首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel aspects of Tomato chlorotic dwarf viroid (TCDVd) are reported, namely that TCDVd was detected in symptomless plants of Vinca minor, a trailing ground cover surviving at subzero temperatures (−12°C); and that TCDVd was seed-borne in tomato and detected in high percentages in tomato seeds and seedlings. Soaking seeds in a low concentration of sodium hypochlorite did not eliminate the viroid. The sequence analysis showed that the TCDVd isolate consists of 360 nucleotides and has sequence identity between 96% to 99% with isolates of TCDVd from other hosts.  相似文献   

2.
3.
In situ hybridization was used to analyze the distribution pattern of Tomato chlorotic dwarf viroid (TCDVd) in floral organs of tomato plants. Following TCDVd invasion of floral organs, it became localized only in sepals at an early developmental stage, then reached other floral organs at the flower opening stage, with the exception of part of the placenta and ovules. When distribution of TCDVd was compared with that of Potato spindle tuber viroid (PSTVd), TCDVd was not detected in the outer integument around the embryo sac even though PSTVd was able to invade there, suggesting that such specific distribution might reflect the frequent occurrence of viroid disease on crops caused by PSTVd-seed transmission.  相似文献   

4.
Tomato chlorotic dwarf viroid (TCDVd) manually inoculated to transgenic (cv.‘Desiree’) potato plants containing antimicrobial cationic peptides failed to develop symptoms in above ground plant parts, but infected tubers were symptomatic. Plants from the infected tubers (second generation plants) emerged as either severely stunted (bushy stunt isolate, BSI) or tall and symptomless. Molecular characterization of BSI isolates showed TCDVd sequence variants 95 to 98% identical to TCDVd sequences from the database, while a viroid variant identical to TCDVd type isolate (acc # AF162131) was cloned from symptomless plants. The TCDVd BSI variants had novel U165C, GU177-178AA, and UCAC181-184CUUU nucleotide substitutions in the terminal right (TR) domain of the viroid molecule. The cloned viroid cDNAs of the BSI were infectious to experimental (cv. ‘Sheyenne’) tomato plants causing stunted plants with profuse auxiliary shoots. Visual evaluation of the susceptibility of the BSI to 18 potato and 21 tomato cultivars revealed severe symptoms in most cultivars of both species. The progeny variants accumulating in each potato and tomato cultivar exhibited the same novel TR domain in most cultivars, with only a slight variation in a few. The severity of the stunting symptoms induced by TCDVd from BSI isolates in both potato and tomato cultivars has not been noted previously with other TCDVd isolates and, as such, it is proposed that this new isolate be recognized as a distinct genotype. Emergence of this type of sequence variant in commercial fields or commercial tomato greenhouses could potentially cause relevant losses in both crops.  相似文献   

5.
Nicandra physaloides, a common weed in South America, was found to be infected by an isolate of Tomato severe rugose virus (ToSRV), a bipartite begomovirus. The plants developed severe yellow rugose mosaic and were collected in São Paulo State, Brazil. This isolate of ToSRV was transmitted by Bemisia tabaci B biotype from infected plants of N. physaloides to healthy plants of N. physaloides and tomato in a glasshouse. This is the first report of natural infection of N. physaloides by ToSRV in Brazil.  相似文献   

6.
The ability of the whitefly Bemisia tabaci to transmit two strains of Tomato yellow leaf curl virus, the Israel and Mild strains, was studied after serial transfers of individual whiteflies that were viruliferous for both strains to tomato plants. After single whiteflies had successive acquisition feedings first on a single plant infected with one strain and then on a plant infected with the other strain, the single whiteflies later transmitted intermittently one, the other, or both strains to the test plants during serial transfers at 1-day intervals. Because both strains were found in the head, abdomen, and legs dissected from whiteflies during the retention period after the two successive acquisition feedings, both strains apparently circulate from midgut cells to salivary glands through the hemolymph.  相似文献   

7.
Tomato is challenged by several pathogens which cause loss of production. One such pathogen is the oomycete Phytophthora infestans which is able to attack all the aerial parts of the plant. Although a wide range of resistance sources are available, genetic control of this disease is not yet successful. Pyramiding R-genes through genetic transformation could be a straightforward way to produce tomato and potato lines carrying durable resistance to P. infestans. In this work the R1 potato gene was transferred into tomato lines. The tomato transgenic lines were analyzed by using q-RT-PCR and progeny segregation to determine the gene copy number. To test the hypothesis that R1 represents a specifically regulated R-gene, transgenic tomato plants were inoculated with P. infestans isolate 88133 and IPO. All the plants containing the R1 gene were resistant to the late blight isolate IPO-0 and susceptible to isolate 88133. These results provide evidence for specific activation of the R1 gene during pathogen challenge. Furthermore, evidence for enhancement of PR-1 gene expression during P. infestans resistance response was obtained.  相似文献   

8.
In 2005, severe leaf curling and yellowing were observed on tomato plants on Ishigaki Island. Because the symptoms were consistent with infection by a begomovirus, we used a polymerase chain reaction (PCR) with specific primers for begomovirus DNA-A and DNA satellite component (DNA-β) and detected products of the expected sizes from symptomatic tomato plant samples. DNA sequence analyses of the PCR products revealed that the symptomatic tomato plants were associated with Ageratum yellow vein virus (AYVV) infection. We confirmed AYVV transmission from the naturally infected weed host, Ageratum conyzoides, to healthy tomato plants by the insect vector Bemisia tabaci B biotype. This report is the first of AYVV occurrence in Japan.  相似文献   

9.
Leaf spot of tomato, incited by Pseudomonas syringae pv. syringae, has been reported recently in Italy on grafted and non-grafted tomato plants (scion Cuore di Bue, rootstock Solanum lycopersicum x Solanum hirsutum cv. Beaufort). In some greenhouses, more than 80% of plants were affected, with a marked reduction in yield. This work was undertaken in order to understand the effect of the number of hours of incubation at high relative humidity (r.h.) and temperature as well as the effect of the presence of wounds at infection time on the development of leaf spot. A difference in sensitivity to leaf spot was observed in the various cultivars tested, in terms of severity of P. syringae pv. syringae, with “Cuore di Bue” being the most susceptible of these cultivars. The development of leaf spot is mostly favored by the presence of wounds, at temperatures between 15 and 20°C. The severity of the disease is lower at 10 and 25°C and very low at 30°C. Under the most favorable temperature conditions, the presence of wounds is sufficient to allow the development of the pathogen immediately upon incubation at high r.h. The effect of wounds and the relatively low requirement of hours of incubation at high r.h. suggest the need for careful management and handling of plants when temperatures range between 15 and 25°C, and particularly within 15 and 20°C. All operations carried out, particularly at transplant and immediately after, should avoid the creation of wounds.  相似文献   

10.
Botrytis cinerea is a non-specific, necrotrophic pathogen that attacks many plant species, including Arabidopsis and tomato. Since senescing leaves are particularly susceptible to infection by B. cinerea, we hypothesized that the fungus might induce senescence as part of its mode of action and that delaying leaf senescence might reduce the severity of B. cinerea infections. To examine these hypotheses, we followed the expression of Arabidopsis SAG12, a senescence-specific gene, upon infection with B. cinerea. Expression of SAG12 is induced by B. cinerea infection, indicating that B. cinerea induces senescence. The promoter of SAG12, as well as that of a second Arabidopsis senescence-associated gene, SAG13, whose expression is not specific to senescence, were previously analyzed in tomato plants and were found to be expressed in a similar manner in the two species. These promoters were previously used in tomato plants to drive the expression of isopentenyl transferase (IPT) from Agrobacterium to suppress leaf senescence (Swartzberg et al. in Plant Biology 8:579–586, 2006). In this study, we examined the expression of these promoters following infection of tomato plants with B. cinerea. Both promoters exhibit high expression levels upon B. cinerea infection of non-senescing leaves of tomato plants, supporting our conclusion that B. cinerea induces senescence as part of its mode of action. In contrast to B. cinerea, Trichoderma harzianum T39, a saprophytic fungus that is used as a biocontrol agent against B. cinerea, induces expression of SAG13 only. Expression of IPT, under the control of the SAG12 and SAG13 promoters in response to infection with B. cinerea resulted in suppression of B. cinerea-induced disease symptoms, substantiating our prediction that delaying leaf senescence might reduce susceptibility to B. cinerea. Contribution from the Agriculture Research Organization, The Volcani Center, Bet Dagan, Israel, No. 127/2006 series.  相似文献   

11.
The biocontrol agent Pythium oligandrum (PO) can suppress bacterial wilt caused by Ralstonia solanacearum (RS) in tomato. To understand the primary biocontrol mechanisms of bacterial wilt by PO, we pretreated tomato plants with sterile distilled water or preinoculated them with PO, followed by inoculation with RS, then observed PO and RS in fixed sections of tomato tissues using a confocal laser-scanning microscope and fluorescence labeling until 14 days after the inoculation with RS. Horizontal and vertical movement of RS bacteria was frequently observed in the xylem vessels of roots and stems of tomato plants (cv. Micro-Tom) that had not been inoculated with PO. In plants that were preinoculated with PO, the movement of RS was suppressed, and bacteria appeared to be restricted to the pit of vessels, a reaction similar to that observed in resistant rootstocks. PO colonization was mainly observed at the surfaces of taproots, the junctions between taproots and lateral roots, and the middle sections of the lateral roots. PO was not observed near wound sites or root tips where RS tended to colonize. However, RS colonization was significantly repressed at these sites in PO preinoculated plants. These observations suggest that the induction of plant defense reactions is the main mechanism for the control of tomato bacterial wilt by PO, not direct competition for infection sites.  相似文献   

12.
Severe blight of potted seedlings of monkshood caused by Plectosporium tabacinum was found in glasshouses in Kagawa Prefecture in southwest Japan in May 2001. Root rot and browning of stem bases were followed by wilting and yellowing of leaves, then blighting of leaves, flower buds and stems. A fungus was isolated from diseased plants and confirmed to cause the disease. The new disease was named “Plectosporium blight of monkshood”.  相似文献   

13.
We selected a reduced-pathogenicity mutant of Fusarium oxysporum f. sp. lycopersici, a tomato wilt pathogen, from the transformants generated by restriction enzyme-mediated integration (REMI) transformation. The gene tagged with the plasmid in the mutant was predicted to encode a protein of 321 amino acids and was designated FPD1. Homology search showed its partial similarity to a chloride conductance regulatory protein of Xenopus, suggesting that FPD1 is a transmembrane protein. Although the function of FPD1 has not been identified, it does participate in the pathogenicity of F. oxysporum f. sp. lycopersici because FPD1-deficient mutants reproduced the reduced pathogenicity on tomato.The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession number AB110097  相似文献   

14.
The tomato pathotype of Alternaria alternata (A. arborescens) produces the dark brown to black pigment melanin, which accumulates in the cell walls of hyphae and conidia. Melanin has been implicated as a pathogenicity factor in some phytopathogenic fungi. Here, two genes of the tomato pathotype for melanin biosynthesis, ALM1 and BRM2-1, which encode a polyketide synthetase and a 1,3,8-trihydroxynaphthalene (THN) reductase, respectively, have been cloned and disrupted in the pathogen. The gene-disrupted mutants, alm1 and brm2-1, had albino and brown phenotypes, respectively. The wild-type and the mutants caused the same necrotic lesions on the leaves after inoculation with spores. These results suggest that melanin is unlikely to play a direct role in pathogenicity in the tomato pathotype A. alternata. Scanning electron microscopy revealed that the conidia of both mutants have much smoother surfaces in comparison to the wild-type. The conidia of those mutants were more sensitive to UV light than those of the wild-type, demonstrating that melanin confers UV tolerance.  相似文献   

15.
Grapevine virus A (GVA, Vitivirus) was transmitted experimentally by first and second instars of the scale insect Parthenolecanium corni from grapevine to grapevine and to the herbaceous host Nicotiana benthamiana. This is the first report of GVA transmission by P. corni. Grapevine leafroll-associated virus-1 (Ampelovirus) was always present in the donor grapevines and, in every case, GVA was transmitted simultaneously with this ampelovirus from grapevine to grapevine, suggesting possible interactions between the two viruses for transmission.  相似文献   

16.
Leaves of tomato and barley were inoculated with conidia of Blumeria graminis f. sp. hordei race 1 (R1) or Oidium neolycopersici (KTP-01) to observe cytological responses in search of resistance to powdery mildew. Both conidia formed appressoria at similar rates on tomato or barley leaves, indicating that no resistance was expressed during the prepenetration stage of these fungi. On R1-inoculated tomato leaves, appressoria penetrated the papillae, but subsequent haustorium formation was inhibited by hypersensitive necrosis in the invaded epidermal cells. On the other hand, KTP-01 (pathogenic to tomato leaves) successfully developed functional haustoria in epidermal cells to elongate secondary hyphae, although the hyphal elongation from some conidia was later suppressed by delayed hypersensitive necrosis in some haustorium-harboring epidermal cells. Thus, the present study indicated that the resistance of tomato to powdery mildew fungi was associated with a hypersensitive response in invaded epidermal cells but not the prevention of fungal penetration through host papilla.  相似文献   

17.
This study examines the effects of a vegetable fungicide on sugar beet powdery mildew (Erysiphe betae) and cucumber powdery mildew (Erysiphe cichoracearum). The formulations consisting of a dispersion of Brassicaceae meal in vegetable or mineral oils on infected leaves of sugar beet, reared in the greenhouse, and of musk melons cultivated under plastic tunnels, were tested in comparison to each oil taken separately. Both formulations containing Brassicaceae meals, caused 94% of conidia to be distorted while for the untreated group only 2% were distorted. Furthermore, the leaf area infected by E. betae was 56% for untreated plants and 2.7 and 9.9% respectively, for plants treated with meal containing mineral and vegetable oil. Vegetable oil considered separately or with Brassicaceae meals showed no phytotoxicity, while the formulations based on mineral oil showed a significantly lower fresh and dry weight on tomato plants. The low level or absence of phytotoxicity of plants treated with vegetable oil formulations suggests that to improve the efficacy of powdery mildew control, they could be used mixed with sulphur. The efficiency of the vegetable formulations in the powdery mildew control observed during these trials encourages further investigation on other parasitic fungi and foliar pathogens.  相似文献   

18.
In 2006, stem rot and blue-green crusty lesions were found on the stems of tomato plants in Chiba Prefecture, Japan. Penicillium oxalicum was isolated repeatedly from the diseased plants. The causal fungus reproduced natural symptoms after artificial inoculation of tomato plants and was re-isolated from symptomatic plant tissue. P. oxalicum is a new pathogen that causes blue mold on tomato plants in Japan.  相似文献   

19.
Pepino mosaic virus (PepMV, Genus Potexvirus, Family Flexiviridae) is a mechanically transmitted viral disease that has emerged as a significant problem of greenhouse tomato crops in Europe and around the world. Although previous studies in Cyprus suggested that the virus was not present on the island, in 2009 tomato fruits from two major tomato production areas exhibited symptoms of yellow mosaic and discolouration, similar to those induced by PepMV. Consequently, an extensive survey was conducted in all tomato producing areas of the country to identify the incidence and prevalence of PepMV in protected and open field tomato crops. Analysis of 3500 leaf samples from tomato plants and weeds with DAS-ELISA and real-time RT-PCR showed that PepMV was present in all tomato growing areas of the island. The virus was detected in both protected and open field tomato plants, as well as in 20 weed species in the families of Amaranthaceae, Chenopodiaceae, Compositae, Convolvulaceae, Malvaceae, Plantaginaceae and Solanaceae. All Cypriot isolates assayed belonged to the CH2 genotype. Biological assays with two Cypriot isolates showed that they could infect cultivated and weed species including Vigna unguiculata, Solanum melongena, Nicotiana tabacum, Malva parviflora, Sonchus oleraceus, Solanum nigrum, Convolvulus arvensis, Chrysanthemum segetum and Calendula arvensis. To our knowledge, this is the first study to report Chrysanthemum segetum and Calendula arvensis as hosts of PepMV.  相似文献   

20.
Actinidia chinensis and A. deliciosa plants from China, showing a range of symptoms, including vein clearing, interveinal mottling, mosaics and chlorotic ring spots, were found to contain ~300 nm rod-shaped virus particles. The virus was mechanically transmitted to several herbaceous indicators causing systemic infections in Nicotiana benthamiana, N. clevelandii, and N. occidentalis, and local lesions in Chenopodium quinoa. Systemically- infected leaves reacted with a Tobacco mosaic virus polyclonal antibody in indirect ELISA. PCR using generic and specific Tobamovirus primers produced a 1,526 bp sequence spanning the coat protein (CP), movement protein (MP), and partial RNA replicase genes which showed a maximum nucleotide identity (88%) with Turnip vein clearing virus and Penstemon ringspot virus. However, when the CP sequence alone was considered the highest CP sequence identity (96% nt and 98% aa) was to Ribgrass mosaic virus strain Kons 1105. The morphological, transmission, serological and molecular properties indicate that the virus is a member of subgroup 3 of the genus Tobamovirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号