首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Virgin olive oil has a high resistance to oxidative deterioration due to its tryacylglycerol composition low in polyunsaturated fatty acids and due to the presence of a group of phenolic antioxidants composed mainly of polyphenols and tocopherols. We isolated several phenolic compounds of extra virgin olive oil (phenyl-ethyl alcohols, lignans, and secoiridoids) by semipreparative high-performance liquid chromatography (HPLC) and identified them using ultraviolet, atmospheric pressure chemical ionization, and electrospray ionization MS detection. The purity of these extracts was confirmed by analytical HPLC using two different gradients. Finally, the antioxidant capacity of the isolated compounds was evaluated by measuring the radical scavenging effect on 1,1-diphenyl-2-picrylhydrazyl radical, by accelerated oxidation in a lipid model system (OSI, oxidative stability instrument), and by an electrochemical method.  相似文献   

2.
Changes occurring in the concentrations of alpha-tocopherol, total phenols, and complex phenols linked to 3,4-dihydroxyphenylethanol (fractions FII and FIV) and p-hydroxyphenylethanol (FIII) during storage of virgin olive oil under environmental conditions were studied. Under diffused light, alpha-tocopherol was decomposed by 79% in 4 months, whereas <45% of the phenols were lost during the same period. Among the phenols, FII showed the least stability, and decreased by 72% in 6 months. Total phenols, FIII, and FIV recorded reductions in the range of 57-63% in 6 months. When the oil was stored in the dark, alpha-tocopherol, total phenols, FIII, and FIV exhibited similar profiles of degradation, reducing by 39-45% in the first 6 months and 50-62% in 12 months. FII was the least stable compound in the dark and recorded a loss of 64% in 6 months and 79% in 12 months. The levels of the above antioxidants were further related to peroxide formation. Remaining levels of these compounds at PV = 20 meq/kg ranged between 50 and 73% under diffused light and between 40 and 62% in the dark.  相似文献   

3.
In this paper the relationship between virgin olive oil (VOO) phenol compounds and the formation of acrylamide in potato crisps was investigated. The phenol compositions of 20 VOO samples were screened by LC-MS, and 4 oils, characterized by different phenol compound patterns, were selected for frying experiments. Slices of potatoes were fried at 180 degrees C for 5, 10, and 15 min, and acrylamide content was determined by LC-MS. Results demonstrated that VOO phenolic compounds are not degraded during frying, and crisp color was not significantly different among the four VOOs. Acrylamide concentration in crisps increased during frying time, but the formation was faster in the oil having the lowest concentration of phenolic compounds. Moreover, the VOO having the highest concentration of ortho-diphenolic compounds is able to efficiently inhibit acrylamide formation in crisps from mild to moderate frying conditions. It was concluded that the use of ortho-diphenolic-rich VOOs can be proposed as a reliable mitigation strategy to reduce acrylamide formation in domestic deep-frying.  相似文献   

4.
There is no reported method for the quantification of methylglyoxal in ruminal fluid. The method reported here is based on the conversion of methylglyoxal to 6-methylpterin, followed by quantification of the resulting pteridinic compound by fluormetric detection using liquid chromatography. Ruminal fluid was collected and preserved with 1 M HCl at -20 degrees C. Cation exchange prior to derivatization was used to eliminate possible interfering peaks. The detection limit of 0.125 microg/mL was calculated. The recoveries were >80%, and the coefficients of variation were <15%. This method has proven to be rugged and accurate for the detection of methylglyoxal concentration in ruminal fluid collected from cows fed diets deficient in degradable intake protein as a marker. Methylglyoxal is produced by ruminal bacteria in response to low nitrogen levels in the rumen. The ruminal methylglyoxal concentration has the potential to be a useful marker to assess ruminal nitrogen status to aid in more accurate diet formulation.  相似文献   

5.
This study reports the first application of the hyphenated LC-SPE-NMR technique using postcolumn solid-phase extraction to the direct analysis of phenolic compounds in the polar part of olive oil. Apart from the identification and structure elucidation of simple phenols (hydroxytyrosol, tyrosol, vanillic acid, vanillin, p-coumaric acid, hydroxytyrosol, and tyrosol acetates), lignans (pinoresinol and 1-acetoxypinoresinol), flavonoids (apigenin and luteolin), and a large number of secoiridoid derivatives, this technique enables the identification of several new phenolic components, which had not been reported previously as constituents in the polar part of olive oil.  相似文献   

6.
Virgin olive oils produced at wide ranges of malaxation temperatures (15, 30, 45, and 60 degrees C) and times (30, 60, 90, and 120 min) in a complete factorial experimental design were discriminated with stepwise linear discriminant analysis (SLDA) revealing differences with processing conditions. Virgin olive oils produced at 15 and 60 degrees C for 30 min showed the most significant (p < 0.01) differences. Discrimination was based upon volatile and phenolic compounds detected in olive oils, peroxide value (PV), free fatty acids (FFA), ultraviolet (UV) absorbances, and oil yield. There were different discriminating variables for processing conditions illustrating the dependence of virgin olive oil quality on malaxation time and temperature. Volatile compounds were the dominant discriminating variables. Common oxidation indicators of olive oil (PV, K232, and K270) were not among the variables that significantly (p < 0.01) changed with malaxation time and temperature. Variables that discriminated both malaxation time and temperature were hexanal, 3,4-dihydroxyphenyl ethyl alcohol-decarboxymethyl elenolic acid dialdehyde (3,4-DHPEA-DEDA) and FFA, whereas 1-penten-3-ol, E-2-hexenal, octane, tyrosol, and vanillic acid significantly (p < 0.01) changed with temperature only and Z-2-penten-1-ol, (+)-acetoxypinoresinol, and oil yield changed with time only. Virgin olive oil quality was significantly influenced by malaxation temperature, whereas oil yield discriminated malaxation time. This study demonstrates the two modes of hexanal formation: enzymatic and nonenzymatic during virgin olive oil extraction.  相似文献   

7.
Twenty virgin olive oils of extra quality and different bitter intensity were submitted to sensory evaluation and to the determination of polyphenols. A linear regression analysis was carried out assuming, as an independent variable, bitter intensity perceived by tasters, as an independent variable, the concentration (mmol/kg) of dialdehydic and aldehydic forms oleuropein aglycon, and dialdehydic and aldehydic forms ligstroside aglycon. Structural confirmation of these compounds was done by online high-performance liquid chromatography-electrospray ionization-collison-induced dissociation-mass spectrometry. The results obtained demonstrate the essential role played by this compound in the bitter taste of virgin olive oil.  相似文献   

8.
This study presents the phenolic compounds profile of commercial Cornicabra virgin olive oils from five successive crop seasons (1995/1996 to 1999/2000; n = 97), determined by solid phase extraction reversed phase high-performance liquid chromatography (SPE RP-HPLC), and its relationship with oxidative stability, processing conditions, and a preliminary study on variety classification. The median of total phenols content was 38 ppm (as syringic acid), although a wide range was observed, from 11 to 76 ppm. The main phenols found were the dialdehydic form of elenolic acid linked to tyrosol (p-HPEA-EDA; 9 +/- 7 ppm, as median and interquartile range), oleuropein aglycon (8 +/- 6 ppm), and the dialdehydic form of elenolic acid linked to hydroxytyrosol (3,4-DHPEA-EDA; 5 +/- 8 ppm). In many cases the correlation with oxidative stability was higher when the sum of the dialdehydic form of elenolic acid linked to hydroxytyrosol (3,4-DHPEA-EDA) and oleuropein aglycon (r (2) = 0.91-0.96) or the sum of these two and hydroxytyrosol (r (2) = 0.90-0.97) was considered than was observed with HPLC total phenols (r (2)= 0.91-0.95) and especially with colorimetric determination of total polyphenols and o-diphenols (r (2) = 0.77-0.95 and 0.78-0.92, respectively). 3,4-DHPEA-EDA, p-HPEA-EDA, the aglycons of oleuropein and ligstroside, and HPLC total phenols content presented highly significant differences (p = 0.001-0.010) with respect to the dual- and triple-phase extraction systems used, whereas colorimetric total polyphenols content did not (p = 0.348) and o-diphenols showed a much lower significant difference (p = 0.031). The five variables that most satisfactorily classified the principal commercial Spanish virgin olive oil varieties were 1-acetoxypinoresinol, 4-(acetoxyethyl)-1,2-dihydroxybenzene (3,4-DHPEA-AC), ligstroside aglycon, p-HPEA-EDA, and RT 43.3 contents.  相似文献   

9.
A simple analytical method for the quantitative determination of phenols, flavones, and lignans in virgin olive oils was developed. The polar fraction was isolated from small amounts of oil sample (2.5 g) by solid-phase extraction (SPE) using diol-phase cartridges, and the extract was analyzed by reversed-phase HPLC coupled with diode array UV detection. Chromatographic separation of pinoresinol, cinnamic acid, and 1-acetoxypinoresinol was achieved. Repeatability (RSD < 6.5%), recovery (> 90%), and response factors for each identified component were determined. SPE on amino-phase cartridges was used for isolating acidic phenols and as an aid for phenol identification. For the first time, 2-(4-hydroxyphenyl)ethyl acetate was detected in olive oils. The aldehydic structure of the ligstroside aglycon was confirmed by NMR spectroscopy. The colorimetric determination of total o-diphenolic compounds by reaction with molybdate was consistent with their HPLC determination. Differences between results obtained by liquid-liquid extraction and SPE were not statistically significant.  相似文献   

10.
The effect of acidity, squalene, hydroxytyrosol, aldehydic form of oleuropein aglycon, hydroxytyrosyl acetate, tyrosol, homovanillic acid, luteolin, apigenin, alpha-tocopherol, and the mixtures hydroxytyrosol/hydroxytyrosyl acetate, hydroxytyrosol/tyrosol, and hydroxytyrosol/alpha-tocopherol on the oxidative stability of an olive oil matrix was evaluated. A purified olive oil was spiked with several concentrations of these compounds and, then, subjected to an accelerated oxidation in a Rancimat apparatus at 100 degrees C. Acidity, squalene, homovanillic acid, and apigenin showed negligible effect. At the same millimolar concentrations, the different o-diphenolic compounds yielded similar and significant increases of the induction time, alpha-tocopherol a lesser increase, and tyrosol a scarce one. At low concentrations of o-diphenols and alpha-tocopherol, a linear relationship between induction time and concentration was found, but at high concentrations the induction time tended toward constant values. To explain this behavior, a kinetic model was applied. The effect of the mixtures hydroxytyrosol/hydroxytyrosyl acetate was similar to that of a single o-diphenol at millimolar concentration equal to the sum of millimolar concentrations of both compounds. Concentrations of tyrosol >0.3 mmol/kg increase the induction time by 3 h. The mixtures hydroxytyrosol/alpha-tocopherol showed opposite effects depending on the relative concentrations of both antioxidants; so, at hydroxytyrosol concentrations <0.2 mmol/kg, the addition of alpha-tocopherol increased the induction time, whereas at higher hydroxytyrosol concentrations, the alpha-tocopherol diminished the stability.  相似文献   

11.
The ferric complexing capacity of four phenolic compounds, occurring in olives and virgin olive oil, namely, oleuropein, hydroxytyrosol, 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA), and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-EDA), and their stability in the presence of ferric ions were studied. At pH 3.5, all compounds formed a reversible 1:1 complex with ferric ions, but hydroxytyrosol could also form complexes containing >1 ferric ion per phenol molecule. At pH 5.5, the complexes between ferric ions and 3,4-DHPEA-EA or 3,4-DHPEA-EDA were relatively stable, indicating that the antioxidant activity of 3,4-DHPEA-EA or 3,4-DHPEA-EDA at pH 5.5 is partly due to their metal-chelating activity. At pH 7.4, a complex containing >1 ferric ion per phenol molecule was formed with hydroxytyrosol. Oleuropein, 3,4-DHPEA-EA, and 3,4-DHPEA-EDA also formed insoluble complexes at this pH. There was no evidence for chelation of Fe(II) by hydroxytyrosol or its derivatives. At all pH values tested, hydroxytyrosol was the most stable compound in the absence of Fe(III) but the most sensitive to the presence of Fe(III).  相似文献   

12.
Dietary supplements are among the most rapidly growing products in the food and personal care market with an estimated worldwide volume exceeding $60 billion. The main problem associated with dietary supplements is their legal classification. Being neither food nor medicine, they often inhabit a gray area between the two, which makes legal regulatory extremely difficult. Thus, a coexistence of products processed from the same botanical source on the same market as dietary supplement or pharmaceutical is possible. In the present study, various artichoke-based dietary supplements were investigated for their phenolic profile and compared to artichoke phytopharmaceuticals. Quantification of individual hydroxycinnamic acids and flavonoids was carried out by external calibration. For the first time, determination of several apigenin derivatives was included. Chlorogenic acid represented the major constituent in all samples investigated with the exception of juice derived from fresh flower heads, which exhibited a higher cynarin content. Furthermore, a distinction between products made from artichoke leaves or flower heads was possible. The results obtained revealed great diversity of pharmaceuticals and dietary supplements, highlighting the need of standardized quality requirements.  相似文献   

13.
The chemical modifications and partitioning toward the brine phase (5% salt) of major phenol compounds of extra virgin olive oil (EVOO) were studied in a model system formed by sealed cans filled with oil-brine mixtures (5:1, v/v) simulating canned-in-oil food systems. Filled cans were processed in an industrial plant using two sterilization conditions commonly used during fish canning. The partitioning of phenolic compounds toward brine induced by thermal processing was studied by reversed-phase high-performance liquid chromatographic analysis of the phenol fraction extracted from oils and brine. Hydroxytyrosol (1), tyrosol (2), and the complex phenolic compounds containing 1 and 2 (i.e., the dialdehydic form of decarboxymethyl oleuropein aglycon 3, the dialdehydic form of decarboxymethyl ligstroside aglycon 4, and the oleuropein aglycon 6) decreased in the oily phase after sterilization with a marked partitioning toward the brine phase. The increase of the total amount of 1 and 2 after processing, as well as the presence of elenolic acid 7 released in brine, revealed the hydrolysis of the ester bond of hydrolyzable phenolic compounds 3, 4, and 6 during thermal processing. Both phenomena (partitioning toward the water phase and hydrolysis) contribute to explain the loss of phenolic compounds exhibited by EVOO used as filling medium in canned foods, as well as the protection of n-3 polyunsaturated fatty acids in canned-in-EVOO fish products.  相似文献   

14.
Phenolic acids from 30 barley varieties (combination of hulled/hulless/two-row/six-row/regular/waxy) were investigated by HPLC following four different sample treatments: (a) simple hot water extraction, (b) extraction after acid hydrolysis, (c) acid plus alpha-amylase hydrolysis, and (d) acid plus alpha-amylase plus cellulase hydrolysis treatments. The benzoic acid (p-hydroxybenzoic, vanillic, and protocatechuic acids) and cinnamic acid derivatives (coumaric, caffeic, ferulic, and chlorogenic acids) were identified, and some of the phenolic acids were quantified after each above-mentioned treatment. The data indicated that a combination of sequential acid, alpha-amylase, and cellulase hydrolysis treatments might be applicable for release of more phenolic acids from barley.  相似文献   

15.
Olive stoning during the virgin olive oil (VOO) mechanical extraction process was studied to show the effect on the phenolic and volatile composition of the oil. To study the impact of the constitutive parts of the fruit in the composition of olive pastes during processing, the phenolic compounds and several enzymatic activities such as polyphenoloxidase (PPO), peroxidase (POD), and lipoxygenase (LPO) of the olive pulp, stone, and seed were also studied. The olive pulp showed large amounts of oleuropein, demethyloleuropein, and lignans, while the contribution of the stone and the seed in the overall phenolic composition of the fruit was very low. The occurrence of crushed stone in the pastes, during malaxation, increased the peroxidase activity in the pastes, reducing the phenolic concentration in VOO and, at the same time, modifying the composition of volatile compounds produced by the lipoxygenase pathway. The oil obtained from stoned olive pastes contained higher amounts of secoiridoid derivatives such as the dialdehydic forms of elenolic acid linked to (3,4-dihydroxyphenyl)ethanol and (p-hydroxyphenyl)ethanol (3,4-DHPEA-EDA and p-HPEA-EDA, respectively) and the isomer of the oleuropein aglycon (3,4-DHPEA-EA) and, at the same time, did not show significant variations of lignans. The stoning process modified the volatile profile of VOO by increasing the C6 unsaturated aldehydes that are strictly related to the cut-grass sensory notes of the oil.  相似文献   

16.
A method based on high-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) following fractionation by chromatography on a Sephadex LH-20 column has been developed to determine the phenolic composition of fruit of Eucalyptus globulus growing in Algeria. The presence of 18 gallotannins, 26 ellagitannins, and 2 flavonols was established. Tentative identification is provided for these compounds on the basis of UV-visible spectra and mass spectrometry data. Most compounds described in this study have not previously detected in fruit of E. globulus. Moreover, this is the first report of methyl digalloyl diglucose, 3,3'-O-dimethylellagic acid 4-O-β-glucopyranoside, ellagic acid hexose, methyl ellagic acid pentose, methyltetragalloylglucose, and valoneic acid isomers (sanguisorbic, flavogallic acid dilactone) in the genus Eucalyptus. Quantitatively, ellagic acid and its derivatives, including ellagitannins, are largely predominant.  相似文献   

17.
The possibility of preparing olive oil, with the same nutritional value and stability characteristics found in virgin olive oil, by the enrichment of refined olive oil with olive leaf polyphenols was studied. To obtain antioxidant phenols similar to those found in virgin olive oil, these components were extracted from the leaves of several olive cultivars from the Northern region of Portugal, namely, Carrasca, Ripa, Negruche, Cordovil, Verdeal, Madural, and Bical cultivars, under several conditions. The concentration of a leaf extract required for addition to refined olive oil to obtain the same stability as virgin olive oil was determined. The extract from 1 kg of leaves was sufficient to fortify 50-320 L of refined olive oil to a similar stability as a virgin olive oil sample depending on the metal concentration of the oil, cultivar, and time of the year when the leaves were picked.  相似文献   

18.
Phenolic compounds in extra virgin olive oil (EVOO) have been associated with beneficial effects for health. Indeed, these compounds exert strong antiproliferative effects on many pathological processes, which has stimulated chemical characterization of the large quantities of wastes generated during olive oil production. In this investigation, the potential of byproducts generated during storage of EVOO as a natural source of antioxidant compounds has been evaluated using solid-liquid and liquid-liquid extraction processes followed by rapid resolution liquid chromatography (RRLC) coupled to electrospray time-of-flight and ion trap mass spectrometry (TOF/IT-MS). These wastes contain polyphenols belonging to different classes such as phenolic acids and alcohols, secoiridoids, lignans, and flavones. The relationship between phenolic and derived compounds has been tentatively established on the basis of proposed degradation pathways. Finally, qualitative and quantitative characterizations of solid and aqueous wastes suggest that these byproducts can be considered an important natural source of phenolic compounds, mainly hydroxytyrosol, tyrosol, decarboxymethyl oleuropein aglycone, and luteolin, which, after suitable purification, could be used as food antioxidants or as ingredients in nutraceutical products due to their interesting technological and pharmaceutical properties.  相似文献   

19.
High-performance liquid chromatography coupled with a coulometric array detector was used to characterize the electrochemical behavior of 17 flavonoids and three cinnamic acid derivatives. The antioxidant activity of these phenolic compounds was evaluated by the ferric reducing activity power (FRAP), the oxygen radical absorbance capacity (ORAC), and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assays. All flavonoids, except kaempferol-3-rutinoside, malvidin-3-glucoside, and peonidin-3-glucoside, had two oxidation potentials (100-300 and 700-800 mV). Quercetin and myricetin had an additional oxidation wave at 400 mV. The electrochemical responses at a relatively low oxidation potential (300 mV) and the cumulative responses at medium oxidation potentials (400 and 500 mV) had the highest correlations with antioxidant activities. The highest correlations between electrochemical characteristics and antioxidant activities were found between electrochemical responses and antioxidant activities obtained in the FRAP assay and in the DPPH assay after short reaction periods. Lower correlations were revealed between electrochemical responses and antioxidant activities obtained in the ORAC assay.  相似文献   

20.
The sensory and health properties of virgin olive oil (VOO) are highly related to its volatile and phenolic composition. Oxygen control in the pastes during malaxation may be a new technological parameter to regulate enzymatic activities, such as polyphenoloxidase, peroxidase, and lipoxygenase, which affect the phenolic and volatile composition of VOO. In this work, we monitored CO2 and O2 concentrations during industrial-scale olive paste malaxation with various initial O2 concentrations within the malaxer headspace. Results show that the O2 concentration in the malaxer headspace did not affect CO2 production during processing, whereas a strong influence was observed on the changes of the phenolic composition of olive pastes and VOOs, with high correlation coefficient for the total phenols (R = 0.94), especially for oleuropein and demethyloleuropein derivatives (R = 0.81). In contrast, aroma production during malaxation was minimally affected by the O2 concentration in the malaxer headspace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号