首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
ObjectiveTo determine the minimal electrical threshold (MET) necessary to elicit appropriate muscle contraction when the tip of an insulated needle is positioned epidurally or intrathecally at the L5-6 intervertebral space (phase-I) and to determine whether the application of a fixed electrical current during its advancement could indicate needle entry into the intrathecal space (phase-II) in dogs.Study designProspective, blinded study.AnimalsThirteen (phase-I) and seventeen (phase-II) dogs, scheduled for a surgical procedure where L5-6 intrathecal administration was indicated.MethodsUnder general anesthesia, an insulated needle was first inserted into the L5-6 epidural space and secondly into the intrathecal space and the MET necessary to obtain a muscular contraction of the pelvic limb or tail at each site was determined (phase-I). Under similar conditions, in dogs of phase-II an insulated needle was inserted through the L5-6 intervertebral space guided by the use of a fixed electrical current (0.8 mA) until muscular contraction of the pelvic limb or tail was obtained. Intrathecal needle placement was confirmed by either free flow of cerebrospinal fluid (CSF) or myelography.ResultsThe current required to elicit a motor response was significantly lower (p < 0.0001) when the tip of the needle was in the intrathecal space (0.48 ± 0.10 mA) than when it was located epidurally (2.56 ± 0.57). The use of a fixed electrical stimulation current of 0.8 mA resulted in correct prediction of intrathecal injection, corroborated by either free flow of CSF (n = 12) or iohexol distribution pattern (n = 5), in 100% of the cases.Conclusion and clinical relevanceNerve stimulation may be employed as a tool to distinguish epidural from intrathecal insulated needle position at the L5-6 intervertebral space in dogs. This study demonstrates the feasibility of using an electrical stimulation test to confirm intrathecal needle position in dogs.  相似文献   

3.
Objective-To determine the minimal electric threshold of neurostimulation dorsally and ventrally to the interarcuate ligament in the lumbosacral area necessary to cause muscle contraction of the hind limb or tail and determine whether a continuous electrical stimulation applied to an insulated needle during lumbosacral epidural needle placement could be used to distinguish the epidural from the intrathecal space in rabbits. Animals-24 New Zealand white rabbits. Procedures-Rabbits received iohexol (0.2 mL/kg) either dorsally (group 1) or ventrally to the interarcuate ligament in the lumbosacral area (groups 2 and 3). Correct placement of the needle was determined by use of the loss of resistance to injection technique (group 2) or a continuous electrical stimulation (group 3) and confirmed by examination of the iohexol distribution pattern on radiographs. Results-In all rabbits of group 1, iohexol was injected in the lumbosacral area, outside the epidural space. In groups 2 and 3, iohexol was injected intrathecally. No pure iohexol epidural migration of iohexol was observed. Mean ± SD minimal electric threshold to elicit a motor response was 1.2 ± 0.3 mA, 0.3 ± 0.1 mA, and 0.3 ± 0.1 mA in groups 1, 2, and 3, respectively. Conclusions and Clinical Relevance-Neurostimulation was a useful technique to determine correct intrathecal needle placement in rabbits but failed to detect the lumbosacral epidural space when the common technique, used in dogs and cats for the lumbosacral epidural approach, was used.  相似文献   

4.
ObjectiveTo determine if a nerve stimulation test (NST) could act as a monitoring technique to confirm sacrococcygeal epidural needle placement in cats.Study designProspective experimental trial in a clinical setting.AnimalsTwenty-four adult cats, scheduled for a therapeutic procedure where epidural anesthesia was indicated.MethodsUnder general anesthesia, an insulated needle was inserted through the S3-Cd1 intervertebral space guided by the application of a fixed electrical current (0.7 mA) until a motor response was obtained. The NST was considered positive when the epidural nerve stimulation produced a motor response of the muscles of the tail, whereas it was considered negative when no motor response was evoked. In the NST positive cases, 0.3 mL kg−1 of 0.5% bupivacaine was administrated before needle withdrawal. Ten minutes after injection, epidural blockade was confirmed by the loss of perineal (anal), and pelvic limbs reflexes (patellar and withdrawal).ResultsThe use of a fixed electrical stimulation current of 0.7 mA resulted in correct prediction of sacrococcygeal epidural injection, corroborated by post bupivacaine loss of perineal and pelvic limb reflexes, in 95.8% of the cases.Conclusion and clinical relevanceThis study demonstrates the feasibility of using, in a clinical setting, an electrical stimulation test as an objective and in real-time method to confirm sacrococcygeal epidural needle placement in cats.  相似文献   

5.
ObjectiveTo determine the minimal electrical threshold (MET) necessary to elicit muscle contraction of the pelvic limb or tail when an insulated needle is positioned outside (METout) and inside (METin) the lumbosacral epidural space in cats.Study designProspective, blinded study.AnimalsTwelve mixed-breed healthy adult cats, scheduled for a therapeutic procedure where lumbosacral epidural administration was indicated.MethodsUnder general anesthesia, an insulated needle was advanced through tissues of the lumbosacral interspace until its tip was thought to be just dorsal to the interarcuate ligament. An increasing electrical current (0.1 ms, 2 Hz) was applied through the stimulating needle in order to determine the MET necessary to obtain a muscle contraction of the pelvic limb or tail (METout), and then 0.05 mL kg?1 of iohexol was injected. The needle was further advanced until its tip was thought to be in the epidural space. The MET was determined again (METin) and 0.2 mL kg?1 of iohexol was injected. The cats were maintained in sternal position. Contrast medium spread was determined through lateral radiographic projections.ResultsThe radiographic study confirmed the correct needle placement dorsal to the interarcuate ligament in all cats. When the needle was placed ventrally to the interarcuate ligament, iohexol was injected epidurally in ten and intrathecally in two cats. The METout and METin was 1.76 ± 0.34 mA and 0.34 ± 0.07 mA, respectively (p < 0.0001).Conclusion and clinical relevanceNerve stimulation can be employed as a tool to determine penetration of the interarcuate ligament but not the piercing of the dura mater at the lumbosacral space in cats.  相似文献   

6.
ObjectiveTo evaluate the accuracy of epidural catheter placement at different levels of the spinal cord guided solely by electrical nerve stimulation and resultant segmental muscle contraction.Study designProspective, experiment.AnimalsSix male and two female Beagles, age (1 ± 0.17 years) and weight (12.9 ± 1.1 kg).MethodsAnimals were anesthetized with propofol and maintained with isoflurane. An insulated epidural needle was used to reach the lumbosacral epidural space. A Tsui epidural catheter was inserted and connected to a nerve stimulator (1.0 mA, 0.1 ms, 2 Hz) to assess positioning of the tip at specific spinal cord segments. The catheter was advanced to three different levels of the spinal cord: lumbar (L2–L5), thoracic (T5–T10) and cervical (C4–C6). Subcutaneous needles were previously placed at these spinal levels and the catheter was advanced to match the needle location, guided only by corresponding muscle contractions. Catheter position was verified by fluoroscopy. If catheter tip and needle were at the same vertebral body a score of zero was assigned. When catheter tip was cranial or caudal to the needle, positive or negative numbers, respectively, corresponding to the number of vertebrae between them, were assigned. The mean and standard deviation of the number of vertebrae between catheter tip and needle were calculated to assess accuracy. Results are given as mean ± SD.ResultsThe catheter position in relation to the needle was within 0.3 ± 2.0 vertebral bodies. Positive predictive values (PPV) were 57%, 83% and 71% for lumbar, thoracic and cervical regions respectively. Overall PPV was 70%. No significant difference in PPV among regions was found.Conclusion and clinical relevancePlacement of an epidural catheter at specific spinal levels using electrical nerve stimulation was feasible without radiographic assistance in dogs. Two vertebral bodies difference from the target site may be clinically acceptable when performing segmental epidural regional anesthesia.  相似文献   

7.
ObjectiveTo compare the epidural anesthesia device (EPIA), which facilitates an automatic approach to location of the epidural space, with the performance of clinicians using tactile sensation and differences in pressure when inserting an epidural needle into the epidural space of a dog.Study designProspective, crossover experiment.AnimalsA total of 14 Beagle dogs weighing 7.5 ± 2.4 kg (mean ± standard deviation).MethodsEach dog was anesthetized three times at 2 week intervals for three anesthesiologists (two experienced, one novice) to perform 14 epidural injections (seven manual and EPIA device each). The sequence of methods was assigned randomly for each anesthesiologist. The dogs were anesthetized with medetomidine (10 μg kg–1), alfaxalone (2 mg kg–1) and isoflurane and positioned in sternal recumbency with the pelvic limbs extended cranially. Epidural puncture in the manual method was determined by pop sensation, hanging drop technique and reduced injection pressure, whereas using the device a sudden decrease in reaction force on the device was detected. A C-arm identified needle placement in the epidural space, and after administration of iohexol (0.3 mL), the needle length in the epidural space was defined as the mean value measured by three radiologists. Normality was tested using the Kolmogorov–Smirnov test, and significant differences between the two methods were analyzed using an independent sample t test.ResultsIn both methods, the success rates of epidural insertion were the same at 95.2%. The length of the needle in the epidural space using the device and manual methods was 1.59 ± 0.50 and 1.68 ± 0.88 mm, respectively, with no significant difference (p = 0.718).Conclusions and clinical relevanceEPIA device was comparable to human tactile sense for an epidural needle insertion in Beagle dogs. Further research should be conducted for application of the device in clinical environments.  相似文献   

8.
ObjectiveTo compare the nerve stimulation test (group NS) with the running-drip method (group RUN) for successful identification of the sacrococcygeal (SCo) epidural space prior to drug administration in dogs.AnimalsA total of 62 dogs.Study designA randomized clinical study.MethodsDogs requiring an epidural anaesthetic as part of the multimodal anaesthetic plan were randomly allocated to one of the two study groups. In group NS, the epidural space was located using an insulated needle connected to a nerve stimulator; in group RUN, the epidural space was identified using a Tuohy needle connected to a fluid bag elevated 60 cm above the spine via an administration set. The success of the technique was assessed 5 minutes after epidural injection by the disappearance of the patella reflex. Data were checked for normality, nonparametric data was analysed using a Mann–Whitney U test and success rate was analysed using a Fisher’s exact test. The significance level was set at p < 0.05, and the results are presented in absolute values, percentage (95% confident interval) and median (range).ResultsThe success in identification of the epidural space did not differ between groups NS and RUN [87.1% (70.2%–96.4%) versus 90.3% (74.2%–98%); p = 1.000]. The time required for identification of the epidural space was shorter in group RUN [26 (15–53) seconds] than in group NS [40 (19–137) seconds] (p = 0.0225). No other differences were found in any studied variables.Conclusionand clinical relevance In this study, both RUN and NS techniques were successful in identifying the epidural space at the SCo intervertebral space. RUN requires no specialised equipment, can be performed rapidly and offers an alternative to the NS for use in general veterinary practice.  相似文献   

9.
Objective To compare the efficacy of epidural buprenorphine with epidural morphine for post‐operative pain relief in dogs undergoing cranial cruciate ligament rupture repair. Study design A randomized, double blind clinical trial. Animals Twenty client‐owned dogs with cranial cruciate ligament rupture. Methods Dogs were randomly assigned to receive either epidural buprenorphine (4 µg kg?1) or epidural morphine (0.1 mg kg?1) in a total volume of 0.2 mL kg?1. Epidural injections were performed immediately after induction of anesthesia. End‐tidal halothane and CO2 were recorded every 15 minutes from the time of epidural administration of drug to extubation. A numerical rating pain score system was used by a blinded observer to evaluate analgesia beginning at extubation and continuing at specific intervals for 24 hours after surgery. Heart rate, respiratory rate, and blood pressure were recorded noninvasively at the same times. If pain score indicated moderate discomfort, rescue morphine at 1.0 mg kg?1 was administered intramuscularly. Results There were no significant differences between groups with respect to pain score, heart rate, respiratory rate, indirect blood pressure, end‐tidal halothane or end‐tidal CO2 at any time point. Fifty percent of dogs in the buprenorphine group and 50% of dogs in the morphine group required rescue analgesic medication. Time of systemic rescue morphine administration did not differ significantly between the two groups. There were no clinically observable side‐effects from epidural administration of either drug in any of the dogs of this study. Conclusions Epidural buprenorphine is as effective as epidural morphine for the relief of postoperative hindlimb orthopedic pain in dogs. Clinical relevance Buprenorphine appears to be an effective opioid for epidural use in healthy dogs. Buprenorphine may offer certain advantages over morphine for epidural use, such as lower abuse potential and, in some clinics, reduced cost and less wastage of drug.  相似文献   

10.
OBJECTIVE: A clinical trial to determine whether continuous infusion administration technique was suitable for maintaining neuromuscular blockade with rocuronium bromide in dogs. ANIMALS: Twenty-two dogs, 10 males and 12 females, median age 2 years 4 months, median weight 32 kg undergoing elective surgical procedures under general anaesthesia: ASA classification I or II. MATERIALS AND METHODS: After induction of anaesthesia, neuromuscular function was evaluated using train-of-four (TOF) stimulation of the dorsal buccal branch of the facial nerve. A bolus dose of 0.5 mg kg(-1) rocuronium was administered intravenously and an infusion of 0.2 mg kg(-1) hour(-1) was started immediately. Neuromuscular blockade was assessed visually by counting the number of twitches observed during TOF stimulation repeated at 10-second intervals. RESULTS: The bolus dose of rocuronium abolished the response to TOF stimulation in 21 of the 22 dogs. The median onset time of neuromuscular blockade (complete loss of all four twitches) was 82 seconds (range 38-184 seconds). Median infusion duration was 76 minutes (range 20.3-146 minutes). CONCLUSIONS AND CLINICAL RELEVANCE: This protocol of rocuronium administration was considered to be effective in dogs. Constant infusion of rocuronium is easily applicable to clinical practice and further work is required on infusion titration.  相似文献   

11.
Objective To evaluate and compare the effects of caudal epidural administration of methadone (METH) and lidocaine (LIDO) on tolerance to thermal stimulation over the dermatomes of the perineal, sacral, lumbar and thoracic regions in the horse. Study design A blinded, randomized, prospective, experimental cross‐over study. Animals Seven healthy horses, 15.7 ± 4.9 years (mean ± SD) of age, weighing 536 ± 37 kg. Methods The horses were randomly assigned to receive two treatments (group M: METH, 0.1 mg kg?1 or group L: LIDO, 0.35 mg kg?1) at intervals of at least 28 days. An 18‐gauge 80‐mm Tuohy epidural needle was placed in the first intercoccygeal space (Co1–Co2) in awake standing horses restrained in stocks. Analgesia was assessed by use of a probe maintained at a constant 62 °C by circulating hot water. The maximum stimulation time was 30 seconds. Bilateral stimulation was performed at five defined points. Before drug administration, baseline values of response time to thermal stimuli were obtained. Time to response was then measured 15 and 60 minutes after METH or LIDO administration and then hourly until the response returned to baseline at all stimulation points on two further assessments. Development of any ataxia and/or sedation was recorded. Positive pain responses were defined as purposeful avoidance movements of the head, neck, trunk, limbs and tail. Absence of attempts to kick, bite and turning of the head toward the stimulation site were used to indicate analgesia. Results Caudal epidural administration of METH and LIDO significantly increased reaction time to thermal stimulation (one‐sample t‐test; p = 0.05). Analgesia in the perineal region was present 15 minutes after both METH and LIDO administration and progressed from caudal to cranial dermatones with time. The duration of a significant increase in reaction time was 5 hours after METH injection compared to 3 hours following LIDO. All horses defaecated and urinated normally, and no excitement, sedation or ataxia were observed after METH administration. The horses were unable to defaecate normally and were moderately to severely ataxic with hindlimb weakness after LIDO. Conclusions Caudal epidural administration of methadone has considerable potential in the management of perineal, lumbo‐sacral and thoracic pain in horses. Regional differences exist in the onset, duration and intensity of the pain relief. Clinical relevance Epidural methadone administration provides analgesia with no measured side effects in these healthy adult horses.  相似文献   

12.
ObjectiveTo evaluate the use of ultrasound for identifying the site for needle puncture and to determine the depth to the epidural space in obese dogs.Study designProspective study in dogs undergoing elective orthopedic surgery.AnimalsA group of seven obese Labrador male dogs aged 6.93 ± 2.56 years and weighing 46.5 ± 4.1 kg (mean ± standard deviation).MethodsThe anesthetic protocol for these dogs included epidural anesthesia. With the dogs anesthetized and positioned in sternal recumbency with the pelvic limbs flexed forward, ultrasound imaging was used to locate the lumbosacral intervertebral space. Intersection of dorsal and transverse lines about the probe identified the point of needle insertion. A 17 gauge, 8.9 cm Tuohy needle was inserted perpendicularly through the skin and advanced to the lumbosacral intervertebral space. The number of puncture attempts was recorded and needle depth was compared with skin to ligamentum flavum distance.ResultsEpidural injection was performed in all dogs at the first attempt of needle insertion. The distance from skin to epidural space was 5.95 ± 0.62 cm measured by ultrasound and 5.89 ± 0.64 cm measured with the Tuohy needle. These measurements were not different (p = 0.26). A highly significant correlation coefficient of 0.966 between measurement techniques was obtained (p < 0.001).Conclusions and clinical relevanceUltrasound imaging identified the point of needle insertion for lumbosacral epidural injection in seven obese dogs. The results indicate that ultrasound can be used to locate the lumbosacral intervertebral space and identify an appropriate point for needle insertion to perform epidural injection.  相似文献   

13.
OBJECTIVE: To evaluate the use of laparoscopic-assisted jejunostomy feeding tube (J-tube) placement in healthy dogs under sedation with epidural and local anesthesia and compare cardiopulmonary responses during this epidural anesthetic protocol with cardiopulmonary responses during general anesthesia for laparoscopic-assisted or open surgical J-tube placement. ANIMALS: 15 healthy mixed-breed dogs. PROCEDURES: Dogs were randomly assigned to receive open surgical J-tube placement under general anesthesia (n = 5 dogs; group 1), laparoscopic-assisted J-tube placement under general anesthesia (5; group 2), or laparoscopic-assisted J-tube placement under sedation with epidural and local anesthesia (5; group 3). Cardiopulmonary responses were measured at baseline (time 0), every 5 minutes during the procedure (times 5 to 30 minutes), and after the procedure (after desufflation [groups 2 and 3] or at the start of abdominal closure [group 1]). Stroke volume, cardiac index, and O(2) delivery were calculated. RESULTS: All group 3 dogs tolerated laparoscopic-assisted J-tube placement under sedation with epidural and local anesthesia. Comparison of cardiovascular parameters revealed a significantly higher cardiac index, mean arterial pressure, and O(2) delivery in group 3 dogs, compared with group 1 and 2 dogs. Minimal differences in hemodynamic parameters were found between groups undergoing laparoscopic-assisted and open surgical J-tube placement under general anesthesia (ie, groups 1 and 2); these differences were not considered to be clinically important in healthy research dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Sedation with epidural and local anesthesia provided satisfactory conditions for laparoscopic-assisted J-tube placement in healthy dogs; this anesthetic protocol caused less cardiopulmonary depression than general anesthesia and may represent a better choice for J-tube placement in critically ill patients.  相似文献   

14.
To compare the technical difficulty and safety of epidural catheterization between cranial and caudal lumbar region, thirteen dogs were randomly assigned to a cranial lumbar group (group CraL, n=6) or a caudal lumbar group (group CauL, n=6) depending on different epidural sites, and one dog was used as a negative control without catheterization. After general anesthesia, an epidural catheter was advanced 10 cm cranially from the interspace of L1-L2 in group CraL or from lumbosacral space in group CauL. Dogs were euthanized and catheter position and tip location were confirmed by laminectomy. Spinal cord samples were examined by macro- and microscopic observations. Success rate, time taken for epidural space confirmation and catheter insertion were compared, and overall technical difficulty was evaluated subjectively. Epidural catheter was inserted successfully in all dogs. Time needed from needle skin puncture to catheter placement and saline injection was 226 ± 63 and 229 ± 26 sec in groups CraL and CauL without significant differences. Three dogs in group CraL suffered subcutaneous blood, but no spinal cord injuries were found. Subjective evaluation score of the overall technical difficulty was slightly but significantly higher in group CraL than in group CauL (P=0.009). Epidural catheterization in cranial lumbar region could be performed as feasible and safe as that at the caudal lumbar vertebral region in medium or large dogs.  相似文献   

15.
ObjectiveTo determine the effect of injection speed on epidural pressure (EP), injection pressure (IP), epidural distribution (ED) of solution, and extent of sensory blockade (SB) during lumbosacral epidural anesthesia in dogs.Study designProspective experimental trial.AnimalsTen healthy adult Beagle dogs weighing 8.7 ± 1.6 kg.MethodsGeneral anesthesia was induced with propofol administered intravenously and maintained with isoflurane. Keeping the dogs in sternal recumbency, two spinal needles connected to electrical pressure transducers were inserted into the L6-L7 and the L7-S1 intervertebral epidural spaces for EP and IP measurements, respectively. Bupivacaine 0.5% diluted in iohexol was administered epidurally to each dog via spinal needle at L7-S1 intervertebral space, at two rates of injection (1 and 2 mL minute?1 groups), with a 1-week washout period. Epidural distribution was verified with computed tomography, and SB was evaluated after arousal by pinching the skin with a mosquito hemostatic forceps over the vertebral dermatomes. The results were analyzed according to each injection speed, using paired t- and Wilcoxon signed-rank tests.ResultsMean ± SD of baseline EP and IP values were 2.1 ± 6.1 and 2.6 ± 7.1 mmHg, respectively. Significant differences were observed between 1 and 2 mL minute?1 groups for peak EP (23.1 ± 8.5 and 35.0 ± 14.5 mmHg, p = 0.047) and peak IP (68.5 ± 10.7 and 144.7 ± 32.6 mmHg, p <0.001). However, the median (range) of the ED, 11.5 (4–22) and 12 (5–21) vertebrae, and SB, 3.5 (0–20) and 1 (0–20) dermatomes, values of the two groups were not related to injection speed.Conclusions and clinical relevanceThe EP profile during injection was measured by separating the injection and pressure monitoring lines. The increase in epidural injection speed increased the EP, but not the ED or the SB in dogs.  相似文献   

16.
OBJECTIVE: To report use of combined spinal epidural anesthesia for tail resection and surgical exploration of the pelvic canal and the perineal-pararectal area in a dog. ANIMAL: A 4-month-old, 13 kg male Collie dog. METHODS: Under inhalant anesthesia, an epidural catheter was threaded through a Tuohy needle at L5-L6. Then using a Whitacre spinal needle bupivacaine and fentanyl were administered in the subarachnoid space at L6-L7 level. Fifteen minutes later, morphine was administered epidurally. Bupivacaine and morphine were administered epidurally 4 hours after the subarachnoid injection. RESULTS: No cardiorespiratory response to surgical stimulation was observed. Postoperative analgesia was satisfactory, and the catheter was removed 30 hours later. No complications or neurologic sequelae occurred before discharge or were noted 10 days later. CONCLUSION: Combined spinal-epidural anesthesia provided excellent intraoperative anesthesia and perioperative analgesia in a dog undergoing surgery involving the pelvic canal. CLINICAL RELEVANCE: Combined spinal-epidural anesthesia can be performed in dogs, and its use should be considered in major surgeries caudal to the diaphragm, as the epidural catheter allows cranial extension of the block, providing excellent intraoperative anesthesia and perioperative analgesia.  相似文献   

17.
OBJECTIVE: To evaluate the effects of epidural administration of hydromorphone on avoidance threshold to noxious electrical stimulation of the perineal, sacral, lumbar, and thoracic regions in horses. ANIMALS: 6 healthy adult horses. PROCEDURE: Horses were assigned to receive hydromorphone (0.04 mg/kg) or a control solution (20 mL of sterile water) administered epidurally into in the first intercoccygeal space. Treatments were administered at time intervals of > or = 7 days. Electrical stimulation was applied for 6 hours after epidural injection over the dermatomes of the perineal, sacral, lumbar, and thoracic regions, and the avoidance threshold voltage was recorded. RESULTS: Administration of sterile water did not change the avoidance threshold. Hydromorphone significantly increased the avoidance threshold by 20 minutes after injection, which lasted until 250 minutes after epidural administration in the perineal, sacral, lumbar, and thoracic regions. Profound analgesia (avoidance threshold > 40 V) was achieved only in the perineal region at 60 minutes after epidural administration of hydromorphone. Analgesia for all dermatomes was considered moderate for 250 minutes after epidural injection. CONCLUSIONS AND CLINICAL RELEVANCE: Epidural administration of hydromorphone increases the avoidance threshold to noxious electrical stimulation in the perineal, lumbar, sacral, and thoracic regions in horses for 250 minutes after injection. Hydromorphone epidural administration may prove useful in the management of horses with pain of moderate to mild intensity.  相似文献   

18.
ObjectiveTo determine the needle‐to‐nerve distances during electrical nerve location in dogs at different currents and pulse duration using a peripheral nerve stimulator (PNS) under ultrasound control (US), and the minimal electrical thresholds (MET) necessary to obtain a motor response (MR) after achieving needle‐to‐nerve contact.Study designProspective in vivo experimental trial in a clinical settingAnimalsThirty dogs, scheduled for locoregional anaesthesia of the sciatic nerve.MethodsNeedle‐to‐nerve distance was measured ultrasonographically after obtaining the MR of sciatic nerve with 2, 1 and 0.5 mA and pulse duration 0.1 ms (NS0.1). Thereafter the needle was placed in contact with the nerve and MET was determined. The procedure was repeated with 0.3 ms (NS0.3). Finally the needle was reintroduced to contact the sciatic nerve guided only by US, thus MET‐US was determined. Data were analysed using Kruskal–Wallis or Mann–Whitney tests.ResultsNeedle‐to‐nerve distances were greater when MR was obtained with 2 mA than with 1 and 0.5 mA at 0.1 and 0.3 ms. No significant differences were observed between the needle‐to‐nerve distances using 0.1 or 0.3 ms.The MET [median (range)] was 0.4 (0.18–1.3) mA in NS0.1, 0.32 (0.12–0.8) mA in NS0.3; while MET‐US was 0.7 (0.32–1.5) mA. When the needle contacted the nerve, the MR achieved with currents below 0.3 mA was obtained in 17.2, 40 and 0% of cases using NS0.1, NS0.3 and US respectively.Conclusions and clinical relevanceThe electrical current necessary to obtain a MR decreased as the needle moved towards the nerve. However when the needle tip contacted the nerve, an MR with low current intensity could not be obtained. Thus the absence of motor response at currents below 0.3 mA cannot rule out needle‐epineurium contact. When ultrasound is combined with PNS, it is more important to assess the correct needle position than searching for an MR at low currents.  相似文献   

19.
Volumes used in lumbosacral epidural injections for anesthesia have remained unchanged since the 1960s. The goals of this cross‐sectional observational study were to characterize the three‐dimensional spread of a lumbosacral epidural injection, as well as confirm that the commonly used volume of 0.2 ml/kg injected into the lumbosacral epidural space reaches the thoracolumbar (TL) junction in the majority (≥80%) of dogs. Ten clinically normal, adult, nonpregnant, mixed‐breed dogs were obtained within five minutes of euthanasia and 0.2 ml/kg of radiopaque contrast medium was injected into the lumbosacral epidural space. A computed tomography scan of the TL spine was performed immediately following the injection. Migration of contrast reached the TL junction in 8 of 10 (80%) dogs. Contrast was well visualized in all epidural planes with contrast travelling predominantly in the dorsal epidural space in 7 of 10 (70%) dogs. There was no significant difference in the weight of dogs where the epidural injectate reached the TL junction and those where it did not (P = 0.16), or in the weight of dogs where the cranial‐most point of the contrast column was in the dorsal versus the ventral epidural space (P = 0.32). This preliminary study supports the use of computed tomography to characterize injectate distribution in the canine thoracolumbar epidural space and provides evidence that a 0.2‐ml/kg volume is likely to reache the TL junction in most dogs. Further studies are needed in live dogs to determine if variables affecting human epidural injectate doses have similar effects in the dog.  相似文献   

20.
The effects of epidural and intravenous (IV) methadone (0.5mg/kg) on the minimum alveolar concentration of isoflurane (ISO(MAC)) were compared in dogs. Six dogs (16.5 ± 2.5 kg bodyweight) received three treatments in random order during isoflurane anaesthesia, with a 7 day washout interval between each study. Methadone was injected via a lumbosacral epidural catheter introduced 10 cm cranially into the epidural canal and the electrical stimulation for ISO(MAC) determination was applied either to the thoracic (EP(T) treatment) or to the pelvic limb (EP(P) treatment) during separate study days. In the IV treatment, ISO(MAC) was determined via electrical stimulation of the pelvic limb. Variables were recorded before (baseline), 2.5 and 5h after drug injection. The ISO(MAC) decreased significantly (P<0.05) from baseline at 2.5 and 5h after methadone in all treatments. At 2.5h, the magnitude of ISO(MAC) reduction did not differ between treatments (mean decreases from baseline: 30-33%). The ISO(MAC) reduction lasted longer following epidural methadone in the thoracic limb (decreases from baseline: 30% at 5h in the EP(T) treatment vs. 19% and 16% in the EP(P) and IV treatments, respectively). Although the isoflurane sparing effect provided by epidural methadone was not significantly greater than IV methadone during the initial stage (2.5h), it was more prolonged than the IV route in specific dermatomes (5h in the thoracic limb) with the epidural technique employed. Methadone may therefore provide a greater isoflurane sparing effect when administered epidurally, compared to IV, when noxious stimulation occurs in specific dermatomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号