首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
种植年限对黄土丘陵半干旱区山地枣树蒸腾的影响   总被引:1,自引:0,他引:1  
为了研究山地成年枣树的蒸腾特征以及不同种植年限枣树蒸腾耗水的差异性,运用TDP液流监测系统对山地枣树的蒸腾进行了连续3年的动态监测。通过分析发现:枣树蒸腾日内变化呈单峰变化趋势,而且随着生育期变化呈窄峰-宽峰-窄峰变化。水汽压亏缺(VPD)和光合有效辐射量(PAR)对枣树的蒸腾存在明显的时滞现象和阈值特征,蒸腾对VPD和PAR响应的上限阈值分别为3.5 k Pa和1 000~1 200μmol/(m2·s)。枣树全生育期逐日蒸腾呈现明显的单峰现象,夜间蒸腾约占全日蒸腾的5%~33%。2012—2014年不同树龄枣树蒸腾量由小到大依次为3 a、5 a、12 a,不同树龄枣树蒸腾耗水之间存在极显著的差异性(p0.01),而且年际之间的蒸腾波动变化规律不同。由于采取了树体修剪调控措施,12 a生成年枣树年际之间蒸腾差异并不显著(p0.05),各年耗水量基本稳定在293~334 mm之间。由此可见,通过控制树体规模可以调控树体的水分消耗。  相似文献   

2.
黄土丘陵区枣林土壤水分动态及其对蒸腾的影响   总被引:5,自引:0,他引:5  
为了探明黄土高原半干旱区山地枣林蒸腾和土壤水分间的关系,对山地枣林的土壤水分和枣树茎液流动态进行了连续3年的定位监测,结果表明:土壤含水率时空变异性显著,垂直方向上随着土层深度的增加,变异系数(Cv)逐渐降低。其自上而下可划分为土壤水分变化层(0~2.6 m)、土壤水分干层(2.6~6.0 m)和土壤水分恢复层(6.0~10.0 m)。枣树液流监测的参数在生育期和休眠期间具有显著性差异,根据这一特征可以对枣树生育期进行较为准确的界定。基于液流参数特征确定的生育期与观察树体萌芽、落叶确定的生育期时长基本一致,均约为160 d,但基于液流参数确定的生育期较后者约提前5 d。土壤水分的增加会使枣树液流(瞬时蒸腾)的谷值出现时间提前,峰值出现时间推后,"午休"时间缩短,旺盛蒸腾时间延长,反之亦然。枣树生育前期蒸腾均呈逐日增加趋势,而生育中后期蒸腾和土壤水分呈极显著的正相关关系。  相似文献   

3.
以枣树为研究对象,通过对自然生长枣林与矮化密植枣林、截干枣林、极端矮化的枣树及不同修剪强度枣林土壤水分进行监测,采用水量平衡法分析上述情况下枣林耗水特点及枣树水分利用效率。结果表明:自然生长枣林每年在土壤中耗水量较矮化密植枣林大6.54 mm,耗水深度较矮化密植枣林大13.3 cm,水分利用效率最小,2014、2015年分别为2.1、1.8 kg/m~3;12龄枣林实施截干处理3年,其林下土壤水分恢复深度达460 cm,每年恢复深度达153.3 cm,是形成干层速度的3.41倍;极端矮化枣树规格降低1/2,其耗水量为同龄枣林的25%,水分利用效率是同龄枣林的1.26倍;枣树不同修剪强度与其蒸腾耗水关系紧密,随着修剪强度加大枣树蒸腾耗水量减小,林下土壤含水率可提高。研究显示,枣林可以通过对枣树规格的缩小来实现枣林耗水量及水分利用效率的调控,黄土高原半干旱区年降水量波动较大,确定当地适宜修剪强度指标时,建议参考多年平均降水量来制定。  相似文献   

4.
金丝小枣蒸散和作物系数变化规律研究   总被引:1,自引:1,他引:0  
采用Probe12植物茎液流计和小型蒸发器分别测定了金丝小枣生长期间的日蒸腾和棵间蒸发。蒸腾存在日变化和季节性变化,果实膨大期蒸腾的日变化呈双峰曲线,萌芽展叶期、开花坐果期、果实成熟期和落叶期的日变化呈单峰曲线;萌芽展叶期、开花坐果期、果实膨大期、果实成熟期和落叶期的蒸腾量分别占生长季总耗水量的12.2%、16.5%、48.1%、13.2%、10.1%,金丝小枣生育期总蒸腾量346.8 mm,棵间蒸发231.7 mm,总蒸散578.5mm;棵间蒸发占总蒸散量的40.1%。枣树的作物系数随生育期变化从前期的0.27,到中期0.92,后期0.71,作物系数与冠层覆盖度呈显著正相关关系,决定系数为R2=0.758 6(P<0.01)。  相似文献   

5.
黄土丘陵半干旱区枣林露水量研究   总被引:2,自引:0,他引:2  
利用2012年和2013年叶片湿度传感器(LWS)、温湿度仪、热扩散式探针(TDP)、中子仪实测的露水强度、冠层温湿度、树干径流、土壤水分及气象站监测的气象因子,分析了枣林生育期内露水量的变化规律,探讨了其与水资源输入、输出项的关系。研究结果表明,2012年和2013年枣林露水量随生育期变化呈现递增趋势,果实成熟期达到最大值。露水总量分别为31.31、37.87 mm,分别占同期降水量、蒸腾量和蒸发量的6.87%、10.00%、17.65%和7.90%、15.00%、17.90%,露水量日平均值分别达0.44、0.47 mm。此外,露水量具有发生频率高、稳定性强、重度露水量(大于0.20 mm)比重大的特点。在枣树全生育期内,露水量作为水资源输入项会引起蒸腾量在果实膨大和成熟期显著降低(P0.05),但对蒸发量无显著影响。研究显示露水是该区枣林重要水源,是水量平衡中不可缺少的输入项。  相似文献   

6.
为研究关中冬小麦植株蒸腾和土壤蒸发规律,利用2 a冬小麦小区控水试验实测数据,率定和验证了双作物系数SIMDual_Kc模型在关中地区的适用性.用大型称重式蒸渗仪的实测蒸散量值(或水量平衡法计算值)与模型模拟值进行对比.结果表明:SIMDualKc模型可较准确地模拟关中不同水分条件下冬小麦蒸散量,且模拟精度较高.模型估算的平均绝对误差为0.643 3 mm/d.模型估算的冬小麦初期、中期和后期的基础作物系数分别为0.35,1.30,0.20.另外,模型还可以较准确地估算不同水分供应条件下的土壤水分胁迫系数、土壤蒸发量和植株蒸散量.冬小麦整个生育期,土壤蒸发主要发生在作物生育前期,中期较低,后期略微增大;植株蒸腾主要发生在作物快速生长期和生长中期,整个生育期中呈先增大后减小的趋势.  相似文献   

7.
修剪对黄土丘陵区枣树蒸腾的调控作用   总被引:5,自引:0,他引:5  
对枣树树体进行梯度修剪,采用热扩散探针(TDP)液流监测系统和中子水分仪对枣树的蒸腾和土壤水分进行同步动态监测,通过2年连续监测发现:修剪对枣树不同时间尺度上的蒸腾均有显著影响。修剪可以显著降低枣树开花坐果期和果实膨大期的树体蒸腾,降低对土壤水分的消耗。与对照处理相比,轻度、中度和重度修剪的枣树全生育期蒸腾总量分别下降31.7%、52.0%和68.6%。通过线性和非线性的分析方法,分析了蒸腾和树体规格指标之间的关系,构建了自然降水量和修剪目标产量的数学模型。提出适宜的陕北枣林可持续经营的目标产量为1.2×104kg/hm2,适宜的节水型修剪调控树体指标为冠幅体积和新稍长度。  相似文献   

8.
地表蒸散量是作物需水量估算以及农田水管理的重要依据。越冬期农田地表蒸散过程改变了土壤内部水热参数分布,进而影响春季作物的生长状况。本文对Penman-Monteith(PM)模型、Priestley-Taylor(PT)模型和Simultaneous heat and water(SHAW)模型在越冬期麦田地表蒸散量估算精度及适用性进行分析与评价,并针对冬季土壤冻结的特殊情况对模型参数进行了修正。麦田试验采集了北京市昌平区2011—2012年和2012—2013年2个冬季的气象参数与实际蒸散量。通过对比3种模型默认或经验参数下的估算值与实际测量值发现:PT模型对蒸散量的估算精度最高(PT、PM、SHAW模型RMSE分别为0.159、0.697、0.390 mm),PM和PT模型的估算整体高于实际测量值,其原因在于冬季地表经历了固-液相变和气-液相变两个过程。为了提高估算精度,在PT和PM模型中引入水分胁迫系数,并利用第1年冬季的数据对3种模型参数进行修正,结果表明,修正后的PM模型(2011—2012年RMSE为0.159 mm)和SHAW模型(2011—2012年RMSE为0.280 mm)对蒸散量的估算精度都有明显提高。将参数修正后的模型用于预测2012—2013年冬季的地表蒸散量,结果表明:3种修正模型的估算精度均较高(PT、PM、SHAW模型RMSE分别为0.267、0.252、0.253 mm)。相比之下,PT模型的计算最为简单,所需数据最少,因此,在估算越冬期麦田地表蒸散量时,可优先选择PT模型。  相似文献   

9.
需耗水机制是进行农田/果园水分管理和调控的基础。本文聚焦蒸腾耗水机制,基于贝叶斯参数估计方法对比了不同Jarvis-Stewart模型配置对干热河谷区橙子林蒸腾耗水量的模拟效果,探索了Jarvis-Stewart模型在影响因子交互效应较强条件下蒸腾耗水模拟中的适用性。结果表明,考虑不同影响因子及其限制函数会对模拟效果产生较大影响,其中考虑土壤含水率和叶面积指数对模拟效果改善作用明显,而引入饱和水汽压差和气温则不同程度地降低模拟精度;考虑的影响因子越多,模型结构越复杂,模拟效果不一定越好;筛选出的最佳模型结构基本实现了橙子林蒸腾耗水的可靠模拟,但模拟效果仍有明显改进空间,因此,应综合考虑模型复杂程度、模拟精度及不确定性等,进一步探究适宜的模型结构。研究可为果园节水灌溉技术体系建立和水分管理优化提供科学依据,也能为耗水模型的进一步发展和完善提供理论支撑。  相似文献   

10.
CERES-Wheat模型中两种蒸发蒸腾量估算方法比较研究   总被引:2,自引:0,他引:2  
基于CSM-CERES-Wheat模型中Priestley-Taylor(PT)和FAO56 Penman-Monteith(PM)2种蒸发蒸腾量估算方法分别模拟了冬小麦2011—2012年和2012—2013年2个生长季的累积蒸发蒸腾量、日蒸发蒸腾量、土壤含水率、地上干物质以及籽粒产量,并对2种方法的模拟结果进行了评价和比较。对2种方法模拟的蒸发蒸腾量值与试验区域内大型称量式蒸渗仪的实测结果进行了比较,结果表明,基于PT和PM方法的CERES-Wheat模型均可以准确地模拟干旱-半干旱地区冬小麦的蒸发蒸腾量,累积蒸发蒸腾量和日蒸发蒸腾量的误差分别小于5.4%和3.4%。同时,模型还可以模拟土壤水分动态情况,在0~20 cm土层,CERES-Wheat模型的模拟值与实测值的标准化均方根误差(RRMSEn)为39.38%,模拟结果较差,但20 cm土层以下,2种方法的模拟值与实测值的RRMSEn均小于23.1%,且对40~60 cm土层的模拟结果最好。CERES-Wheat模型基于PT和PM方法对冬小麦在2011—2012年和2012—2013年生长季地上生物量的模拟值与实测值的RRMSEn分别为13.57%和22.76%,产量的RRMSEn分别为11.80%和15.42%,模拟结果均较好。另外,CSM-CERES-Wheat模型基于PT方法模拟的蒸发蒸腾量小于基于PM方法的模拟值,而PT方法对土壤含水率的模拟结果高于PM方法的模拟结果,且PT方法对地上生物量以及产量的模拟结果高于PM方法,用2种方法模拟的成熟期地上生物量及产量的RRMSEn值均在25%以内。总之,CSM-CERES-Wheat模型采用2种方法对蒸发蒸腾量、土壤含水率及干物质和产量的模拟结果均较好,表明该模型在我国干旱-半干旱地区的应用性较好,可为该地区不同水分条件下冬小麦的生长情况提供理论支持。  相似文献   

11.
喷雾模型是内燃机CFD软件中重要的组成部分,而喷雾模型是由多种子模型组成的。正确设定喷嘴出口的边界条件和选择恰当的喷雾子模型成为成功分析和优化柴油机和汽油机高压喷雾的先决条件。本文主要讨论了喷嘴流动模型、液膜雾化模型和喷雾碰壁模型在CFD软件中的应用现状。  相似文献   

12.
基于格子玻尔兹曼法的TOPMODEL建模与应用   总被引:3,自引:0,他引:3  
依据Freeze和Harlan的水文模型蓝图思想改进TOPMODEL,在模型构建过程中利用格子玻尔兹曼法(LBM)建立汇流过程的数值模型,采用达西公式数值模型求解饱和区土壤水运动方程,运用LBM法五速模型求解非饱和区理查兹运动方程,进而构建基于栅格的分布式LBMGTOPMODEL。模型的产流方法融合了蓄满产流理论和超渗产流理论,考虑了土壤水分剖面、土壤各向异性和地形坡度等对流域产流的影响;模型的汇流方法利用地貌水文学理论,寻求水文过程与流域地形地貌的相互作用及定量关系,此模型在汇流过程中将地貌因素与水动力扩散相结合以描述坡面水流运动,解决了坡面水流的流量分配问题。以中汤流域为对象进行水文模拟应用研究,验证得到确定性系数在0.547~0.883之间,平均值为0.725,结果良好,说明模型较为可靠。  相似文献   

13.
在陕西关中地区进行了连续6年(2009年9月—2015年5月)的冬油菜非充分灌溉试验,利用STICS、DSSAT和APSIM 3种不同模型对冬油菜物候期和产量等进行模拟,比较了3种不同模型的模拟精度。结果表明,3种模型中STICS模拟精度最高,平均RARE为3. 24%,APSIM模型次之,平均RARE为8. 79%,DSSAT模型最差,平均RARE为11. 38%。其中STICS模型对物候期和产量的模拟精度均为最高,DSSAT模型对物候期的模拟精度高于APSIM模型,而APSIM模型对产量相关指标的模拟精度高于DSSAT模型。由于2012—2013年生育期内降水量较低,3种模型的模拟精度均较低,说明3个模型对干旱胁迫条件下的作物生长模拟均存在一定不足。综合比较,STICS模型的模拟精度高于DSSAT和APSIM模型,因此推荐STICS模型为关中地区冬油菜生长发育和产量形成模拟的适宜模型。  相似文献   

14.
研究根据室内尿素水解试验资料,建立了以温度、水分、时间为输入因子,尿素态氮含量为输出因子,拓扑结构为3-2-1的BP神经网络预测模型,以及Verhulst灰色预测模型和零级动力学模型,并分析比较了三种模型的预测效果。结果表明:3种预测模型均能满足模拟精度要求,所建立BP神经网络模型模拟值与实测值的平均相对误差、相关系数和决定系数分别为2.39%、0.992 4和0.984 5,具有较高的预测精度和良好的稳定性,并且模拟效果明显优于Verhulst灰色预测模型和零级动力学模型,可以较好地描述尿素水解动态变化过程,为尿素水解定量研究提供了精确的科学依据。  相似文献   

15.
三种作物水分生产函数模型的适用性比较   总被引:2,自引:0,他引:2  
通过幂级数展开等代数变换发现,3种作物水分生产函数Jensen模型、Rao模型和Stewart模型可以近似相互转化,其各自水分敏感指数近似等价。通过在各阶段均匀受旱的特殊情况下对模型模拟的相对产量随相对蒸散发量变化过程的对比,从理论上分析了3个模型的适用性。研究发现,当作物受旱较轻微时,Rao模型和Stewart模型与Jensen模型统一具有较好模拟效果,但是当作物受旱较严重时,Rao模型和Stewart模型的模拟效果不好。通过不同气候区域不同作物田间试验的数据进行了验证计算,由于水分亏缺不十分严重,参数优化后3个模型都具有较好模拟效果,而Jensen模型模拟效果更好一些,优化得到的3种模型水分敏感指数近似相同,而采用Jensen模型水分敏感指数后,Rao模型和Stewart模型的模拟效果稍有降低。  相似文献   

16.
A computerized hydraulic model developed at Utah State University was installed at a large-scale irrigation project in Northeast Thailand with the objective of improving water management in the supply and distribution system. The model was calibrated for measured field conditions by determining discharge coefficients for flow control structures, measuring seepage loss rates, and calculating hydraulic roughness coefficients. The logistical and technical problems associated with the model installation, and the respective solutions, are presented in this paper.  相似文献   

17.
导热系数是土壤热传递的基本参数,在许多领域发挥着重要作用。土壤导热系数的获得需要耗费大量的时间和精力,为了方便准确地获得土壤导热系数,将5种土壤导热系数实测值与Campbell、Johansen、C?té-Konrad以及Lu-Ren导热系数模型计算值进行了比较,并且引入了一个与土壤质地有关的参数F对误差较大的Campbell模型进行了改进。改进后的模型其NES、RMSE和PBISA范围为0.938~0.996、0.039~0.084,-0.067~0.016,明显优于原模型0.632~0.975、0.089~0.217、-0.011~0.252。然后,利用其他地区10种土壤的导热系数对改进后模型进行了验证。结果表明,土壤导热系数预测值稳定分布在1∶1线附近,修正后模型也能准确地计算其他地区土壤导热系数。  相似文献   

18.
农业干旱程度评估指标的量化分析   总被引:12,自引:1,他引:11  
在指出目前各评估指标不足的基础上,提出了农业干旱评估指标最重要的是应正确反映干旱给农业造成的损失大小的思想,并以此建立了农业干旱评估指标的量化模型,即农业干旱评估指标的静态模型和动态模型,该指标不仅能定量计算而且能较准确的反映干旱给农业造成的损失。  相似文献   

19.
潘琳 《湖南农机》2016,(1):143-144
物理是研究自然界物质的基本结构、基本运动形式及相互规律的学科.现在物理试题已结合生产实践活动,学生在解决这类题目时需要把一个复杂的实际问题转化为物理过程,即物理模型的构建.物理模型能使复杂问题得到简化处理,还可利用模型训练学生发散的逻辑思维、帮助学生建立正确的求解思路. 可见,教学过程中物理模型构建的重要性.  相似文献   

20.
Simulation of crop yield allows better planning and efficient management under different environmental inputs such as water and nitrogen application. However, most of the models are complicated and difficult to understand. Furthermore, input data are not readily available. The objectives of this investigation were to use logistic equation to quantify the influence of seasonal water and nitrogen application on maize biomass accumulation and grain yield and to develop empirical models for prediction of maize biomass and grain yield. Logistic equations were fitted to dray matter (DM) yield at different times in the growing season at different irrigation water and nitrogen levels. The parameters of the logistic equations were then fitted to irrigation water and nitrogen as empirical functions. Further, the harvest index (HI) was related to the applied water and nitrogen as another empirical model. The empirical logistic models were used to estimate the DM and grain yield based on data from another experiment in the same area. Results indicated that the empirical models predicted the DM yield during the growing season with an acceptable accuracy, but dry matter (DM) prediction at harvest was very good. The grain yield also was predicted with a very good accuracy. It is concluded that logistic equation along with the presented empirical models for prediction of constants in logistic equation and HI are appropriate for accurate prediction of DM and grain yield of maize at the study region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号