首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sixteen 3- to 5-year-old African elephants were anesthetized one or more times for a total of 27 diagnostic and surgical procedures. Xylazine (0.1 +/- 0.04 mg/kg of body weight, mean +/- SD) and ketamine (0.6 +/- 0.13 mg/kg) administered IM induced good chemical restraint in standing juvenile elephants during a 45-minute transport period before administration of general anesthesia. After IM or IV administration of etorphine (1.9 +/- 0.56 micrograms/kg), the mean time to lateral recumbency was 20 +/- 6.6 and 3 +/- 0.0 minutes, respectively. The mean heart rate, systolic blood pressure, and respiration rate during all procedures was 50 +/- 12 beats/min, 106 +/- 19 mm of Hg, and 10 +/- 3 breaths/min, respectively. Cardiac arrhythmias were detected during 2 procedures. One elephant with hypotension responded to a decrease in the concentration of halothane and IV infusion of dobutamine HCl. Alterations in systolic blood pressure, ear flapping, and trunk muscle tone were useful for monitoring depth of anesthesia. Results indicated that halothane in oxygen was effective for maintenance of surgical anesthesia in juvenile African elephants after induction with etorphine.  相似文献   

2.
OBJECTIVE: To determine the pharmacokinetics of enrofloxacin after oral administration to captive elephants. ANIMALS: 6 clinically normal adult Asian elephants (Elephas maximus). PROCEDURE: Each elephant received a single dose of enrofloxacin (2.5 mg/kg, PO). Three elephants received their complete diet (pellets and grain) within 2 hours after enrofloxacin administration, whereas the other 3 elephants received only hay within 6 hours after enrofloxacin administration. Serum concentrations of enrofloxacin and ciprofloxacin were measured by use of high-performance liquid chromatography. RESULTS: Harmonic mean half-life after oral administration was 18.4 hours for all elephants. Mean +/- SD peak serum concentration of enrofloxacin was 1.31 +/- 0.40 microg/mL at 5.0 +/- 4.2 hours after administration. Mean area under the curve was 20.72 +/- 4.25 (microg x h)/mL. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of enrofloxacin to Asian elephants has a prolonged elimination half-life, compared with the elimination half-life for adult horses. In addition, potentially therapeutic concentrations in elephants were obtained when enrofloxacin was administered orally at a dosage of 2.5 mg/kg. Analysis of these results suggests that enrofloxacin administered with feed in the manner described in this study could be a potentially useful antimicrobial for use in treatment of captive Asian elephants with infections attributable to organisms, such as Bordetella spp, Escherichia coli, Mycoplasma spp, Pasteurella spp, Haemophilus spp, Salmonella spp, and Staphylococcus spp.  相似文献   

3.
Eleven juvenile African elephants were given etorphine hydrochloride (2.19 +/- 0.11 micrograms/kg of body weight; mean +/- SD) as a single IM injection; 3 elephants were given additional etorphine (0.42 +/- 0.09 micrograms/kg) IV. After immobilization, each elephant was maintained in lateral recumbency by administration of a 0.5% halothane/oxygen mixture or by administration of multiple IV injections of etorphine. At postinjection hours 0.25 and 0.5 and at 30-minute intervals thereafter, blood samples were collected via an auricular artery, and serum concentrations of etorphine were determined by use of radioimmunoassay. The highest mean serum concentration of etorphine in 6 elephants given a single IM injection and subsequently maintained on halothane and oxygen was 1.62 +/- 0.97 ng/ml at postinjection hours 0.5; thereafter, the mean serum concentration decreased steadily. In 4 elephants maintained in lateral recumbency with multiple IV administrations of etorphine, a correlation was not found between the time to develop initial signs of arousal and serum concentrations of etorphine before arousal. After administration of the initial immobilizing dose of etorphine, the interval between successive IV administrations of etorphine decreased.  相似文献   

4.
A group of 15 African elephants (Loxodonta africana) were immobilized with a combination of xylazine (0.2 mg/kg of body weight, IM) and ketamine (1 to 1.5 mg/kg of body weight, IM). Ten of the African elephants were allowed to remain recumbent for 30 minutes and the remaining 5 elephants, for 45 minutes before they were given tolazoline (0.5 mg/kg of body weight, IV). For the group of 15, the mean induction time (the time required from injection of the xylazine-ketamine combination until onset of recumbency) was 14.2 +/- 4.35 minutes (mean +/- SD), and standing time (the time required from the tolazoline injection until the elephant stood without stimulation or assistance) was 2.8 +/- 0.68 minutes. All of the elephants were physically stimulated (by pushing, slapping, shouting) before they were given tolazoline, and none could be aroused. After tolazoline was given and the elephant was aroused, relapses to recumbency did not occur. Recovery was characterized by mild somnolence in an otherwise alert and responsive animal. Failure (no arousal) rates were 0% (95% confidence interval, 0 to 0.3085) for elephants given tolazoline after 30 minutes of recumbency and 100% for elephants that were not given tolazoline. There was no significant (P less than 0.05) difference in standing time 30 or 45 minutes after tolazoline injection.  相似文献   

5.
A juvenile female black rhinoceros (Diceros bicornis) was successfully treated after overdose of drugs used for chemical restraint. Subsequent general anaesthesia for surgical reduction of a recurrent rectal prolapse was uneventful. Over a 25-minute period before transportation to the veterinary hospital, the animal received a total dose of 1.225 mg etorphine, 30 mg acepromazine and 30 mg detomidine. Based on an estimated mass of 200 kg, these corresponded to doses of 6.1 microg kg(-1) etorphine, 150 microg kg(-1) acepromazine, and 150 microg kg(-1) detomidine which constitutes considerable overdose for each drug given separately, notwithstanding the synergy that probably resulted when the three drugs were present concurrently. The estimated body mass may have substantially overestimated the actual body mass and exacerbated overdosage. The animal was recumbent and apnoeic on arrival at the hospital. Heart sounds were auscultated and a weak peripheral pulse was palpated; no pulse deficits were detected, although the heart rate was low. The trachea was intubated, inspired breath was enriched with oxygen and the lungs ventilated manually. Diprenorphine (1.5 mg) was given intravenously and spontaneous breathing resumed 11 minutes later. After induction of general anaesthesia using isoflurane, emergency surgery for correction of rectal prolapse was performed, from which the animal recovered uneventfully. The case highlights some of the practical problems that may be encountered in dealing with dangerous and unfamiliar species.  相似文献   

6.
Cardiopulmonary and behavioral effects of the following tranquilizer-opioid drug combinations were compared in conscious dogs: acepromazine (0.22 mg/kg of body weight, IV) and butorphanol (0.22 mg/kg, IV); acepromazine (0.22 mg/kg, IM) and butorphanol (0.22 mg/kg, IM); and acepromazine (0.22 mg/kg, IV) and oxymorphone (0.22 mg/kg, IV). Marked sedation and lateral recumbency that required minimal or no restraint was achieved with every drug combination. Analgesia was significantly better in dogs receiving oxymorphone than in dogs receiving butorphanol, as evaluated by response to toe pinch. There were no significant differences between the effects of the 3 drug combinations on heart rate, respiratory rate, arterial blood pressure, body temperature, and arterial pH, PCO2, PO2, and bicarbonate concentration. Heart rate, respiratory rate, and systolic arterial pressure decreased significantly over time with all drug combinations. Total recovery time (minutes from the initial injection to standing) was significantly longer in the dogs given acepromazine and oxymorphone.  相似文献   

7.
The pharmacokinetic parameters of S(+) and R(-) ibuprofen were determined in 20 elephants after oral administration of preliminary 4-, 5-, and 6-mg/kg doses of racemic ibuprofen. Following administration of 4 mg/kg ibuprofen, serum concentrations of ibuprofen peaked at 5 hr at 3.9 +/- 2.07 microg/ml R(-) and 10.65 +/- 5.64 microg/ml S(+) (mean +/- SD) in African elephants (Loxodonta africana) and at 3 hr at 5.14 +/- 1.39 microg/ml R(-) and 13.77 +/- 3.75 microg/ml S(+) in Asian elephants (Elephas maximus), respectively. Six-milligram/kilogram dosages resulted in peak serum concentrations of 5.91 +/- 2.17 microg/ml R(-) and 14.82 +/- 9.71 microg/ml S(+) in African elephants, and 5.72 +/- 1.60 microg/ml R(-) and 18.32 +/- 10.35 microg/ml S(+) in Asian elephants. Ibuprofen was eliminated with first-order kinetics characteristic of a single-compartment model with a half-life of 2.2-2.4 hr R(-) and 4.5-5.1 hr S(+) in African elephants and 2.4-2.9 hr R(-) and 5.9-7.7 hr S(+) in Asian elephants. Serum concentrations of R(-) ibuprofen were undetectable at 24 hr, whereas S(+) ibuprofen decreased to below 5 microg/ml 24 hr postadministration in all elephants. The volume of distribution was estimated to be between 322 and 356 ml/kg R(-) and 133 and 173 ml/kg S(+) in Asian elephants and 360-431 ml/kg R(-) and 179-207 ml/kg S(+) in African elephants. Steady-state serum concentrations of ibuprofen ranged from 2.2 to 10.5 microg/ml R(-) and 5.5 to 32.0 microg/ml S(+) (mean: 5.17 +/- 0.7 R(-) and 13.95 +/- 0.9 S(+) microg/ml in African elephants and 5.0 +/- 1.09 microg/ml R(-) and 14.1 +/- 2.8 microg/ml S(+) in Asian elephants). Racemic ibuprofen administered at 6 mg/kg/12 hr for Asian elephants and at 7 mg/kg/12 hr for African elephants results in therapeutic serum concentrations of this antiinflammatory agent.  相似文献   

8.
OBJECTIVE: To evaluate the anesthetic and cardiorespiratory effects of two doses of intramuscular xylazine/ketamine in llamas, and to determine if an intramuscular injection of tolazoline would shorten the anesthesia recovery time. STUDY DESIGN: Prospective randomized study. ANIMALS: Six castrated male llamas. METHODS: Each llama received a low dose (LD) (0.4 mg kg(-1) xylazine and 4 mg kg(-1) ketamine) and high dose (HD) (0.8 mg kg(-1) xylazine and 8 mg kg(-1) ketamine). Time to sedation, duration of lateral recumbency and analgesia, pulse, respiratory rate, hemoglobin oxygen saturation, arterial blood pressure, blood gases, and the electrocardiogram were monitored and recorded during anesthesia. Three llamas in each treatment were randomized to receive intramuscular tolazoline (2 mg kg(-1)) after 30 minutes of lateral recumbency. RESULTS: Onset of sedation, lateral recumbency, and analgesia was rapid with both treatments. The HD was able to provide at least 30 minutes of anesthesia in all six llamas. The LD provided only 30 minutes of anesthesia in two out of six llamas. Respiratory depression and hypoxemia were seen in the HD treatment during the first 10 minutes of lateral recumbency. Two llamas were severely hypoxemic during this period and were given nasal oxygen for five minutes. Heart rate decreased, but there were no significant changes in blood pressure. Tolazoline significantly shortened the duration of recumbency in the HD treatment. CONCLUSIONS: The HD provided more consistent clinical effects in llamas than did the LD. Intramuscular tolazoline shortens the duration of lateral recumbency in llamas anesthetized with this combination. CLINICAL RELEVANCE: Both doses appear to be very effective in providing restraint in llamas. The LD may be used for procedures requiring a short period of anesthesia or restraint. The HD could be used when a longer duration of anesthesia is desired. Supplemental oxygen should be available if using the HD. Tolazoline (IM) shortened the recovery time with this combination in llamas.  相似文献   

9.
An Asian elephant (Elephas maximus) required general anesthesia for orthopedic foot surgery. The elephant was unable to lie down, so it was placed in a custom-made sling, administered i.m. etorphine hydrochloride in the standing position, and lowered to lateral recumbency. General anesthesia was maintained with isoflurane administered through an endotracheal tube. After surgery, the isoflurane anesthesia was terminated, with immobilization maintained with additional i.v. etorphine. The elephant was lifted to the vertical position, and the immobilizing effects of etorphine were reversed with naltrexone. The suspension system and hoist for the sling were designed specifically for the elephant house.  相似文献   

10.
The pharmacokinetic parameters of phenylbutazone were determined in 18 elephants (Loxodonta africana and Elephas maximus) after single-dose oral administration of 2, 3, and 4 mg/kg phenylbutazone, as well as multiple-dose administrations with a 4-wk washout period between trials. After administration of 2 mg/kg phenylbutazone, mean serum concentrations peaked in approximately 7.5 hr at 4.3 +/- 2.02 microg/ml and 9.7 hr at 7.1 +/- 2.36 microg/ml for African and Asian elephants, respectively, while 3 mg/kg dosages resulted in peak serum concentrations of 7.2 +/- 4.06 microg/ml in 8.4 hr and 12.1 +/- 3.13 microg/ml in 14 hr. The harmonic mean half-life was long, ranging between 13 and 15 hr and 39 and 45 hr for African and Asian elephants, respectively. There was evidence of enterohepatic cycling of phenylbutazone in Asian elephants. Significant differences (P < 0.0001) in pharmacokinetic values occurred between African and Asian elephants for clearance (27.9 and 7.6 ml/hr/kg, respectively), terminal half-life (15.0 and 38.7 hr, respectively), and mean residence time (22.5 and 55.5 hr, respectively) using 2-mg/kg dosages as an example. This suggests that different treatment regimens for Asian and African elephants should be used. There were no apparent gender differences in these parameters for either elephant species.  相似文献   

11.
Anaesthesia of 2 five-year-old female African elephants (Loxodonta africana) was required for dental surgery. The animals were each premedicated with 120 mg of azaperone 60 min before transportation to the hospital. Before offloading, 1 mg etorphine was administered intramuscularly (i.m.) to each elephant to facilitate walking them to the equine induction/recovery room. For induction, 2 mg etorphine was administered i.m. to each animal. Induction was complete within 6 min. Surgical anaesthesia was induced with halothane-in-oxygen after intubation of the trunk. During surgery the mean heart rate was 61 and 45 beats/min respectively. Systolic blood pressures increased to 27.5 and 25.6 kPa respectively, and were treated with intravenous azaperone. Blood pressure decreased thereafter to a mean systolic pressure of 18.1 and 19.8 kPa, respectively. Rectal temperature was 35.6 and 33.9 degrees C at the onset of surgery, and decreased to 35.3 and 33.5 degrees C, respectively, at the end of anaesthesia. Etorphine anaesthesia was reversed with 5 mg diprenorphine at the completion of 90 min of surgery.  相似文献   

12.
ObjectiveTo compare the cardiopulmonary effects of the opioids etorphine and thiafentanil for immobilization of impala.Study designTwo-way crossover, randomized study.AnimalsA group of eight adult female impala.MethodsImpala were given two treatments: 0.09 mg kg–1 etorphine or 0.09 mg kg–1 thiafentanil via remote dart injection. Time to recumbency, quality of immobilization and recovery were assessed. Respiratory rate, heart rate (HR), mean arterial blood pressure (MAP) and arterial blood gases were measured. A linear mixed model was used to analyse the effects of treatments, treatments over time and interactions of treatment and time (p < 0.05).ResultsTime to recumbency was significantly faster with thiafentanil (2.0 ± 0.8 minutes) than with etorphine (3.9 ± 1.6 minutes; p = 0.007). Both treatments produced bradypnoea, which was more severe at 5 minutes with thiafentanil (7 ± 4 breaths minute–1) than with etorphine (13 ± 12 breaths minute–1; p = 0.004). HR increased with both treatments but significantly decreased over time when etorphine (132 ± 17 to 82 ± 11 beats minute–1) was compared with thiafentanil (113 ± 22 to 107 ± 36 beats minute–1; p < 0.001). Both treatments caused hypertension which was more profound with thiafentanil (mean overall MAP = 140 ± 14 mmHg; p < 0.001). Hypoxaemia occurred with both treatments but was greater with thiafentanil [PaO2 37 ± 13 mmHg (4.9 kPa)] than with etorphine [45 ± 16 mmHg (6.0 kPa)] 5 minutes after recumbency (p < 0.001). After 30 minutes, PaO2 increased to 59 ± 10 mmHg (7.9 kPa) with both treatments (p < 0.001).Conclusions and clinical relevanceThe shorter time to recumbency with thiafentanil may allow easier and faster retrieval in the field. However, thiafentanil caused greater hypertension, and ventilatory effects during the first 10 minutes, after administration.  相似文献   

13.
OBJECTIVE: To evaluate the effects of intranasal benzodiazepines (midazolam and diazepam), alpha(2)-agonists (xylazine and detomidine) and their antagonists (flumazenil and yohimbine) in canaries. STUDY DESIGN: Prospective randomized study. ANIMALS: Twenty-six healthy adult domesticated canaries of both sexes, weighing 18.3 +/- 1.0 g. METHODS: In Study 1 an attempt was made to determine the dose of each drug that allowed treated canaries to be laid in dorsal recumbency for at least 5 minutes, i.e. its effective dose. This involved the evaluation of various doses, during which equal volumes of the tested drug were administered slowly into each nostril. In study 2 the onset of action, duration and quality of sedation induced by each drug at its effective dose were evaluated. The efficacy of flumazenil and yohimbine in antagonizing the effects of the sedative drugs was also studied. RESULTS: In study 1 administration of 25 microL per nostril diazepam (5 mg mL(-1) solution) or midazolam (5 mg mL(-1) solution) to each bird caused adequate sedation within 1-2 minutes; birds did not move when placed in dorsal recumbency. After administration of 12 microL per nostril of either xylazine (20 mg mL(-1)) or detomidine (10 mg mL(-1)), birds seemed heavily sedated and assumed sternal recumbency but could not be placed in dorsal recumbency. Higher doses of xylazine (0.5 mg per nostril) or detomidine (0.25 mg per nostril) prolonged sedation but did not produce dorsal recumbency. In study 2 in all treatment groups, onset of action was rapid. Duration of dorsal recumbency was significantly longer (p < 0.05) with diazepam (38.4 +/- 10.5 minutes) than midazolam (17.1 +/- 2.2 minutes). Intranasal flumazenil (2.5 microg per nostril) significantly reduced recumbency time. Duration of sedation was longer with alpha(2)-agonists compared with benzodiazepines. Detomidine had the longest duration of effect (257.5 +/- 1.5 minutes) and midazolam the shortest (36.9 +/- 2.4 minutes). Nasally administered flumazenil significantly reduced the duration of sedation with diazepam and midazolam while yohimbine (120 microg per nostril) effectively antagonized the effects of xylazine and detomidine. CONCLUSION: Intranasal benzodiazepines produce rapid and effective sedation in canaries. Intranasal alpha(2) agonists produce sedation but not sustained recumbency. Specific antagonists are also effective when used by this route. Clinical relevance Intranasal sedative drug administration is an acceptable alternative method of drug delivery in canaries.  相似文献   

14.
The purpose of this study was to investigate the pharmacokinetic characteristics of amoxicillin (AMX) trihydrate in male Asian elephants, Elephas maximus, following intramuscular administration at two dosages of 5.5 and 11 mg/kg body weight (b.w.). Blood samples were collected from 0.5 up to 72 h. The concentration of AMX in elephant plasma was measured using liquid chromatography electrospray ionization mass spectrometry. AMX was measurable up to 24 h after administration at two dosages. Peak plasma concentration (Cmax) was 1.20 ± 0.39 μg/mL after i.m. administration at a dosage of 5.5 mg/kg b.w., whereas it was 3.40 ± 0.63 μg/mL at a dosage of 11 mg/kg b.w. A noncompartment model was developed to describe the disposition of AMX in Asian elephants. Based on the preliminary findings found in this research, the dosage of 5.5 and 11 mg/kg b.w. produced drug plasma concentrations higher than 0.25 mg/mL for 24 h after i.m. administration. Thereafter, i.m. administration with AMX at a dosage of 5.5 mg/kg b.w. appeared a more suitable dose than 11 mg/kg b.w. However, more studies are needed to determine AMX clinical effectiveness in elephants.  相似文献   

15.
The fatty acid components of the plasma triglycerides and the phospholipid fractions of the red blood cells of a captive group of two African (Loxodonta africana) and four Asian (Elephas maximus) elephants were investigated. All the animals received the same diet of hay, fruits and vegetables, and concentrates. A comparison with data from free-ranging African elephants or Asian work-camp elephants showed that the captive elephants had lower proportions of polyunsaturated fatty acids (PUFAs), and for several lipid fractions a higher n-6:n-3 ratio, than their counterparts in the wild or under the more natural, in terms of diet, work-camp conditions. The difference in PUFA content was smaller in the African than in the Asian elephants. The captive Asian elephants tended to have lower levels of n-3 and total unsaturated fatty acids in their red blood cells than the captive African elephants.  相似文献   

16.
OBJECTIVE: To demonstrate the efficacy of a mixture of etorphine and xylazine to safely immobilise wild buffalo (Bubalus bubalis) in the field. METHODS: Body mass was estimated (to calculate mass-specific dosages) by deriving a predictive relationship between morphometric measurements (body length, height) and mass based on a dataset collected in Vietnam, because the study animals could not be weighed in the field. RESULTS: Mass-specific dosages varied between 0.02 and 0.03 mg/kg for etorphine and between 0.14 and 0.22 mg/kg for xyalazine; induction times varied between 10 and 33 min, mean recumbency time was 68 min, and the mean time to standing was 10 min (range: 10-17 min). CONCLUSIONS: The mixture of ethorphine and xylazine was effective for immobilisation of this species and appeared to have a relatively large safety margin, based on the mass-specific dosages used. The allometric relationships described here should prove useful for those working with wild swamp buffalo.  相似文献   

17.
OBSERVATIONS: Two healthy obese, seven-year-old, female Rottweilers weighing 40 and 57 kg were submitted for cranial cruciate repair. They were premedicated with intravenous methadone (0.1 mg kg(-1)) and acepromazine (0.01 and 0.02 mg kg(-1)). Anesthesia was induced with propofol (3.6 and 2.5 mg kg(-1)) and maintained with isoflurane in oxygen using a circle breathing system. The dogs were placed in sternal recumbency and epidural injection of lidocaine/bupivacaine or lidocaine/bupivacaine/morphine (0.2 mL/kg, 8 and 11 mL) was carried out over 1.5 and 4 minutes. Epidural pressures were 79 and 72 mmHg at the end of the injections. The first dog's heart rate decreased from 80 to 65 beats minute(-1) with a second degree atrioventricular (AV) block. The arterial pressure decreased from 100 to 50 mmHg. These responded to atropine (0.01 mg kg(-1) IV). The second dog's heart rate decreased from 120 to 60 beats minute(-1) while arterial pressure decreased from 72 to 38 mmHg. No treatment was given and heart rate and arterial blood pressure returned to acceptable ranges. CONCLUSIONS: These cases suggest that large increases in epidural pressure may cause significant cardiovascular effects. This may be avoided by using lower volumes and discontinuing injection if significant back pressure is detected.  相似文献   

18.
OBJECTIVE: To evaluate the humoral immune response of Asian elephants to a primary IM vaccination with either 1 or 2 doses of a commercially available inactivated rabies virus vaccine and evaluate the anamnestic response to a 1-dose booster vaccination. ANIMALS: 16 captive Asian elephants. PROCEDURES: Elephants with no known prior rabies vaccinations were assigned into 2 treatment groups of 8 elephants; 1 group received 1 dose of vaccine, and the other group received 2 doses of vaccine 9 days apart. All elephants received one or two 4-mL IM injections of a monovalent inactivated rabies virus vaccine. Blood was collected prior to vaccination (day 0) and on days 9, 35, 112, and 344. All elephants received 1 booster dose of vaccine on day 344, and a final blood sample was taken 40 days later (day 384). Serum was tested for rabies virus-neutralizing antibodies by use of the rapid fluorescent focus inhibition test. RESULTS: All elephants were seronegative prior to vaccination. There were significant differences in the rabies geometric mean titers between the 2 elephant groups at days 35, 112, and 202. Both groups had a strong anamnestic response 40 days after the booster given at day 344. CONCLUSIONS AND CLINICAL RELEVANCE: Results confirmed the ability of Asian elephants to develop a humoral immune response after vaccination with a commercially available monovalent inactivated rabies virus vaccine and the feasibility of instituting a rabies virus vaccination program for elephants that are in frequent contact with humans. A 2-dose series of rabies virus vaccine should provide an adequate antibody response in elephants, and annual boosters should maintain the antibody response in this species.  相似文献   

19.
OBJECTIVE: To determine the anesthetic, cardiorespiratory, and metabolic effects of 4 IV anesthetic regimens in Thoroughbred horses recuperating from a brief period of maximal exercise. ANIMALS: 6 adult Thoroughbreds. PROCEDURE: Horses were preconditioned by exercising them on a treadmill. Each horse ran 4 simulated races, with a minimum of 14 days between races. Races were run at a treadmill speed that caused horses to exercise at 120% of their maximal oxygen consumption. Horses ran until fatigued or for a maximum of 2 minutes. Two minutes after exercise, horses received a combination of xylazine hydrochloride (2.2 mg/kg of body weight) and acepromazine maleate (0.04 mg/kg) IV. Five minutes after exercise, horses received 1 of the following 4 IV anesthetic regimens: ketamine hydrochloride (2.2 mg/kg); ketamine (2.2 mg/kg) and diazepam (0.1 mg/kg); tiletamine hydrochloride-zolazepam hydrochloride (1 mg/kg); and guaifenesin (50 mg/kg) and thiopental sodium (5 mg/kg). Treatments were randomized. Cardiopulmonary indices were measured, and samples of blood were collected before and at specific times for 90 minutes after each race. RESULTS: Each regimen induced lateral recumbency. The quality of induction and anesthesia after ketamine administration was significantly worse than after other regimens, and the duration of anesthesia was significantly shorter. Time to lateral recumbency was significantly longer after ketamine or guaifenesin-thiopental administration than after ketaminediazepam or tilet-amine-zolazepam administration. Arterial blood pressures after guaifenesin-thiopental administration were significantly lower than after the other regimens. CONCLUSIONS AND CLINICAL RELEVANCE: Anesthesia can be safely induced in sedated horses immediately after maximal exercise. Ketamine-diazepam and tilet-amine-zolazepam induced good quality anesthesia with acceptable perturbations in cardiopulmonary and metabolic indices. Ketamine alone and guaifenesin-thiopental regimens are not recommended.  相似文献   

20.
The potential for interactions between chloramphenicol, phenylbutazone, acepromazine and thiamylal and chloramphenicol, rifampin, and phenylbutazone were evaluated in two groups of experiments. In the first, five horses were given thiamylal intravenously (iv) (6.6 mg/kg) after pretreatment with acepromazine, and the time of recumbency was determined. Administration of chloramphenicol iv (25 mg/kg) 1 h prior to anaesthesia significantly lengthened the recumbency time from 21.8 +/- 4.8 mins to 36.0 +/- 8.3 mins. There was an apparent but not statistically significant decrease in recumbency time when phenylbutazone (4.4 mg/kg) was administered iv daily for 4 days prior to anaesthesia. In the second series of experiments, phenylbutazone (4.4 mg/kg), chloramphenicol (25 mg/kg) and rifampin (10 mg/kg) were administered in various sequences to five different horses. Chloramphenicol pretreatment produced a significant decrease in the elimination rate and rifampin a significant increase in the elimination rate of phenylbutazone. The half-life of elimination of phenylbutazone alone was about 4 h. Following four days pretreatment with rifampin it was approximately 2.7 h, it was approximately 5.6 h and 9.5 h, respectively, when chloramphenicol was administered in one dose 1 h before or two doses 12 h and 1 h before phenylbutazone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号