首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many epithelial cells the chloride conductance of the apical membrane increases during the stimulation of electrolyte secretion. Single-channel recordings from human airway epithelial cells showed that beta-adrenergic stimulation evoked apical membrane chloride channel activity, but this response was absent in cells from patients with cystic fibrosis (CF). However, when membrane patches were excised from CF cells into media containing sufficient free calcium (approximately 180 nanomolar), chloride channels were activated. The chloride channels of CF cells were similar to those of normal cells as judged by their current-voltage relations, ion selectivity, and kinetic behavior. These findings demonstrate the presence of chloride channels in the apical membranes of CF airway cells. Their regulation by calcium appears to be intact, but cyclic adenosine monophosphate (cAMP)-dependent control of their activity is defective.  相似文献   

2.
Secretory chloride channels can be activated by adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase in normal airway epithelial cells but not in cells from individuals with cystic fibrosis (CF). In excised, inside-out patches of apical membrane of normal human airway cells and airway cells from three patients with CF, the chloride channels exhibited a characteristic outwardly rectifying current-voltage relation and depolarization-induced activation. Channels from normal tissues were activated by both cAMP-dependent protein kinase and protein kinase C. However, chloride channels from CF patients could not be activated by either kinase. Thus, gating of normal epithelial chloride channels is regulated by both cAMP-dependent protein kinase and protein kinase C, and regulation by both kinases is defective in CF.  相似文献   

3.
An apical-membrane chloride channel in human tracheal epithelium   总被引:11,自引:0,他引:11  
M J Welsh 《Science (New York, N.Y.)》1986,232(4758):1648-1650
The mechanism of chloride transport by airway epithelia has been of substantial interest because airway and sweat gland-duct epithelia are chloride-impermeable in cystic fibrosis. The decreased chloride permeability prevents normal secretion by the airway epithelium, thereby interfering with mucociliary clearance and contributing to the morbidity and mortality of the disease. Because chloride secretion depends on and is regulated by chloride conductance in the apical cell membrane, the patch-clamp technique was used to directly examine single-channel currents in primary cultures of human tracheal epithelium. The cells contained an anion-selective channel that was not strongly voltage-gated or regulated by calcium in cell-free patches. The channel was also blocked by analogs of carboxylic acid that decrease apical chloride conductance in intact epithelia. When attached to the cell, the channel was activated by isoproterenol, although the channel was also observed to open spontaneously. However, in some cases, the channel was only observed after the patch was excised from the cell. These results suggest that this channel is responsible for the apical chloride conductance in airway epithelia.  相似文献   

4.
A defect in regulation of a chloride channel appears to be the molecular basis for cystic fibrosis (CF), a common lethal genetic disease. It is shown here that a chloride channel with kinetic and regulatory properties similar to those described for secretory epithelial cells is present in both T and B lymphocyte cell lines. The regulation of the channels by adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase in transformed B cells from CF patients is defective. Thus, lymphocytes may be an accessible source of CF tissue for study of this defect, for cloning of the chloride channel complex, and for diagnosis of the disease.  相似文献   

5.
Chloride channels mediate absorption and secretion of fluid in epithelia, and the regulation of these channels is now known to be defective in cystic fibrosis. Indanyl-oxyacetic acid 94 (IAA-94) is a high-affinity ligand for the chloride channel, and an affinity resin based on that structure was developed. Solubilized proteins from kidney and trachea membranes were applied to the affinity matrix, and four proteins with apparent molecular masses of 97, 64, 40, and 27 kilodaltons were eluted from the column by excess IAA-94. A potential-dependent 36Cl- uptake was observed after reconstituting these proteins into liposomes. Three types of chloride channels with single-channel conductances of 26, 100, and 400 picosiemens were observed after fusion of these liposomes with planar lipid bilayers. Similar types of chloride channels have been observed in epithelia.  相似文献   

6.
Lambert-Eaton syndrome, an autoimmune disorder frequently associated with small-cell carcinoma of the lung, is characterized by impaired evoked release of acetylcholine from the motor nerve terminal. Immunoglobulin G (IgG) antibodies from patients with the syndrome, applied to bovine adrenal chromaffin cells, reduced the voltage-dependent calcium channel currents by about 40 percent. When calcium was administered directly into the cytoplasm, however, the IgG-treated cells exhibited normal exocytotic secretion, as assayed by membrane capacitance measurement. Measurement with the fluorescent calcium indicator fura-2 indicated that the IgG treatment reduced potassium-stimulated increase in free intracellular calcium concentration. The pathogenic IgG modified neither kinetics of calcium channel activation nor elementary channel activity, suggesting that a reduction in the number of functional calcium channels underlies the IgG-induced effect. Therefore, Lambert-Eaton syndrome IgG reacts with voltage-dependent calcium channels and blocks their function, a phenomenon that can account for the presynaptic impairment characteristic of this disorder.  相似文献   

7.
Activation of apical chloride channels in the gastric oxyntic cell   总被引:1,自引:0,他引:1  
Oxyntic cells that retain distinct morphological polarity between apical and basolateral membranes were isolated from the gastric mucosa of the amphibian Necturus. Patch-clamp techniques were applied to these cells to identify apical membrane ion channels associated with hydrochloric acid secretion. A single class of voltage-dependent, inwardly rectifying chloride channels was observed in the apical membranes of both resting and stimulated (acid-secreting) oxyntic cells. Stimulation of the cells with dibutyryladenosine 3',5'-monophosphate and isobutylmethylxanthine increased channel open probability and simultaneously increased apical membrane surface area. This chloride channel is probably responsible for electrogenic chloride secretion by the gastric mucosa and may also participate in the fluid- and enzyme-secretory functions of the oxyntic cell, analogous to the chloride channels found in the apical membranes of other exocrine cells.  相似文献   

8.
Calcium-dependent chloride channels are required for normal electrolyte and fluid secretion, olfactory perception, and neuronal and smooth muscle excitability. The molecular identity of these membrane proteins is still unclear. Treatment of bronchial epithelial cells with interleukin-4 (IL-4) causes increased calcium-dependent chloride channel activity, presumably by regulating expression of the corresponding genes. We performed a global gene expression analysis to identify membrane proteins that are regulated by IL-4. Transfection of epithelial cells with specific small interfering RNA against each of these proteins shows that TMEM16A, a member of a family of putative plasma membrane proteins with unknown function, is associated with calcium-dependent chloride current, as measured with halide-sensitive fluorescent proteins, short-circuit current, and patch-clamp techniques. Our results indicate that TMEM16A is an intrinsic constituent of the calcium-dependent chloride channel. Identification of a previously unknown family of membrane proteins associated with chloride channel function will improve our understanding of chloride transport physiopathology and allow for the development of pharmacological tools useful for basic research and drug development.  相似文献   

9.
Autonomic regulation of a chloride current in heart   总被引:33,自引:0,他引:33  
In isolated heart cells, beta-adrenergic receptor stimulation induced a background current that was suppressed by simultaneous muscarinic receptor stimulation. Direct activation of adenylate cyclase with forskolin also elicited this current, suggesting regulation by adenosine 3',5'-monophosphate (cAMP). This current could be recorded when sodium, calcium, and potassium currents were eliminated by channel antagonists or by ion substitution. Alteration of the chloride equilibrium potential produced changes in the reversal potential expected for a chloride current. Activation of this chloride current modulated action potential duration and altered the resting membrane potential in a chloride gradient-dependent manner.  相似文献   

10.
Highly cooperative opening of calcium channels by inositol 1,4,5-trisphosphate   总被引:29,自引:0,他引:29  
The kinetics of calcium release by inositol 1,4,5-trisphosphate (IP3) in permeabilized rat basophilic leukemia cells were studied to obtain insight into the molecular mechanism of action of this intracellular messenger of the phosphoinositide cascade. Calcium release from intracellular storage sites was monitored with fura-2, a fluorescent indicator. The dependence of the rate of calcium release on the concentration of added IP3 in the 4 to 40 nM range showed that channel opening requires the binding of at least three molecules of IP3. Channel opening occurred in the absence of added adenosine triphosphate, indicating that IP3 acts directly on the channel or on a protein that gates it. The channels were opened by IP3 in less than 4 seconds. The highly cooperative opening of calcium channels by nanomolar concentrations of IP3 enables cells to detect and amplify very small changes in the concentration of this messenger in response to hormonal, sensory, and growth control stimuli.  相似文献   

11.
Calcium signals, pivotal in controlling cell function, can be generated by calcium entry channels activated by plasma membrane depolarization or depletion of internal calcium stores. We reveal a regulatory link between these two channel subtypes mediated by the ubiquitous calcium-sensing STIM proteins. STIM1 activation by store depletion or mutational modification strongly suppresses voltage-operated calcium (Ca(V)1.2) channels while activating store-operated Orai channels. Both actions are mediated by the short STIM-Orai activating region (SOAR) of STIM1. STIM1 interacts with Ca(V)1.2 channels and localizes within discrete endoplasmic reticulum/plasma membrane junctions containing both Ca(V)1.2 and Orai1 channels. Hence, STIM1 interacts with and reciprocally controls two major calcium channels hitherto thought to operate independently. Such coordinated control of the widely expressed Ca(V)1.2 and Orai channels has major implications for Ca(2+) signal generation in excitable and nonexcitable cells.  相似文献   

12.
Y Saimi  K Y Ling 《Science (New York, N.Y.)》1990,249(4975):1441-1444
Calmodulin is a calcium-binding protein that participates in the transduction of calcium signals. The electric phenotypes of calmodulin mutants of Paramecium have suggested that the protein may regulate some calcium-dependent ion channels. Calcium-dependent sodium single channels in excised patches of the plasma membrane from Paramecium were identified, and their activity was shown to decrease after brief exposure to submicromolar concentrations of calcium. Channel activity was restored to these inactivated patches by adding calmodulin that was isolated from Paramecium to the cytoplasmic surface. This restoration of channel activity did not require adenosine triphosphate and therefore, probably resulted from direct binding of calmodulin, either to the sodium channel itself or to a channel regulator that was associated with the patch membrane.  相似文献   

13.
Calcium channels mediate the generation of action potentials, pacemaking, excitation-contraction coupling, and secretion and signal integration in muscle, secretory, and neuronal cells. The physiological regulation of the L-type calcium channel is thought to be mediated primarily by guanine nucleotide-binding proteins (G proteins). A low molecular weight endogenous peptide has been isolated and purified from rat brain. This peptide regulates up and down the cardiac and neuronal calcium channels, respectively. In cardiac myocytes, the peptide-induced enhancement of the L-type calcium current had a slow onset (half-time approximately 75 seconds), occurred via a G protein-independent mechanism, and could not be inhibited by alpha 1-adrenergic, beta-adrenergic, or angiotensin II blockers. In neuronal cells, on the other hand, the negative effect had a rapid onset (half-time less than 500 milliseconds) and was observed on both T-type and L-type calcium channels.  相似文献   

14.
Large-conductance calcium- and voltage-activated potassium channels (BKCa) are dually activated by membrane depolarization and elevation of cytosolic calcium ions (Ca2+). Under normal cellular conditions, BKCa channel activation requires Ca2+ concentrations that typically occur in close proximity to Ca2+ sources. We show that BKCa channels affinity-purified from rat brain are assembled into macromolecular complexes with the voltage-gated calcium channels Cav1.2 (L-type), Cav2.1 (P/Q-type), and Cav2.2 (N-type). Heterologously expressed BKCa-Cav complexes reconstitute a functional "Ca2+ nanodomain" where Ca2+ influx through the Cav channel activates BKCa in the physiological voltage range with submillisecond kinetics. Complex formation with distinct Cav channels enables BKCa-mediated membrane hyperpolarization that controls neuronal firing pattern and release of hormones and transmitters in the central nervous system.  相似文献   

15.
During activation of visceral smooth muscle there is an increase in cytosolic-free calcium, but the source (intracellular calcium release or calcium influx), kinetics, and stoichiometry of this increase have not been determined. Here, the fluorescent indicator, quin2-acetoxymethyl ester, was used to measure directly cytosolic-free calcium during contraction of isolated stomach muscle cells induced by the two neuropeptides cholecystokinin-octapeptide and Met-enkephalin as well as acetylcholine. An increase in cytosolic-free calcium was seen that was (i) dependent on the concentration of contractile agonist, (ii) derived from intracellular sources (that is, not significantly affected by removal of ambient calcium or addition of a calcium channel blocker), and (iii) kinetically and stoichiometrically related to net calcium efflux and contraction. In contrast, the increase in cytosolic-free calcium induced by depolarizing concentrations of potassium was caused by influx of calcium through voltage-dependent calcium channels.  相似文献   

16.
The effects of calcium removal on the voltage-dependent potassium channels of isolated squid neurons were studied with whole cell patch-clamp techniques. When the calcium ion concentration was lowered from 10 to 0 millimolar (that is, no added calcium), potassium channel activity, identified from its characteristic time course, disappeared within a few seconds and there was a parallel increase in resting membrane conductance and in the holding current. The close temporal correlation of the changes in the three parameters suggests that potassium channels lose their ability to close in the absence of calcium and simultaneously lose their selectivity. If potassium channels were blocked by barium ion before calcium ion was removed, the increases in membrane conductance and holding current were delayed or prevented. Thus calcium is an essential cofactor in the gating of potassium channels in squid neurons.  相似文献   

17.
Atrotoxin: a specific agonist for calcium currents in heart   总被引:5,自引:0,他引:5  
A specific label for voltage-dependent calcium channels is essential for the isolation and purification of the membrane protein that constitutes the calcium channel and for a better understanding of its function. A fraction of Crotalus atrox that increases voltage-dependent calcium currents in single, dispersed guinea pig ventricular cells was isolated. In the doses used, neither sodium nor potassium currents were changed. The fraction was active in the absence of detectable phospholipase or protease activity, and the active component, designated atrotoxin, produced its effect rapidly and reversibly. The effect was produced by extracellular but not intracellular application of the agent. The increase in Ca2+ current was blocked by the Ca2+ channel blockers cobalt and nitrendipine. The active fraction completely blocked specific [3H]nitrendipine binding to guinea pig ventricular membrane preparations. The inhibition of nitrendipine binding by atrotoxin was apparently via an allosteric mechanism. Thus atrotoxin was shown to bind to the Ca2+ channel and to act as a specific Ca2+ channel agonist.  相似文献   

18.
Calcium and sodium channels in spontaneously contracting vascular muscle cells   总被引:10,自引:0,他引:10  
Electrophysiological recordings of inward currents from whole cells showed that vascular muscle cells have one type of sodium channel and two types of calcium channels. One of the calcium channels, the transient calcium channel, was activated by small depolarizations but then rapidly inactivated. It was equally permeable to calcium and barium and was blocked by cadmium, but not by tetrodotoxin. The other type, the sustained calcium channel, was activated by larger depolarizations, but inactivated very little; it was more permeable to barium than calcium. The sustained calcium channel was more sensitive to block by cadmium than the transient channel, but also was not blocked by tetrodotoxin. The sodium channel inactivated 15 times more rapidly than the transient calcium channel and at more negative voltages. This sodium channel, which is unusual because it is only blocked by a very high (60 microM) tetrodotoxin concentration but not by cadmium, is the first to be characterized in vascular muscle, and together with the two calcium channels, provides a basis for different patterns of excitation in vascular muscles.  相似文献   

19.
20.
Influx of calcium through membrane channels is an important initial step in signal transduction of growth signals. Therefore, the effects of Ras protein injection on calcium currents across the soma membrane of an identified neuron of the snail Hermissenda were examined. With the use of these post-mitotic cells, a voltage-sensitive, inward calcium current was increased 10 to 20 minutes after Harvey-ras oncoproteins were injected. The effects of oncogenic Harvey ras p21 protein (v-Ras) occurred quickly and were sustained, whereas the effects of proto-oncogenic ras protein (c-Ras) were transient. This relative potency is consistent with the activities of these oncoproteins in stimulating cell proliferation. Thus, this calcium channel may be a target for Ras action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号