tree density within urban forest patches. This was undertaken by surveying 45 forest patches on the Gold Coast, south-east Queensland, Australia. Sites were categorised as; urban, peri-urban or rural along an urbanisation gradient, with an additional five control sites. Historical logging practices were found to be the driving factor influencing hollow-bearing tree density along the urbanisation gradient; while the impacts of urbanisation itself are not as yet discernible. These findings highlight the significance of incorporating historical land use practise into current and future urban planning, as these will have continuing impacts on remaining urban biodiversity values. These findings, will benefit natural resource managers and urban planners when making decisions about where and how best to manage for hollow-bearing trees along urbanisation gradients.  相似文献   

4.
Urban street trees provide many benefits to surrounding communities, but our ability to assess such benefits relies on the availability of high-quality urban tree data. While these data are numerous, they are not available in an easily accessible, centralized place. To fill this gap, we aggregated public and private data into a single, comprehensive inventory of urban trees in California called the California Urban Forest (CUF) Inventory. These data are offered to the public (aggregated to ZIP code) via an online data portal, which at the time of publication contained over 6.6 million urban tree records. In this study, we first describe the assembly and utility of the inventory. Then, we conduct the most comprehensive assessment of the diversity and structure of California’s urban forest to date at statewide, regional, and local spatial scales. These analyses demonstrate that California’s urban forests are highly diverse and among the most diverse urban forests in the world. We present a new and intuitive metric of species diversity, the top diversity or TD-50 index, which represents the cumulative number of species accounting for the top 50 % abundance of trees in an urban forest. We used species abundance data from 81 well-inventoried cities to demonstrate that the TD-50 index was a robust metric of diversity and a good predictor of comprehensive metrics like the Shannon Index. We also found that small-statured trees, such as crape myrtles (Lagerstroemia cv.) dominate California’s urban forests. This aggregated inventory of one of the world's largest urban forests provides the data necessary to assess the structure, diversity, and value of California’s urban forests at multiple spatial scales. The inventory’s presentation to the public and the information that can be gained from its analysis can be a model for urban forest management worldwide.  相似文献   

5.
Natural parks are comprised of preserved forested natural areas that are undergoing natural ecological processes. These areas can offer a refuge for local biodiversity and contribute substantially to ecosystem services in both rural areas with relatively low population densities, as well as high-density urban areas. Forested natural parks located in urban areas should experience more stressful environmental conditions than nearby rural areas, yet we know relatively little about how urbanization impacts tree communities within these important natural habitats. To better understand the impact of urbanization on forests, we investigated the species composition, abundance, and diversity of midstory and canopy trees as well as tree seedlings in urban and rural natural parks in and around Cleveland, Ohio. We found that both urban and rural natural parks have similar tree abundance, but midstory and canopy trees as well as tree seedling communities in the urban natural parks included higher abundances of stress-tolerant species compared to rural parks. In addition, this pattern was driven by changes in native tree species, as we observed low abundance of invasive species. More stress-resistant native species in urban areas include Quercus rubra and Prunus serotina, in contrast to rural natural parks which are dominated by Acer spp. and Fagus grandifolia. Lastly, we show that urban and rural natural parks have similar species diversity within plots, but we found higher variation in community composition among urban natural parks compared to among rural parks. Furthermore, Q. rubra and P. serotina were significantly larger in rural natural parks, indicating that both environmental stress and successional stage could drive compositional differences. Thus, we show that urbanization can have unexpected effects on plant community composition and diversity. Our study refutes the idea that these are degraded habitats, highlights the need to conserve them, and suggests that characterization of local variation in self-assembled urban tree communities will provide the most accurate picture of their management needs and potential ecosystem services.  相似文献   

6.
Nearctic-Neotropical migratory birds are threatened by land-use change throughout their complex annual cycles. While urbanization is an essential driver of land-use change, it is unclear how it affects migrant birds. Although migratory birds are more diverse in non-urban patches of native vegetation than in urban areas, neotropical cities can host diverse assemblages of overwintering migrant birds. Migratory birds in neotropical cities tend to be closely associated with urban green areas (UGAs). However, how their presence and abundance are affected by the habitat elements of UGAs and the urban matrix of neotropical cities is poorly understood. In this study, we compared the migratory bird species richness and abundances among UGAs and the urban matrix of the southern section of the megacity of Mexico City and native vegetation sites outside the city. Our results show that UGAs in neotropical cities provide habitats capable of maintaining complex overwintering migratory bird assemblages with local trees as critical features. We also assess the role that UGAs' characteristics play in determining migrant bird assemblages. We conducted bird censuses and measured habitat traits to determine how migrant bird assemblages are related to the habitat features of our study sites. We measured local, buffer, and spatial habitat features of each UGA. We found 23 overwintering migrant species in the three habitats, with 22 present within UGAs. Both UGAs and urban matrix sites had higher estimated species richness of migrant birds than non-urban native vegetation sites located outside the city. Only local features of UGAs affected migrant birds. While tree abundance in UGAs was positively associated with migratory bird species richness, the proportion of tree coverage was positively related to bird abundance. Our results show that UGAs in neotropical cities can maintain complex overwintering migratory bird assemblages, with trees being the most critical habitat feature. As a result, UGA management focused on maintaining trees and increasing their numbers can improve habitat conditions for migratory birds overwintering in neotropical cities.  相似文献   

7.
Urban trees provide a wide range of ecosystem services for city residents, with tall, mature trees with wide crowns generally regarded as preferable. The tree biomass which is responsible for shading, pollution removal, rain runoff retention etc. gets periodically reduced by the municipal tree management practice of pruning. This is a necessary activity, which reduces the risk of infrastructure damage and falling branches, but many estimates of ecosystem service provision in cities do not consider its impact explicitly. Tree mortality is also higher in cities, preventing trees from attaining and remaining at large sizes. This study used extensive field measurements of tree structure to estimate the impact of pruning on 8 tree species in two Italian cities: Taranto and Florence. Crown widths were reduced by 1.6 m on average, however there is large variation between species variation with branches more often being removed for thinning crowns resulting in larger gap fractions, which increased by 15% on average. No significant differences were observed for crown widths or gap fraction between trees pruned 3 and 4 years previously, suggesting that tree crowns structurally recover from pruning after 3 years. A deterministic model revealed that current urban forest pruning rates (every 6 years) and mortality (1%) may create a situation in which a city dominated by the species studied benefits from 93.5% of the maximum ecosystem services possible. This work will allow more nuanced estimates of urban forest services to be calculated.  相似文献   

8.
Cities across North America are adopting ambitious goals to grow their urban forests. As existing trees and new planting opportunities are often located on private property, residents’ support and participation is needed in order to meet these goals. However, little research has examined support for municipal urban forestry efforts, including policies specifically targeting residential areas. The objectives of this research are to (1) assess resident’ level of support for common urban forestry policies and (2) determine if there are specific household characteristics associated with different levels of policy support. The objectives are addressed through a statistical analysis of survey responses and a qualitative examination of follow-up interviews with residents in four neighborhoods located in Mississauga (Ontario, Canada). The survey participants and their properties vary in their socioeconomic characteristics, age of development, and urban forest conditions. Our results found that the majority of residents had neutral to very positive attitudes toward common municipal policies encouraging planting and restricting removal of trees, but support levels were lower for the policies than for general statements about desired presence and size of urban trees. Several characteristics are significantly related to level of policy support, including age of household members, education-level, property-level tree density, recent tree planting activity and age of house. Interviews also highlighted residents’ apprehensions about living among tall trees and older resident's concerns with tree maintenance. The results suggest that most residents would be willing partners in urban forestry efforts, with many of these residents already actively planting and maintain trees. However, to increase support and participation rates, different types of trees – including those smaller in stature and ones that require relatively little maintenance – should be part of any planting program to meet the varying needs of households.  相似文献   

9.
Heritage trees in a city, echoing factors conducive to outstanding performance, deserve special care and conservation. To understand their structural and health conditions in urban Hong Kong, 30 defect-disorder (DD) symptoms (physical and physiological) subsumed under four tree-position groups (soil-root, trunk, branching, and crown-foliage) and tree hazard rating were evaluated. The surveyed 352 trees included 70 species; 14 species with 233 trees were native. More trees had medium height (10–15 m), medium DBH (1–1.5 m) and large crown (>15 m). In ten habitats, public park and garden (PPG) accommodated the most trees, and roadside traffic island (RTI) and public housing estate (PH) had the least. Tree dimensions and tree habitats were significantly associated. The associations between the 2831 DD and tree-position groups, tree habitats and tree hazard rating were analyzed. Fourteen trees from Ficus microcarpa, Ficus virens and Gleditsia fera had high hazard rating, 179 trees from 22 species moderate rating, and 159 trees from 55 species low rating. RTI, roadside tree strip (RTS), roadside tree pit (RTP), roadside planter (RP) and stone wall (SW) had more moderate hazard rating, and PPG, roadside slope (RS) and government, institutional and community land (GIC) more low rating. Redundancy analysis showed that DD were positively correlated with RTS, RTP, RP and SW, but negatively correlated with PPG, RS and GIC (p < 0.05). The DD significantly increased tree hazard rating and failure potential. Future management implications for heritage-tree conservation and enhancement focusing squarely on critical tree defect-disorder in urban Hong Kong were explored, with application to other compact cities.  相似文献   

10.
Urban forests produce ecosystem services that can benefit city dwellers, but are especially vulnerable to climate change stressors such as heat, drought, extreme winds and pests. Tree selection is an important decision point for managers wanting to transition to a more stable and resilient urban forest structure. This study describes a five-step process to identify and evaluate the performance of promising but infrequently used tree species. The approach is illustrated for the Central Valley of California, USA and has been implemented in the Inland Empire and Southern Coastal regions of California. Horticultural advisors nominated 134 taxon for consideration. A filtering process eliminated taxon that were relatively abundant in a compilation of 8 municipal tree inventories, then those with low adaptive capacity when scored on habitat suitability, physiology and biological interactions. In 2015, 144 trees were planted, with 2 trees of each of 12 species planted in 4 Sacramento parks and 4 replicates planted in the Davis, California reference site. This approach can serve as an international model for cities interested in climate adaptation through urban forestry.  相似文献   

11.
Trees provide cooling benefits through shading and evapotranspiration; they are regarded as an important measure in heat-resilient urban planning and policies. Knowing where to plant trees for maximum cooling benefits, given practical and resource constraints, remains a challenge in both practice and research. Literature in the field of tree modeling and location optimization is limited, either by the incompleteness in accounting for tree shading, evapotranspiration, and the modifying effect of wind, or by the slow-running speed of the Computational Fluid Dynamics model, making them less applicable in practice. This paper describes a novel method to search for the optimal locations for trees to maximize their cooling benefits in an urban environment. A rapid simulation model was applied to assess on-site heat stress under the influences of trees, which was evaluated using field measurements conducted under hot, temperate, and cool weather conditions in an urban park in Hong Kong. It was then linked to a genetic algorithm in search of a near-optimal tree layout. The proposed method was tested in the same park, and it can automatically identify locations to plant new trees to minimize heat stress, subject to practical constraints such as avoiding existing buildings and utilities. It can also identify the optimal locations to rearrange the existing 55 trees, hypothetically, which can cool the park by up to 0.3 ℃ in on-site average equivalent temperature compared with the worse scenario. Trees can cool the most if they are concentrated on the leeward side of the park, rather than spread evenly. The proposed method runs significantly faster than existing approaches, and it can inform research and landscape design practices concerning park cooling as a goal.  相似文献   

12.
Birds are ecosystem service providers and excellent urban ecosystem indicators because they are sensitive to habitat structure. Light detection and ranging (LiDAR) technology is a promising tool in bird habitat characterization because it can directly acquire fine-scale 3-D information over large areas; however, most of past avian ecological studies using LiDAR were conducted in North America and Europe, and there have been no studies in Asia. The robustness of LiDAR data across different habitat types remain problematic. In this study, we set 13 plots having different canopy area percentages in a large-scale urban park in Japan, and examined the usefulness of airborne LiDAR data in modeling richness and diversity of forest bird species and the abundance of Paridae species that play an important role in the urban food web. Bird surveys were conducted eight times at each plot during the birds’ breeding season, and the results were estimated using generalized linear models. In consequence, all of the response variables were explained by one or a few LiDAR variables, and the 1 × 1 × 1-m voxel-based variables were especially robust estimators. When targeting only densely-forested plots having more than 60% canopy area, the LiDAR data efficiency declined in estimation of the richness and diversity of whole forest bird species, whereas a laser penetration rate was efficient for estimating the Paridae species abundance. These results implied that the LiDAR data are useful in habitat characterization of forest birds, and even when targeting only dense forests, some LiDAR variables are effective for habitat estimation of birds preferring specific forest structures. In the future, application of LiDAR across a variety of ecosystems will greatly serve to develop adaptive conservation and management planning for urban forests.  相似文献   

13.
Urban forest managers must balance social, economic, and ecological goals through tree species selection and planting location. Ornamental trees are often popular in tree planting programs for their aesthetic benefits, but studies find that they have lower survivability and growth compared to larger shade trees. To maximize ecosystem services within these aesthetic preferences, it is important to select species carefully based on their ability to grow in each particular climate. However, little locality-specific and species-specific data exist on urban trees in many regions. This study examines the growth, survival, and vigor of three common ornamental street trees in San Francisco’s three different microclimate zones after over 16 years since planting. While we found over 70% survival for all three species throughout the city, there were significant differences in health and vigor among microclimates for each species, likely due to differences in drought-tolerance. While Arbutus had the greatest proportion of healthy trees in the Fog Belt and Sun Belt zones, Prunus cerasifera had the greatest proportion in the Sun Belt, and Prunus serrulata had the greatest proportions in the Transition and the Sun Belt zones. This species-specific and climate-specific information will better equip urban foresters to target both planting and tree-care of these popular species appropriately to maximize the benefits provided by these street trees while still maintaining a diverse canopy. Finally, we argue that simple survival calculations can mask more complex differences in the health and ability of different urban tree species to provide ecosystem services.  相似文献   

14.
In arboricultural research, data analysis is important to the understanding of the characteristics of urban forest. This study attempted to apply machine learning techniques on a relatively small data set. This research aimed at exploring the biodiversity and structure of tree stands on verges and slopes along a highway, and analysing the influences of habitat characteristics on the tree stands with the aid of machine learning techniques. 53 slopes and 52 verges along San Tin Highway, Hong Kong were surveyed. 7209 trees belonging to 23 species were found. Dimension reduction proved successful in the concise characterisation of urban forest by a biodiversity component and an abundance component. The biodiversity component score of the slopes (0.625) was higher than that of the verges (−0.637). However, the abundance component scores of slopes (−0.059) and verges (0.060) showed slight difference, reflecting comparable tree abundance. A 75–25 train/test split was applied on a data subset consisting of slopes registered under a scheme called Systematic Identification of Maintenance Responsibility of Slopes in the Territory for regression analysis. The scores of the two components were regressed on several slope geophysical variables. Slope height and slope area served as significant predictors explaining biodiversity. Boosting improved the explanatory power and predictive accuracy of the regression model on the biodiversity component, as evidenced by an increase in adjusted R2 by 0.23 and a decrease in RMSE by 0.40. This research proved that component scores can serve as inputs for regression models for the explanation of urban forest characteristics by habitat-related variables. In future, small data sets from tree surveys can be analysed using the workflow demonstrated in this study for the generation of more management insights.  相似文献   

15.
The effects of urbanization on urban forest canopy cover has received significant consideration at broad scales, but little research has explored redevelopment-related influences on individual tree removal at a property scale. This study explores the effect of residential property redevelopment on individual trees in Christchurch, New Zealand. The study monitored 6966 trees on 450 residential properties between 2011 and 2015/16. Of the 450 properties, 321 underwent complete redevelopment during that time, while 129 were not redeveloped. The percentage of trees removed on redeveloped and non-redeveloped properties differed markedly, being 44% and 13.5%, respectively. A classification tree (CT) analysis was used to examine the effects of different combinations of 27 explanatory variables, describing land cover, spatial relationships, economic, and resident and household variables, on tree removal or retention on the properties. The best model included land cover, spatial, and economic variables (accuracy = 73.4%). The CT of the corresponding model shows that trees were most likely to be removed if they were within 1.4 m of a redeveloped building on a property with a capital value less than $1,060,000 NZ. The strongest predictor of tree retention was that the property was not redeveloped. The model predicted that trees were over three times as likely to be removed from a redeveloped property relative to a property that was not redeveloped. None of the seven resident and household variables were selected by the CT as important explanatory variables for tree removal or retention. These results provide insights into the factors that influence tree removal during redevelopment on residential properties, and highlight the need for effective tree protection during redevelopment.  相似文献   

16.
Tree ordinances can be an effective means of preserving urban forests in the face of development pressures. Despite this, they also have the potential to be divisive among the public - especially when applied to privately-owned land. In this study we surveyed 1716 Florida urban residents to understand how they value regulation and management of the urban forest. Specifically, we asked about: tree protection ordinances, incentive programs to manage or plant trees, justification for tree removal, and development. Most respondents supported tree protections, even when applied to trees on their own property or when they had the potential to limit development activities. Additionally, there was limited support for removing healthy trees for development. Respondents supported the use of funds for urban forestry efforts – particularly at the local or state level.  相似文献   

17.
As part of a survey we sent to tree wardens (individuals responsible for public trees) in communities in Massachusetts, USA, we examined which urban forest management tools and activities were most important to tree wardens themselves. Tree wardens generally agreed that inter-departmental communication and Chapter 87 (a state law promulgating the powers of a tree warden) were more important than having a qualified tree warden, an advocacy/advisory group, or a management plan (measures recognized by the USDA Forest Service in the Community Accomplishment Reporting System). Nearly all tree wardens prioritized removing dead and hazard trees. We discuss management implications of our results, paying particular attention to the importance of state laws in supporting urban forest management.  相似文献   

18.
Urban forestry is generally defined as the art, science and technology of managing trees and forest resources in and around urban community ecosystems for the physiological, sociological, economic, and aesthetic benefits trees provide society. First mentioned in the United States as early as in 1894, the concept underwent a revival during the 1960s as a comprehensive and interdisciplinary approach to the specific challenges related to growing trees in urban environments. Later, urban forestry evoked the interest of scientists and practitioners in other parts of the world. However, harmonization of urban forestry terminology has been complicated by, for example, the involvement of different disciplines and translation difficulties. In many European languages, for example, the direct translation of ‘urban forestry’ relates more to forest ecosystems than to street and park trees. Efforts in North America and Europe defining ‘urban forest’, ‘urban forestry’ and related terms are introduced. A comparative analysis of selected urban forestry terminology in both parts of the world shows that urban forestry has a longer history in North America, based on traditions of shade tree management. Moreover, urban forestry has become more institutionalized in North America. Urban forestry in Europe has built strongly on a century-long tradition of ‘town forestry’. In both parts of the world, definitions of urban forestry and urban forest have become more comprehensive, including all tree stands and individual trees in and around urban areas. Agreement also exists on the multifunctional and multidisciplinary character of urban forestry. These similarities offer opportunities for international harmonization of terminology.  相似文献   

19.
Although it is recognized that anthropogenic forest fragmentation affects habitat use by organisms across multiple spatial scales, there is uncertainty about these effects. We used a hierarchical sampling design spanning three spatial scales of habitat variability (landscape > patch > within-patch) and generalized mixed-effect models to assess the scale-dependent responses of bird species to fragmentation in temperate forests of southern Chile. The abundances of nine of 20 bird species were affected by interactions across spatial scales. These interactions resulted in a limited effect of within-patch habitat structure on the abundance of birds in landscapes with low forest cover, suggesting that suitable local habitats, such as sites with dense understory cover or large trees, are underutilized or remain unused in highly fragmented landscapes. Habitat specialists and cavity-nesters, such as tree-trunk foragers and tapaculos, were most likely to exhibit interactions across spatial scales. Because providing additional sites with dense understory vegetation or large habitat trees does not compensate the negative effect of the loss of forest area on bird species, conservation strategies should ensure the retention of native forest patches in the mixed-use landscapes.  相似文献   

20.
Trees provide multiple ecosystem services in urban centers and increases in tree canopy cover is a key strategy for many municipalities. However, urban trees also experience multiple stresses and tree growth can be impacted by urban density and impervious surfaces. We investigated the impact of differences in urban form on tree growth in the City of Merri-bek, a local government area in metropolitan Melbourne, which is the temperate climate zone. Merri-bek has a gradient in population density and urban greenness from north to south, and we hypothesized that tree growth in the southern areas would be lower because trees were more likely to have less access to water with high levels of impervious surfaces. We selected three common native evergreen species, Eucalyptus leucoxylon, Melaleuca linariifolia, and Lophostemon confertus that exhibit differences in climate vulnerability and assessed the tree canopy expansion in four urban density zones in Merri-bek between 2009 and 2020 using aerial image analysis. The differences in urban form did not significantly influence tree canopy growth and all species showed similar canopy expansion rates. However, smaller trees showed a greater relative canopy increase in the ten years, whereas larger trees had a greater absolute canopy growth. Thus, older and larger trees should be protected and maintained to achieve the canopy expansion. Our study indicated that differences in urban form are unlikely to have major impacts on the growth and canopy expansion of well adapted native tree species in open, suburban centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号