首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deslorelin acetate implants, recently licensed in Ireland and the UK for ovulation induction in mares, have been associated with prolonged interovulatory intervals in USA studies, leading to the practice of removing implants postovulation. Trial data in Australia indicate a less pronounced effect on interovulatory intervals, suggesting possible geographical variation. Objectives of the current study were to assess the effect of deslorelin implants, with and without removal on oestrous cycle length in Irish- and UK-based Thoroughbred broodmares. Data were collected retrospectively from 88 oestrous cycles. A statistically significant difference (P=0.02) was found between interovulatory intervals in mares in which the deslorelin implant was not removed, compared with administration and removal of the implant or the use of human chorionic gonadotrophin. The results suggest that implant removal when possible is advisable. The delay in subsequent ovulations was less marked than that reported in some studies from the USA. This information is useful in deciding when to schedule subsequent breeding for mares which received a deslorelin implant during the previous oestrous period and provides evidence to counter-concerns that mares treated with deslorelin implants may experience a long delay in return to oestrus if the implant is not removed.  相似文献   

2.
The absence of fertility problems in male dogs after a single treatment with deslorelin acetate (Suprelorin®) is well acknowledged. However, reports on the application of deslorelin in the bitch and information concerning fertility after implant treatment are still limited. In this retrospective study, data concerning induced and spontaneous oestruses of 39 bitches from 17 breeds, treated with deslorelin acetate implants (4.7 mg Suprelorin®, Virbac, France), were retrieved to assess post‐treatment fertility (ovulation rate, pregnancy rate and litter size). Animals were grouped according to treatment characteristics: group 1 (Gr1) – females submitted to oestrus induction, showing natural oestruses afterwards (n = 19); group 2 (Gr2) – females re‐implanted with 4.7 mg deslorelin acetate to re‐induce oestrus, showing subsequent spontaneous post‐implant oestruses (n = 7); and group 3 (Gr3) – females submitted to a 4.7 mg deslorelin acetate implant for oestrus suppression, evaluated at subsequent spontaneous post‐implant oestruses (n = 13). Comparison of fertility traits between induced and post‐treatment spontaneous oestruses in Gr1 and Gr2 (short treatments), or between spontaneous oestruses after long‐treatment schedules (Gr 3) revealed a slightly better performance in spontaneous cycles compared with induced cycles: ovulation rate post‐treatment was 97.1%, 94.1% and 94.4% and the pregnancy rate post‐treatment was 91.2%, 88.9% and 84.6% for groups 1, 2 and 3, respectively. Nevertheless, fertility in induced and post‐treatment oestruses was considered normal. Moreover, the individual litter size did not differ within groups between induced and spontaneous cycles. From these findings, we concluded that treatment with 4.7 mg deslorelin implants did not compromise the bitches' fertility in subsequent oestruses.  相似文献   

3.
Equine clinicians rely on ovulation induction agents to provide a timed ovulation in mares for optimal breeding management. Numerous studies have been performed on the efficacy of human chorionic gonadotropin (hCG) to induce ovulation in the mare, but limited clinical data are available for the new deslorelin acetate product SucroMate. This study was designed to evaluate the efficacy of SucroMate (deslorelin) in comparison with hCG to induce ovulation. American Quarter horse mares (n = 256) presented to Colorado State University for breeding management were used in this study. Mares received either deslorelin or hCG when a follicle ≥35 mm was detected by transrectal ultrasound in the presence of uterine edema. Ultrasonographic examinations were subsequently performed once daily until ovulation was detected. Deslorelin was administered to 138 mares during168 estrous cycles, and hCG was given to 118 mares during 136 estrous cycles. Mares administered deslorelin had a similar (P < .05) higher ovulation rate (89.9%) within 48 hours following drug administration than mares administered hCG (82.8%). There are no effects of season or age on ovulation rates in either treatment group. Twenty-one mares administered deslorelin and 11 mares administered hCG were monitored by transrectal ultrasound every 6 hours to detect ovulation as part of a frozen semen management program. Average intervals from deslorelin or hCG administration to ovulation were 41.4 ± 9.4 and 44.4 ± 16.5 hours, respectively. Results of this study indicate that SucroMate is effective at inducing a timed ovulation in the mare.  相似文献   

4.
Three experiments were performed to test the following hypotheses: 1) stallions and/or progesterone-estradiol-treated geldings could serve as models for the effects of a single implant of the GnRH analog, deslorelin acetate, on LH and FSH secretion by mares; and 2) multiple implants of deslorelin acetate could be used as a means of inducing ovarian atrophy in mares for future study of the mechanisms involved in the atrophy observed in some mares after a single implant. In Exp. 1, nine light horse stallions received either a single deslorelin implant (n = 5) or a sham injection (n = 4) on d 0. In Exp. 2, 12 geldings received daily injections of progesterone on d -20 through -4, followed by twice-daily injections of estradiol on d -2 to 0. On the morning of d 0, geldings received either a single deslorelin implant (n = 6) or a sham injection (n = 6). Daily injections of progesterone were resumed on d 2 through 15. In Exp. 1, plasma LH and FSH were elevated (P < 0.05) in the treatment group relative to controls at 4, 8, and 12 h after implant insertion. In the treated stallions, FSH was decreased (P < 0.05) on d 3 to 13, and LH was decreased on d 6 to 13. In Exp. 2, plasma LH and FSH were elevated (P < 0.05) at 4,8, and 12 h after deslorelin implant insertion. Plasma LH was suppressed (P < 0.05) below controls on d 2 to 7, 9, and 11 to 15; plasma FSH was suppressed (P < 0.05) on d 4 to 15. In Exp. 3, 21 mares were used to determine whether multiple doses of deslorelin would cause ovarian atrophy. Mares received one of three treatments: 1) sham injections; 2) three implants on the first day; or 3) one implant per day for 3 d (n = 7 per group). Treatment with multiple implants increased (P < 0.05) the interovulatory interval by 14.8 d and suppressed (P < 0.01) LH and FSH concentrations for approximately 25 d; no mare exhibited ovarian atrophy. In conclusion, after an initial short-term increase in LH and FSH secretion, deslorelin implants caused long-term suppression of both gonadotropins in stallions as well as in geldings treated with progesterone and estradiol to mimic the estrous cycle. It is likely that either of these models may be useful for further study of this suppression in horses. Although multiple implants in mares suppressed gonadotropin secretion longer than a single implant, the lack of ovarian atrophy indicates that the atrophy observed after a single implant in previous experiments was likely due to the susceptibility of individual mares.  相似文献   

5.
The presence of anovulatory haemorrhagic follicles during the oestrous cycle of mares causes financial impacts, slowing conception and increasing the number of services per pregnancy. Non‐steroidal anti‐inflammatory drugs (NSAIDs) such as meloxicam and phenylbutazone are used in the treatment of several disorders in mares, and these drugs can impair the formation of prostaglandins (PGs) and consequently interfere with reproductive activity. This study aimed to evaluate the effects of treatment with NSAIDs on the development of pre‐ovulatory follicles in mares. In total, 11 mares were studied over three consecutive oestrous cycles, and gynaecological and ultrasound examinations were performed every 12 h. When 32‐mm‐diameter follicles were detected, 1 mg of deslorelin was administered to induce ovulation. The first cycle was used as a control, and the mares received only a dose of deslorelin. In the subsequent cycles, in addition to receiving the same dose of deslorelin, each mare was treated with NSAIDs. In the second cycle, 4.4 mg/kg of phenylbutazone was administered, and in the third cycle, 0.6 mg/kg of meloxicam was administered once a day until ovulation or the beginning of follicular haemorrhage. All of the mares ovulated between 36 and 48 h after the induction in the control cycle. In the meloxicam cycle, 10 mares (92%) did not ovulate, while in the phenylbutazone cycle, nine mares (83%) did not ovulate. In both treatments, intrafollicular hyperechoic spots indicative of haemorrhagic follicles were observed on ultrasound. Thus, our results suggested that treatment with meloxicam and phenylbutazone at therapeutic doses induced intrafollicular haemorrhage and luteinization of anovulatory follicles.  相似文献   

6.
Following induction of ovulation with deslorelin acetate (Ovuplant), gonadotrophin concentrations are reduced in the subsequent cycle, leading to increased interovulatory intervals in some mares. This study determined whether implant removal after 2 days prevented the decrease in gonadotrophin concentrations and follicular growth during the ensuing cycle. Twenty-four mares were randomised equally into 3 groups. Group 1 ovulated spontaneously, Groups 2 and 3 received the deslorelin implant to induce ovulation. Two days after treatment, the implant was removed from Group 3. On Day 10 postovulation, FSH was lower (P = 0.009) in Group 2, but not different between Groups 1 and 3. Follicular diameter on Day 14 was less (P<0.05) in Group 2 (19.0 +/- 2.1 mm) than in Groups 1 and 3 (36.6 +/- 2.5 and 30.5 +/- 2.0 mm, respectively). Interovulatory interval was longer (P<0.05) for Group 2 (25.8 +/- 2.9 days) compared to Groups 1 and 3 (18.5 +/- 0.7 and 19.4 +/- 0.3 days, respectively). Removal of the deslorelin implant eliminated the decreased FSH secretion and the increased interovulatory interval associated with implant administration. Therefore, it is recommended that the implant be removed after ovulation is detected to prevent the occurrence of a prolonged interovulatory interval.  相似文献   

7.
This study was conducted to evaluate clinical efficacy of deslorelin for inhibiting reproduction in the bitch. Ten adult healthy bitches or bitches with mammary neoplasia for which owners were requesting suppression of cyclicity without performing gonadectomy were administered a 4.7- or a 9.4-mg deslorelin implant subcutaneously. The first implant of deslorelin was administered in anoestrus (n = 5) or in dioestrus (n = 5). Treatment was repeated every 5 months for as long as necessary based on the clinical situation of the dog and owner's desires. Some of the bitches implanted in anoestrus came in heat within 4–15 days after treatment, while none of the bitches implanted in dioestrus showed heat during treatment. Suppression of reproductive cyclicity was successfully achieved in 6/10 bitches for 1–4 years. No behavioural and local/general side-effects were observed in any of the treated bitches. The 4.7-mg deslorelin implant may work well for suppression of cyclicity provided that it is administered in dioestrus and at intervals of 4.5 months. A 9.4-mg implant may be more suitable for this use although its efficacy may also be shorter than 12 months. Owner compliance is an important limiting factor.  相似文献   

8.
In a blinded trial, the effectiveness and safety of 2.2 mg of the GnRH analog deslorelin acetate, administered in a short–term implant (STI) to normally cycling mares in estrus with a dominant ovarian follicle of 30 mm in diameter or larger, were evaluated, using a placebo implant as a negative control. A total of 39 mares received treatments at admittance with pre–randomized implants containing either 2.2 mg or 0 mg deslorelin. Mares were teased daily and examined rectally with ultrasound at 24 h intervals to determine time to Ovulation and duration of estrus. The number of breedings and the pregnancy rate at 18 (±3) and 38 (±3) days were recorded, as were systemic side effects and local reactions at the implantation sites. Pregnancies resulting from breedings during the treatment estrus and/or from breedings during the next estrus were followed and the early and late pregnancy loss rate, the number of pregnancies going to term and of live–born foals was recorded.Mean follicle diameter at treatment was not significantly different between the deslorelin and placebo treatment group with 41.6 mm and 40.8 mm, respectively. Treatment with deslorelin STI reduced the time interval to Ovulation significantly from 69.5±25.48 h to 42.7±12.35 h (p<0.001). The percentage of mares having ovulated within 48 h rose from 26.3% to 95.0%, respectively, for placebo and deslorelin STI (p<0.001). As a consequence, the duration of estrus in days and the percent of animals requiring more than 1 breeding were significantly reduced in deslorelin treated animals from 5.4 days to 4.6 days, and from 55.6% to 5.0%, respectively (p=0.009 and =0.001). The percent of mares pregnant from breedings at the treatment estrus (65.0% versus 44.4%) or the next estrus (83.3% versus 92.3%) was satisfactory and similar for deslorelin and placebo treated mares (p>0.005), and in 70.0% and 66.7% of these once or twice bred mares did pregnancies go to term and live foals were born. kw|Keywords|k]GnRH  相似文献   

9.
Deslorelin acetate (Ovuplant™, Fort Dodge), a GnRH agonist, is commonly used to induce ovulation in cycling mares. Although its efficacy in hastening ovulation has been previously reported, the effects of age of mare and month of administration on percent of mares responding and interval to ovulation have not been studied.Data was gathered from reproduction records of 376 mares receiving deslorelin acetate at the Equine Reproduction Laboratory, Colorado State University, from 1995 to 1999. Age of mare, date of administration, size of largest follicle at treatment, and interval to ovulation were recorded. Age of mare was categorized into five groups: 2–4, 5–9, 10–14, 15–19, and greater than or equal to 20 years. Date of administration was divided into four groups: March and April, May and June, July and August, and September and October.A higher (p < 0.05) percentage of mares aged 10–14 (98.5%) ovulated in response to deslorelin acetate than mares aged 2–4 or 5–9 (90.2% or 91.0%, respectively) or mares aged 15–19 or ≥ 20 (87.9% or 83.8%, respectively). Mares ≥ 20 had the lowest ovulation rate (83.8%). However, mares ≥ 20 that responded to deslorelin acetate had a shorter (p < 0.05) interval from treatment to ovulation (1.7 ± 0.1 days) than mares 2–4 and 5–9 years of age (1.9 ± 0.1 and 1.9 ± 0.0 days, respectively).Deslorelin acetate was more effective in inducing ovulation in the July and August (95.4%) (p < 0.01) and September and October (95.7%) (p = 0. 04) than in the March and April (81.1%). Mares treated in May through October also experienced shorter (p < 0.05) intervals to ovulation than mares treated in March and April.  相似文献   

10.
Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates. Other potential clinical applications include improving pregnancy rates from frozen semen, treatment of subfertility in stallions and mares, and induction of ovulation in transitional mares. The objective of this study was to evaluate the efficacy of purified equine follicle stimulating hormone (eFSH; Bioniche Animal Health USA, Inc., Athens, GA) in inducing superovulation in cycling mares. In the first experiment, 49 normal, cycling mares were used in a study at Colorado State University. Mares were assigned to 1 of 3 groups: group 1, controls (n = 29) and groups 2 and 3, eFSH-treated (n = 10/group). Treated mares were administered 25 mg of eFSH twice daily beginning 5 or 6 days after ovulation (group 2). Mares received 250 (of cloprostenol on the second day of eFSH treatment. Administration of eFSH continued until the majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting on day 5 or 6. The treatment regimen was identical to that of group 2. Mares in all 3 groups were bred with semen from 1 of 4 stallions. Pregnancy status was determined at 14 to 16 days after ovulation.In experiment 2, 16 light-horse mares were used during the physiologic breeding season in Brazil. On the first cycle, mares served as controls, and on the second cycle, mares were administered 12 mg of eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time human chorionic gonadotropin (hCG) was administered. Mares were inseminated on both cycles, and embryo collection attempts were performed 7 or 8 days after ovulation.Mares treated with 25 mg of eFSH developed a greater number of follicles (35 mm) and ovulated a greater number of follicles than control mares. However, the number of pregnancies obtained per mare was not different between control mares and those receiving 25 mg of eFSH twice daily. Mares treated with 12 mg of eFSH and administered either hCG or deslorelin also developed more follicles than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles than control mares, whereas the number of ovulations from mares receiving eFSH followed by deslorelin was similar to that of control mares. Pregnancy rate for mares induced to ovulate with hCG was higher than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of the controls. Overall, 80% of mares administered eFSH had multiple ovulations compared with 10.3% of the control mares.In experiment 2, the number of large follicles was greater in the eFSH-treated cycle than the previous untreated cycle. In addition, the number of ovulations during the cycle in which mares were treated with eFSH was greater (3.6) than for the control cycle (1.0). The average number of embryos recovered per mare for the eFSH cycle (1.9 ± 0.3) was greater than the embryo recovery rate for the control cycle (0.5 ± 0.3).In summary, the highest ovulation and the highest pregnancy and embryo recovery rates were obtained after administration of 12 mg of eFSH twice daily followed by 2500 IU of hCG. Superovulation with eFSH increased pregnancy rate and embryo recovery rate and, thus, the efficiency of the embryo transfer program.

Introduction

Induction of multiple ovulations or superovulation has been an elusive goal in the mare. Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates.[1 and 2] Superovulation also has been suggested as a critical requirement for other types of assisted reproductive technology in the horse, including oocyte transfer and gamete intrafallopian transfer. [2 and 3] Unfortunately, techniques used successfully to superovulate ruminants, such as administration of porcine follicle stimulating hormone and equine chorionic gonadotropin have little effect in the mare. [4 and 5]The most consistent therapy used to induce multiple ovulations in mares has been administration of purified equine pituitary gonadotropins. Equine pituitary extract (EPE) is a purified gonadotropin preparation containing approximately 6% to 10% LH and 2% to 4% FSH.[6] EPE has been used for many years to induce multiple ovulations in mares [7, 8 and 9] and increase the embryo recovery rate from embryo transfer donor mares. [10] Recently, a highly purified equine FSH product has become available commercially.The objectives of this study were to evaluate the efficacy of purified eFSH in inducing superovulation in cycling mares and to determine the relationship between ovulation rate and pregnancy rate or embryo collection rate in superovulated mares.

Materials and methods

Experiment 1

Forty-nine normally cycling mares, ranging in age from 3 to 12 years, were used in a study at Colorado State University. Group 1 (control) mares (n = 29) were examined daily when in estrus by transrectal ultrasonography. Mares were administered an implant containing 2.1 mg deslorelin (Ovuplant, Ft. Dodge Animal Health, Ft. Dodge, IA) subcutaneously in the vulva when a follicle 35 mm in diameter was detected. Mares were bred with frozen semen (800 million spermatozoa; minimum of 30% progressive motility) from 1 of 4 stallions 33 and 48 hours after deslorelin administration. The deslorelin implants were removed after detection of ovulation.[11] Pregnancy status was determined at 14 and 16 days after ovulation.Group 2 mares (n = 10) were administered 25 mg of eFSH (Bioniche Animal Health USA, Inc., Athens, GA) intramuscularly twice daily beginning 5 or 6 days after ovulation was detected. Mares received 250 g cloprostenol (Estrumate, Schering-Plough Animal Health, Omaha, NE) intramuscularly on the second day of eFSH treatment. Administration of eFSH continued until a majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Mares were subsequently bred with the same frozen semen used for control mares, and pregnancy examinations were performed as described above.Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting 5 or 6 days after ovulation and were administered 250 μg cloprostenol on the second day of treatment. Mares were randomly selected to receive either a deslorelin implant (n = 5) or 2500 IU of human chorionic gonadotropin (hCG) intravenously (n = 5) to induce ovulation when a majority of follicles reached a diameter of 35 mm. Mares were bred with frozen semen and examined for pregnancy as described above.

Experiment 2

Sixteen cycling light-horse mares were used during the physiologic breeding season in Brazil. Reproductive activity was monitored by transrectal palpation and ultrasonography every 3 days during diestrus and daily during estrus. On the first cycle, mares were administered 2500 IU hCG intravenously once a follicle 35 mm was detected. Mares were subsequently inseminated with pooled fresh semen from 2 stallions (1 billion motile sperm) daily until ovulation was detected. An embryo collection procedure was performed 7 days after ovulation. Mares were subsequently administered cloprostenol, and eFSH treatment was initiated. Mares received 12 mg eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time hCG was administered. Mares were inseminated and embryo collection attempts were performed as described previously.

Statistical analysis

In experiment 1, 1-way analysis of variance with F protected LSD was used to analyze quantitative data. Pregnancies per ovulation were analyzed by x2 analysis. In experiment 2, number of large follicles, ovulation rate, and embryo recovery rate were compared by Student,'s t-test. Data are presented as the mean S.E.M. Differences were considered to be statistically significant at p < .05, unless otherwise indicated.

Results

In experiment 1, mares treated with 25 mg eFSH twice daily developed a greater number of follicles 35 mm in diameter (p = .001) and ovulated a greater number of follicles (p = .003) than control mares (Table 1). However, the number of pregnancies obtained per mare was not significantly different between the control group and the group receiving 25 mg eFSH (p = .9518). Mares treated with 12 mg eFSH and administered either hCG or deslorelin to induce ovulation also developed more follicles 35 mm (p = .0016 and .0003, respectively) than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles (p = .003) than control mares, whereas the number of ovulations for mares receiving eFSH followed by deslorelin was similar to that of control mares (p = .3463). Pregnancy rate for mares induced to ovulate with hCG was higher (p = .0119) than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of controls (p = .692). Pregnancy rate per ovulation was not significantly different between control mares (54.5%) and mares treated with eFSH followed by hCG (52.9%). The lowest pregnancy rate per ovulation was for mares stimulated with 25 mg eFSH and induced to ovulate with deslorelin. The mean number of days mares were treated with 25 mg or 12 mg of eFSH was 7.8 ± 0.4 and 7.5 ± 0.5 days, respectively. Overall, 80.0% of mares administered eFSH had multiple ovulations compared with 10.3% of control mares.  相似文献   

11.
Proteomic analysis of mare uterine flush fluid provides a minimally invasive technique for studying protein changes associated with the oestrous cycle. The aim of this study was to identify differentially abundant proteins in the uterine flush fluid of mares in oestrus and dioestrus. In this study, uterine flush fluid samples were collected from eight reproductively healthy mares in either oestrus (n = 5) or dioestrus (n = 3). Proteomic analysis was performed using liquid chromatography‐tandem mass spectrometry. Of 172 proteins identified, six proteins (immunoglobulin lambda‐like polypeptide 1, haemoglobin subunit alpha, alpha‐1B‐glycoprotein, serotransferrin, apolipoprotein A‐1, and haemoglobin subunit beta) were significantly more abundant in oestrus. These proteins may contribute to the endometrial defence system through roles in inflammation, immunity or antimicrobial activity. In other species, some of these proteins have been described as immunoglobulins, negative acute phase proteins or defence agents against micro‐organisms. During dioestrus, immunoglobulin alpha‐1 chain C region‐related, complement factor I, CD 109 antigen and uterocalin, were significantly more abundant. Research in other species suggests that these four proteins contribute to the immune response through proposed immunoregulatory characteristics, complement system involvement or roles in B cell–T cell interactions. In conclusion, ten differentially abundant proteins were identified in the uterine flush fluid of mares in oestrus and dioestrus. Targeted studies on these proteins could elucidate their role in uterine defence mechanisms during the oestrous cycle in the mare.  相似文献   

12.
Synchronization of estrus (SE) in mares has been achieved, but not of ovulation (SO). Progestins followed by PGF2a are useful for SE only. In the two studies reviewed here, SE and SO were attempted by using CIDR-B, an intravaginal (itv) progesterone (1.9 g) releasing device, alone (study 1) or accompanied by estradiol (10 mg) given also itv (study 2). In both studies, Ovuplant™ (OT), an implant containing 2.1 mg of the GnRH analog deslorelin was used for the control of ovulation. Eighty cycling Hanoverian mares, 40 each in studies 1 and 2, received CIDR-B itv for 12 days, with PGF2a given once at CIDR-B removal. In study 1, 15 mares each received OT when the lead follicle had reached 40 mm (A) or on Day 3 of estrus (B); 10 controls received no OT (C). In study 2, E2 was used in addition on Day 0 (CIDR-B insertion) (10 mares; group II), or on Days 0 and 7 (10; group III) or not (20; groups I and IV). Mares in groups I to III received OT as in study 1 (A); group IV (10) remained untreated. Ovaries were examined and blood samples were taken in studies 1 and 2 from all mares in 1, 2 or 4-day intervals, respectively, and concentrations of FSH, LH, progesterone and estradiol were determined by RIA. In study 1, CIDR-B treatment achieved SE, but not SO as shown by a wide spread of days on which follicles were reaching 40 mm; OT treatment assured ovulations in 48 hours in 93.3% of treated mares vs. 44.4% in controls (P<0.05. In study 2, SE was achieved and SO, but only when estradiol was given once (itv) on Day 0 (group II) but not twice on Days 0 and 7 (group III). In both studies, CIDR-B prevented estrus but stimulated follicle growth: 8 mares in study 1 ovulated with CIDR-Bs in place and 2 in trial 2, respectively. Only when estradiol was used together with CIDR-B, follicle growth was retarded (group II) or suppressed (group III: P<0.05 vs. groups I and IV). The pregnancy rate in study 2 from a single breeding at the first estrus was 52.8% with no significant differences between groups. FSH rose until Day 4 or 8 and had dropped sharply at Day 12; after CIDR-B removal FSH rose most quickly in group II, study 2. LH declined slightly until Day 12 and rose thereafter, reaching peak levels by Day 18 or 20, respectively. In both studies, estradiol had dropped slightly by Day 4 but increase steadily thereafter until ovulation had occurred. Preovulatory rise and postovulatory drop was seen earlier in group II, study 2. Values for progesterone had risen uniformly by Day 4, had declined slowly by Day 12 and precipitously in response to PGF2a by Day 14. Treatment of cyclic mares with CIDR-B for 12 days, followed by PGF2a at the day of CIDR-B removal and by Ovuplant™ a deslorelin implant when a follicle had reached 40 mm, resulted in synchronization of estrus. Adding to this scheme a single dose of estradiol (10 mg, intravaginal) on Day 0 resulted also in synchronization of ovulation.  相似文献   

13.
The present experiment characterized the pituitary responsiveness to exogenous GnRH in the first 10 d after ovulation following commercially available deslorelin acetate implantation at the normal dosage for hastening ovulation in mares. Twelve mature, cyclic mares were assessed daily for estrus and three times weekly for ovarian activity starting May 1. Mares achieving a follicle at least 25 mm in diameter or showing signs of estrus were checked daily thereafter for ovarian characteristics. When a follicle >30 mm was detected, mares were administered either a single deslorelin acetate implant or a sham injection and then assessed daily for ovulation. On d 1, 4, 7, and 10 following ovulation, each mare was challenged i.v. with 50 microg GnRH, and blood samples were collected to characterize the LH and FSH responses. The size of the largest follicle on the day of treatment did not differ (P = 0.89) between groups. The number of days from treatment to ovulation was shorter (P < 0.001) by 2.0 d for the treated mares indicating a hastening of ovulation. The size of the largest follicle present on the days of GnRH challenge was larger in the treated mares on d 1 (P = 0.007) but smaller on d 10 (P = 0.02). In addition, the interovulatory interval was longer (P = 0.036) in the treated mares relative to controls by 4.4 d. Concentrations of FSH in plasma of the treated mares were lower (P < 0.05) than control concentrations from d 3 to 12; LH concentrations in the treated mares were lower (P < 0.05) relative to controls on d 0 to 5, d 7, and again on d 20 to 23. Progesterone values were the same (P = 0.99) for both groups from 2 d before ovulation though d 23. There was an interaction of treatment, day, and time of sampling (P < 0.001) for LH and FSH concentrations after injection of GnRH. Both the LH and FSH responses were suppressed (P < 0.009) in the treated mares relative to controls on d 1, 4, and 7; by d 10, the responses of the two groups were equivalent. In conclusion, deslorelin administration in this manner increased the interovulatory interval, consistently suppressed plasma LH and FSH concentrations, and resulted in a complete lack of responsiveness of LH and FSH to GnRH stimulation at the dose used during the first 7 d after the induced ovulation. Together, these results are consistent with a temporary down-regulation of the pituitary gland in response to deslorelin administered in this manner.  相似文献   

14.
Two groups of lactating dairy cows in each of 4 dairy herds were injected with either 0.5 mg (219 cows) or 0.3 mg (118 cows) of Ooprostenol (I.C.I.) The first group of cows were injected from Day 6 to Day 17 of the oestrous cycle (Day 0 — oestrus) and the second group from Day 6 to Day 12. The four herds were selected specifically because oestrus-detection procedures were thorough and reliable. Of the cows receiving the 0.5 mg dose rate, 54.3% were observed in oestrus within 4 days of treatment. The remainder were in groups which were: (i) in oestrus from 5 to 10 days post-treatment (20.5% with prolonged response intervals), and 11 to 20 days post-treatment (15.5% with unaltered cycle lengths); or (ii) experienced a “silent oestrus” in the immediate post-treatment period and either did not show oestrus for a further 3 weeks (6.4% in oestrus from 21 to 29 days post-treatment) or conceived to a single set-time insemination 72 h after treatment (0.9%). Use of the lower dose rate resulted in fewer cows being observed in oestrus within 72 h (43.8% v 31.4%) and a corresponding rise in the percentage experiencing a “silent oestrus” and returning to service (6.4% v 13.6%) or conceiving to set-time insemination (0.9% v 3.4%). Most of the unaltered cycle lengths occurred with cows being treated on Day 6 of the oestrous cycle. The pregnancy rate for the 171 cows observed in oestrus within 4 days of treatment and inseminated at 72 h, or 72h and 96 h, was 57.3%.

Records from this trial, as well as previous trials in which cows were injected with 0.5 mg of Cloprostenol, showed that 446 of 524 cows (85%) injected at from Day 6 to Day 17 of the oestrous cycle were observed in oestrus within 5 days (144 h) of treatment. Amongthese 446 cows, the interval to post-treatment oestrus was influenced by the stage of the cycle at injection. Whereas 89% of the oestrous responses in cows treated on Days 6 to 9 were observed within 72 h of injection, the comparable figures for cows treated on Days 10 to 13 and Days 14 to 17 were 48% and 70% respectively.

Variation in the post-treatment interval to oestrus is greater in lactating dairy cows than in heifers and is not resolved by using double-injection regimes. The reasons for this variation have not been identified. The most effective use of prostaglandins for oestrus synchronisation in lactating dairy cows requires the treatment of groups of animals at similar stages of theiroestrous cycles and their post-treatment insemination at observed oestrus. These requirements may limit the usefulness of this technology in herds with poor breeding management.  相似文献   

15.
Reasons for performing the study: The maternal recognition of pregnancy (MRP) signal in the mare has not been determined, although oestrogens have been proposed as a potential candidate. Objectives: To determine effects of intrauterine administration of oestrogen and various oils on cyclic luteolysis in the mare. Hypothesis: Intrauterine oestradiol or fatty acids may suppress luteolysis in the cycling mare when administered during late dioestrus. Methods: A single 1 ml dose of slow‐release oestradiol (10 mg/ml) in fractionated coconut oil was infused into the uterine lumen of cycling mares on Days 6, 8, 10, 12 or 14 post ovulation (n = 12 in each group). Four further groups, each of 12 mares, received an intrauterine infusion of either 1 ml of fractionated coconut oil, peanut oil, mineral oil or a slow‐release preparation of oestradiol (10 mg/ml) in mineral oil on Day 10 post ovulation. Serial blood samples were assayed for progesterone concentrations to monitor luteal function. Results: Intrauterine administration of oestradiol in fractionated coconut oil showed peak efficacy at Day 10 when luteolysis was delayed in 11/12 (92%) mares. The ability of the treatment to delay luteolysis was not significantly different when administered on Days 8 (9/12; 75%), 12 (10/12; 83%) or 14 (6/12; 50%) of dioestrus, but declined significantly when given on Day 6 (3/12; 25%). Oestradiol was not needed to initiate luteostasis since fractionated coconut oil alone or peanut oil administered at Day 10 induced the same high rate of luteal persistence (11/12; 92% for both oils). In contrast, mineral oil did not prolong luteal lifespan, either when administered alone (2/12; 17%) or combined with oestradiol (3/12; 25%). Conclusion: These results do not unequivocally rule out a possible involvement of embryonic oestrogens in MRP in the mare but suggest it is unlikely. The results demonstrate that plant oils can postpone luteolysis, suggesting they may modulate synthesis or release of prostaglandins from the mare's endometrium. Potential relevance: Administration of fractionated coconut or peanut oil on Day 10 post ovulation provides an effective and practical method of prolonging luteal function (‘pseudopregnancy’) thereby suppressing unwanted oestrous behaviour. Further studies to elucidate the mechanism by which this is achieved may increase understanding of both luteostasis and MRP signal in the mare.  相似文献   

16.
The efficacy of melengestrol acetate (MGA) to shorten the vernal transition of mares by synchronising and accelerating the first ovulation of the year after 60 days of phototherapy was determined by ultrasonographic monitoring. Sixteen mares in late transition were fed two doses of MGA (150 mg/mare/day and 100 mg/mare/day, respectively) for 10 days. A luteolytic dose of prostaglandin was administered to each mare one day after the end of MGA treatment. The presence and duration of oestrus, follicular growth, uterine oedema and presence of ovulation were monitored by ultrasonography and the cervical tone was evaluated by rectal palpation. Ovulation was detected in 87.5% of the mares treated with 150 mg MGA/mare/day for 10 days, and in 62.5% of the mares receiving 100 mg MGA/mare/day for 10 days. This was statistically different (P = 0.03) from the untreated control mares having an ovulation rate of 20%. Mares that received 150 mg MGA/day for 10 days had a mean treatment to ovulation interval of 13.1 +/- 5.97 days after the end of treatment, while mares that received 100 mg MGA/day for 10 days had a mean of 25.6 +/- 10.50 days (P = 0.01) to ovulation. These results suggest that MGA can be used for synchronising and hastening the first ovulation of the year in mares.  相似文献   

17.
Investigations using sustained-release deslorelin implants at various insertion sites have shown that this method consistently induces oestrus in anoestus bitches. However, fertility comparisons between implant insertion sites have not been performed. Anestrous beagle bitches received one 2.1 mg deslorelin implant beneath the vestibular mucosa (VM group; n = 6) or in the subcutaneous tissue between the shoulder blades (SubQ group; n = 8). Vestibular implants were removed when serum progesterone concentrations first exceeded 1.5 ng/ml. Vaginal cytologies and blood samples were collected daily and bitches were inseminated during oestrus. Serum progesterone and deslorelin concentrations were measured and pregnancy status was determined using ultrasonography. There were no differences between groups in the intervals between implant administration and the onset of proestrus, the time of the luteinizing hormone surge and the onset of cytologic diestrus. There were also no differences in the number of corpora lutea or foetuses. However, conception rate was significantly lower in the SubQ group. The pregnancy rate did not differ significantly between the VM and SubQ groups [4 out of 6 (66.7%) and 3 out of 8 (37.5%), respectively]. One bitch (16.7%) in the VM group and three bitches (37.5%) in the SubQ group suffered distinct, premature declines in serum progesterone concentrations starting 1–4 weeks after cytologic diestrus. Serum progesterone concentrations did not recover (premature luteal failure), resulting in abortion. Bitches with premature luteal failure in the SubQ group still had serum deslorelin concentrations >100 pg/ml 20 days after implant insertion, suggesting a possible association between prolonged deslorelin release and luteal failure.  相似文献   

18.
The aim of the present study was to investigate the effect of active immunization against GnRH in mature Standardbred mares (three experimental and one control mare) on antibody titres, ovarian function, hormonal levels and oestrous behaviour. The mares were individually teased with a stallion once each day. During the first part of the experiment (period I: late April until November), blood was sampled every third day during the first 3 months, thereafter once per week. In the second part of the experiment (period II: December until August), sampling was carried out every second week. Progesterone, oestradiol-17beta and LH were analysed. Rectal gynaecological examination was made with the same intervals as the blood samplings and included palpation of the genital organs and ultrasonography. The experimental mares were immunized against GnRH with a GnRH-BSA conjugate. Equimune (Vetrepharm, Bracetown, Business Park, Clonee, Co. Meath, Republic of Ireland) was used as adjuvant. The mares were immunized on four occasions (20-30 day intervals) and GnRH antibody titre was determined. All immunized mares produced antibodies against GnRH but the maximum titres as well as the duration of a greater than 10% binding capacity varied between the mares (1 : 1600 to 1 : 50 000; 5 to 12 months, respectively). After the first injection, all mares showed one oestrus and ovulated at the regular time. In two of the mares, the immunization resulted in ovarian atrophy. Their hormone levels of progesterone, oestradiol- 17beta and progesterone decreased to basal levels and the cyclical hormone pattern was interrupted from approximately 30 days onwards. They continued to show oestrous signs but with irregular durations and intervals. The third mare showed ovarian suppression only for short periods and not in both ovaries at the same time; the hormone levels were basal for only about 20 days (days 50-70) and the mare ovulated on day 75 after start of immunization. The other mares ovulated after 13.5 and 15 months, respectively. It is concluded that the effect of immunization against GnRH in mature mares was individual concerning antibody titre response and the suppression of ovarian activity and hormone levels. Mares with totally inactive ovaries continued to show oestrous signs but with irregular intervals and durations.  相似文献   

19.
SUMMARY The reproductive findings from a group of nonpregnant mares were studied. Oestrous cycle length averaged 20.6 days (range 13–34) excluding anoestrous periods, or 25 days (31–141) if included. Average oestrus length was 5.7 days (range 1–24) but from February to May it averaged 7.6 days (range 2–24) and from May to November 4.8 days (range 1–10). Seventy-eight per cent of the mares ovulated within 48 hours prior to the end of oestrus, 10% were out of oestrus before ovulation occurred, while 76% of the ovulations occurred between 4 p.m. and 8 a.m. Follicles averaged 45 mm in size the day of ovulation and multiple ovulations occurred 25.5% of the time. Oestrus without associated ovulation was very uncommon in this group of mares, whereas ovulation without oestrus occurred in 6 of the 11 mares, including one mare who ovulated 32 of 34 times without oestrus. The CL were palpable for an average period of 8.9 days (range 1–18). On occasions, a hematoma formed within the ovulation site, reached a size of 10–12 cm in length and persisted beyond the next ovulation without affecting cycle length. Dioestrus averaged 15.4 days (range 6–25) excluding anoestrus, or 19.5 days (range 6–121) if anoestrus was included. Dioestrous ovulations unaccompanied by signs of oestrus and with the cervix pale, tight, dry and sticky occurred in 10 of the 11 mares. The CL formed following dioestrous ovuations were normal, but did not affect cycle length. A syndrome of spontaneous prolongation of the corpus luteum for 2 to 3 months was observed in 6 of the 11 mares. Oestrus was not manifested during this time, but considerable follicular activity and, in some instances, ovulation was observed. Hysterectomised mares and some mares with pyometra had prolonged CL and follicular activity with a few ovulating similar to mares with spontaneously-prolonged CL. Other mares with pyometra had normal cyclic ovarian activity. Evidence suggests that the endometrium had been destroyed by the infection in the anoestrus mares with pyometra and, thus, was incapable of forming and/or releasing luteolytic factors. Experimental intrauterine inoculation of Streptococcus zooepidemicus during dioestrus reduced oestrous cycle length in 5 of 7 inoculations, whereas inoculations during oestrus failed to alter cycle length.  相似文献   

20.
Reasons for performing study: Active immunisation against gonadotrophin‐releasing hormone (GnRH) provides a reversible method for control of oestrous behaviour and fertility in mares. Previous reports failed to demonstrate the interval to resumption of cyclic ovarian activity after GnRH‐vaccination. Hypothesis: Administration of the GnRH‐vaccine Improvac in a large group of mares of various ages will result in effective, reliably reversible suppression of ovarian activity within a 2 year period. Methods: The mares, subdivided into 3 age categories, were vaccinated twice (with a 35 day interval) using 400 µg Improvac and monitored via blood samples until Day 720 after initial vaccination for serum progesterone concentration determination by radioimmune assay and anti‐GnRH antibody titre by enzyme immunoassay. Samples were collected until individuals resumed cyclic ovarian activity. Results: All mares showed suppression of cyclic ovarian activity by clinical examination and serum progesterone concentration (SPC) ≤1 nmol/l by Day 70 and 92.2% resumed cyclic activity by SPC at Day 720 with a mean interval = 417.8 days (s.d. ± 23.9; range 232–488 days, median 344 days). A significant age effect (P = 0.028) on the interval, but not on GnRH‐antibody titre response, was observed between the youngest (≤4 years) and oldest (≥11 years) categories. Conclusions: Immunising adult mares of all ages with Improvac resulted in a reversible suppression of cyclic ovarian activity in most mares. An age effect, with the youngest mares showing a longer interval to reversibility, was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号