首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Riparian ecosystems are important elements in landscapes that often provide a disproportionately wide range of ecosystem services and conservation benefits. Their protection and restoration have been one of the top environmental management priorities across the US over the last several years. Despite the level of concern, visibility and management effort, little is known about trends in riparian habitats. Moreover, little is known about whether or not cumulative efforts to restore and protect riparian zones and floodplains are affecting the rates of riparian habitat change nationwide. To address these issues, we analyzed riparian land cover change between the early 1970s and the late 1990s/early 2000s using existing spatial data on hydrography and land cover. This included an analysis of land cover changes within 180 m riparian buffer zones, and at catchment scales, for 42,363 catchments across 63 ecoregions of the continental US. The total amount of forest and natural land cover (forests, shrublands, wetlands) in riparian buffers declined by 0.7 and 0.9%, respectively across the entire study period. Gains in grassland/shrubland accounted for the 0.2% lower percentage of total natural land cover loss relative to forests. Conversely, urban and developed land cover (urban, agriculture, and mechanically disturbed lands) increased by more than 1.3% within riparian buffers across the entire study period. Despite these changes, we documented an opposite trend of increasing proportions of natural and forest land cover in riparian buffers versus the catchment scale. We surmise that this trend might reflect a combination of natural recovery and cumulative efforts to protect riparian ecosystems across the US. However, existing models limit our ability to assess the impacts of these changes on specific ecosystem services. We discuss the implications of changes observed in this study on the sustainability of ecosystem services. We also recommend opportunties for future riparian change assessments.  相似文献   

2.
Riparian ecosystems are interfaces between aquatic and terrestrial environments recognized for their nutrient interception potential in agricultural landscapes. Stream network maps from a broad range of map resolutions have been employed in watershed studies of riparian areas. However, map resolution may affect important attributes of riparian buffers, such as the connectivity between source lands and small stream channels missing in coarse resolution maps. We sought to understand the influence of changing stream map resolution on measures of the river network, near-stream land cover, and riparian metrics. Our objectives were: (1) to evaluate the influence of stream map resolution on measures of the stream network, the character and extent of near-stream zones, and riparian metrics; (2) to compare patterns of variation among different physiographic provinces; and (3) to explore how predictions of nutrient retention potential might be affected by the resolution of a stream map. We found that using fine resolution stream maps significantly increased our estimates of stream order, drainage density, and the proportion of watershed area occurring near a stream. Increasing stream map resolution reduced the mean distance to source areas as well as mean buffer width and increased the frequency of buffer gaps. Measures of percent land cover within 100 m of streams were less sensitive to stream map resolution. Overall, increasing stream map resolution led to reduced estimates of nutrient retention potential in riparian buffers. In some watersheds, switching from a coarse resolution to a fine resolution stream map completely changed our perception of a stream network from well buffered to largely unbuffered. Because previous, broad-scale analyses of riparian buffers used coarse-resolution stream maps, those studies may have overestimated landscape-level buffer prevalence and effectiveness. We present a case study of three watersheds to demonstrate that interactions among stream map resolution and land cover patterns make a dramatic difference in the perceived ability of riparian buffers to ameliorate effects of agricultural activities across whole watersheds. Moreover, stream map resolution affects inferences about whether retention occurs in streams or riparian zones.  相似文献   

3.
Riparian buffers, a best management practice (BMP), lessen environmental impacts caused by pasture-based agriculture by excluding livestock from streams and removing sediment and nutrients from overland flow before they enter the watercourse. Geospatial data analysis of digital elevation models (DEMs) can improve BMP placement by ensuring that BMPs intercept flow paths. Livestock heavy use areas and riparian buffers within 100?m of the stream were digitized using aerial photography of Spring Creek watershed (Pennsylvania, USA). Flow path lengths and stream entry points from heavy use areas, from all agricultural land uses, and from a random sample of points were calculated using 1, 10, and 30?m DEM resolutions. Euclidean distances identified the nearest stream entry point regardless of topography. Drainage areas for each streambank cell were evaluated using each DEM resolution. Topographic calculations differed significantly from Euclidean, with median differences of 14.3?m for flow path length and 24.1?m between stream entry points for the 10?m DEM. Existing buffers intercepted runoff from only 23?% of heavy use areas. Drainage areas ranged from one to hundreds of DEM cells. Any DEM is an arbitrary representation of a continuous surface; both resolution and processing method affect the suitability of such a representation for any given purpose. We found that 30?m DEMs did not provide reasonable flow path estimates at the scale of grazing agriculture in this region, while Pennsylvania 1?m DEMs were minimally smoothed during DEM preparation, resulting in erratic flow paths. The 10?m DEMs were the most suitable available DEM product, and should be used in conjunction with site visits for planning pasture BMP placement.  相似文献   

4.
We assessed the influence of land cover at multiple spatial extents on fish assemblage integrity, and the degree to which riparian forests can mitigate the negative effects of catchment urbanization on stream fish assemblages. Riparian cover (urban, forest, and agriculture) was determined within 30 m buffers at longitudinal distances of 200 m, 1 km, and the entire network upstream of 59 non-nested fish sampling locations. Catchment and riparian land cover within the upstream network were highly correlated, so we were unable to distinguish between those variables. Most fish assemblage variables were related to % forest and % urban land cover, with the strongest relations at the largest spatial extent of land cover (catchment), followed by riparian land cover in the 1-km and 200-m reach, respectively. For fish variables related to urban land cover in the catchment, we asked whether the influence of riparian land cover on fish assemblages was dependent on the amount of urban development in the catchment. Several fish assemblage metrics (endemic richness, endemic:cosmopolitan abundance, insectivorous cyprinid richness and abundance, and fluvial specialist richness) were all best predicted by single variable models with % urban land cover. However, endemic:cosmopolitan richness, cosmopolitan abundance, and lentic tolerant abundance were related to % forest cover in the 1-km stream reach, but only in streams that had <15% catchment urban land cover. In these cases, catchment urbanization overwhelmed the potential mitigating effects of riparian forests on stream fishes. Together, these results suggest that catchment land cover is an important driver of fish assemblages in urbanizing catchments, and riparian forests are important but not sufficient for protecting stream ecosystems from the impacts of high levels of urbanization.  相似文献   

5.
Riparian communities have been well-studied along individual streams, but not within the context of networks of which streams are a part. To study networks, hydrologists use Horton–Strahler ordering to assign streams to discrete categories in which increasing numerical value (ω) reflects increasing size of the stream and complexity of the network. A key use of this classification method has been to demonstrate scaling relations between hydrogeomorphic variables and order. These relations now provide a foundation to determine how ecological processes are associated with the geometry and topology of river networks. We used geographic information systems (GIS) to map and measure the stream network and riparian vegetation of the Whitewater River basin of eastern Kansas, USA. With the resulting data, we tested if (1) riparian vegetation scaled with order, and (2) riparian vegetation at confluences of two streams differed from that found along constituent streams. Most characteristics of riparian vegetation scaled with order. In confluence zones, density and diversity of riparian vegetation generally were equivalent to that of the largest constituent stream. Scaling relations between riparian vegetation and order provide a framework to quantify the role of riparian vegetation in the water balance of stream networks and a tool to predict area and distribution of riparian vegetation from network topology.  相似文献   

6.

Context

In agricultural landscapes, riparian forests are used as a management tool to protect stream ecosystems from agricultural activities. However, the ability of managers to target stream protection actions is limited by incomplete knowledge of scale-specific effects of agriculture in riparian corridor and catchment areas.

Objectives

We evaluated scale-specific effects of agricultural cover in riparian corridor and catchment areas on stream benthic macroinvertebrate (BMI) communities to develop cover targets for agricultural landscapes.

Methods

Sixty-eight streams assigned to three experimental treatments (Forested Riparian, Agricultural Riparian, Agricultural Catchment) were sampled for BMIs. Ordination and segmented regression were used to assess impacts of agriculture on BMI communities and detect thresholds for BMI community metrics.

Results

BMI communities were not associated with catchment agricultural cover where the riparian corridor was forested, but were associated with variation in catchment agriculture where riparian forests had been converted to agriculture. Trait-based metrics showed threshold responses at greater than 70% agricultural cover in the catchment. Increasing agriculture in the riparian corridor was associated with less diverse and more tolerant BMI communities. Eight metrics exhibited threshold responses ranging from 45 to 75% agriculture in the riparian corridor.

Conclusions

Riparian forest effectively buffered streams from agricultural activity even where catchment agriculture exceeds 80%. We recommend managers prioritize protection of forested riparian corridors and that restore riparian corridors where agricultural cover is near identified thresholds be a secondary priority. Adoption of catchment management actions should be effective where the riparian corridor has been converted to agriculture.
  相似文献   

7.
Although it is widely recognized that animal movement may be facilitated by corridors and hindered by the matrix, the influence of matrix composition on the use of corridors still remain poorly understood. We used translocation experiments and state-space models to assess if the movement response of the frugivorous bird, the austral thrush, to riparian forest strips varies depending on matrix composition (open pasture vs. eucalyptus plantation). In agricultural landscapes, the directions displayed by most birds when moving in the open pasture matrix were consistent with an edge-following behavior. Riparian strips also functioned as passive drift fences in agricultural landscapes, with strips being used as conduits for movements once birds entered into a riparian strip. Our results suggest that visual perception of riparian strips by birds is hampered by the complex habitat structure in the eucalyptus matrix and that the use of riparian strips as habitat is conditioned by the surrounding matrix.  相似文献   

8.
Differences in the strength of species-habitat relationships across scales provide insights into the mechanisms that drive these relationships and guidance for designing in situ monitoring programs, conservation efforts and mechanistic studies. The scale of our observation can also impact the strength of perceived relationships between animals and habitat conditions. We examined the relationship between geographic information system (GIS)-based landscape data and Endangered Species Act-listed anadromous Pacific salmon (Oncorhynchus spp.) populations in three subbasins of the Columbia River basin, USA. We characterized the landscape data and ran our models at three spatial scales: local (stream reach), intermediate (6th field hydrologic units directly in contact with a given reach) and catchment (entire drainage basin). We addressed three questions about the effect of scale on relationships between salmon and GIS representations of landscape conditions: (1) at which scale does each predictor best correlate with salmon redd density, (2) at which scale is overall model fit maximized, and (3) how does a mixed-scale model compare with single scale models (mixed-scale meaning models that contain variables characterized at different spatial scales)? We developed mixed models to identify relationships between redd density and candidate explanatory variables at each of these spatial scales. Predictor variables had the strongest relationships with redd density when they were summarized over the catchment scale. Meanwhile strong models could be developed using landscape variables summarized at only the local scale. Model performance did not improve when we used suites of potential predictors summarized over multiple scales. Relationships between species abundance and land use or intrinsic habitat suitability detected at one scale cannot necessarily be extrapolated to other scales. Therefore, habitat restoration efforts should take place in the context of conditions found in the associated watershed or landscape.  相似文献   

9.
Historical records provide information to land managers and landscape ecologists attempting to understand current trajectories in altered landscapes. In this study, we synthesized a heterogeneous array of historical sources to reconstruct historical land cover in California’s Santa Clara Valley (a.k.a. “Silicon Valley”). To increase and assess accuracy, we used the triangulation of overlapping, independent data sources and the application of certainty level standards. The region has been subject to extensive urbanization, so we also evaluated the applicability of historical landscape reconstructions to the altered landscape. We found evidence for five major land cover types prior to significant Euro–American modification. Valley freshwater marsh, wet meadow, alkali meadow, willow grove, and valley oak savanna have all experienced extreme decline (85–100%) since Euro–American settlement. However, comparison of historical land cover patterns to contemporary land use suggested several new strategies for environmental recovery, despite the limitations of surrounding urbanization. We also observed a temporal shift in riparian habitat along the mainstem of Coyote Creek, from a relatively open mixture of riparian scrub, sycamore woodland, and unvegetated gravel bars to dense riparian forest, likely resulting from stream flow regulation. By identifying former land cover patterns we provide a basis for evaluating local landscape change and setting restoration targets, including the identification of residual features and under-recognized land cover types. These findings suggest that reliable historical landscape reconstructions can be developed in the absence of standardized historical data sources and can be of value even in highly modified regions.  相似文献   

10.
The biological integrity of stream ecosystems depends critically on human activities that affect land use/cover along stream margins and possibly throughout the catchment. We evaluated stream condition using an Index of Biotic Integrity (IBI) and a habitat index (HI), and compared these measures to landscape and riparian conditions assessed at different spatial scales in a largely agricultural Midwestern watershed. Our goal was to determine whether land use/cover was an effective predictor of stream integrity, and if so, at what spatial scale. Twenty-three sites in first-through third-order headwater streams were surveyed by electrofishing and site IBIs were calculated based on ten metrics of the fish collection. Habitat features were characterized through field observation, and site HIs calculated from nine instream and bank metrics. Field surveys, aerial photograph interpretation, and geographic information system (GIS) analyses provided assessments of forested land and other vegetation covers at the local, reach, and regional (catchment) scales. The range of conditions among the 23 sites varied from poor to very good based on IBI and HI scores, and habitat and fish assemblage measures were highly correlated. Stream biotic integrity and habitat quality were negatively correlated with the extent of agriculture and positively correlated with extent of wetlands and forest. Correlations were strongest at the catchment scale (IBI with % area as agriculture, r2=0.50, HI with agriculture, r2=0.76), and tended to become weak and non-significant at local scales. Local riparian vegetation was a weak secondary predictor of stream integrity. In this watershed, regional land use is the primary determinant of stream conditions, able to overwhelm the ability of local site vegetation to support high-quality habitat and biotic communities.  相似文献   

11.

Context

Land use change and forest degradation have myriad effects on tropical ecosystems. Yet their consequences for low-order streams remain very poorly understood, including in the world´s largest freshwater basin, the Amazon.

Objectives

Determine the degree to which physical and chemical characteristics of the instream habitat of low-order Amazonian streams change in response to past local- and catchment-level anthropogenic disturbances.

Methods

To do so, we collected field instream habitat (i.e., physical habitat and water quality) and landscape data from 99 stream sites in two eastern Brazilian Amazon regions. We used random forest regression trees to assess the relative importance of different predictor variables in determining changes in instream habitat response variables.

Results

Multiple drivers, operating at multiple spatial scales, were important in determining changes in the physical habitat and water quality of the sites. Although we found few similarities in modelled relationships between the two regions, we observed non-linear responses of specific instream characteristics to landscape change; for example 20 % of catchment deforestation resulted in consistently warmer streams.

Conclusions

Our results highlight the importance of local riparian and catchment-scale forest cover in shaping instream physical environments, but also underscore the importance of other land use changes and activities, such as road crossings and upstream agriculture intensification. In contrast to the property-scale focus of the Brazilian Forest code, which governs environmental regulations on private land, our results reinforce the importance of catchment-wide management strategies to protect stream ecosystem integrity.
  相似文献   

12.
Influences of upland and riparian land use patterns on stream biotic integrity   总被引:11,自引:2,他引:11  
Snyder  C.D.  Young  J.A.  Villella  R.  Lemarié  D.P. 《Landscape Ecology》2003,18(7):647-664
We explored land use, fish assemblage structure, and stream habitat associations in 20 catchments in Opequon Creek watershed, West Virginia. The purpose was to determine the relative importance of urban and agriculture land use on stream biotic integrity, and to evaluate the spatial scale (i.e., whole-catchment vs riparian buffer) at which land use effects were most pronounced. We found that index of biological integrity (IBI) scores were strongly associated with extent of urban land use in individual catchments. Sites that received ratings of poor or very poor based on IBI scores had > 7% of urban land use in their respective catchments. Habitat correlations suggested that urban land use disrupted flow regime, reduced water quality, and altered stream channels. In contrast, we found no meaningful relationship between agricultural land use and IBI at either whole-catchment or riparian scales despite strong correlations between percent agriculture and several important stream habitat measures, including nitrate concentrations, proportion of fine sediments in riffles, and the abundance of fish cover. We also found that variation in gradient (channel slope) influenced responses of fish assemblages to land use. Urban land use was more disruptive to biological integrity in catchments with steeper channel slopes. Based on comparisons of our results in the topographically diverse Opequon Creek watershed with results from watersheds in flatter terrains, we hypothesize that the potential for riparian forests to mitigate effects of deleterious land uses in upland portions of the watershed is inversely related to gradient.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

13.

Context

Riparian buffers reduce subsurface nutrient losses to streams but there is a clear need to identify and prioritize locations for riparian buffer placement to optimize buffer performance. Scaling relations can be used to extrapolate hydrologic behavior within river networks and across catchments.

Objectives

We combined field and laboratory measurements of soils and groundwater quality collected at five riparian monitoring sites of different stream-order scales with landscape analysis to accomplish the following objectives: (1) evaluate the degree to which riparian zone patterns and processes are scaled in a pre-Wisconsin glacial landscape; and (2) use the scaling information to identify optimal placement of riparian buffers in the landform region for nutrient reduction benefits.

Results

Results indicated that there is proportional scaling of riparian zones within the region in terms of sediment texture, groundwater geochemistry and, to a lesser extent, in groundwater nutrient concentrations.

Conclusions

Placement of riparian buffers should be a priority along low order streams (< 3rd order) to best utilize the scaling characteristics of regional riparian zones, although buffering 2nd and 3rd streams may be the most cost effective locations.
  相似文献   

14.
Cities continue to grow worldwide, and the highly modified urban landscape becomes an inhospitable environment for many species because the natural vegetation cover is commonly fragmented, and the remnants are often isolated. Protected Areas (PAs) located surrounding or within urban areas may not achieve their goal of protecting local or regional biodiversity. Thus, an urban ecological network is essential to support their PAs. Thus, this study aimed at assessing the PAs connectivity in an urban landscape in Brazil and understanding whether urban forest fragments can support an urban ecological network. Besides spatial models based on functional connectivity and graph theory, we used participatory techniques to design the resistance surface and the least-cost paths (LCPs) for Atlantic Forest birds. The results showed critical paths (LCPs), important areas for restoration programs for improving PAs connectivity, and essential forest fragments for conservation and restoration. Although the landscape has a forest structure with 1873 forest fragments and 516 links through which the LCPs were structured, most forest fragments and LCPs cannot provide the necessary support for the PAs connectivity. The current ecological network is dependent on forest fragments neighboring (outside PAs) and the flux dispersions occurred mainly in the peri-urban areas. Riparian zones and anthropic grasslands also showed importance for the PAs connectivity. We identified only 28 forest fragments spatially connected, presenting several sizes, and located near large forest areas, relevant PAs, and riparian zones. Six of these forest fragments, smaller than ten hectares and strategically located in the urban matrix, were indicated for restoration actions. The current low connectivity among PAs brings the importance of native vegetation restoration in the riparian zone and anthropic grassland and the importance of the periurban areas to promote biodiversity connectivity in the urban landscape.  相似文献   

15.
The potentials for the use of large wood (LW) in stream restoration projects were quantified for streams in Central Europe (total stream length assessed 44,880 km). Two different restoration methods were investigated: recruitment (passively allowing natural LW input) and placement (active introduction of large wood pieces into streams). The feasibility and potential effects of each method were studied for three different scenarios, according to the land-uses to be permitted on the floodplain: (a) only natural-non woody vegetation, forest, and fallow land occur on the floodplain, (b) including pasture and meadow, (c) including pasture, meadow, and cropland. Hydromorphological data were used to identify stream sections where LW recruitment or placement are feasible, and the likely effects of both restoration methods on channel hydromorphology were predicted. Passive recruitment is feasible for only a small percentage of the total channel length in the study area (~1% for all three scenarios). Active placement of LW can be used in much higher extent: 6.5% if only natural non-woody vegetation, forest, and fallow land can occur on the floodplain, 20.2% if stream segments bordered by pasture and meadow are included, and 32% if cropland is included in addition. There are differences between (1) the lower-mountainous area, where a large number of channel segments can be restored yielding an improvement from a moderate/good to a good/excellent morphological status and (2) the lowlands, where only a small number of channel segments can be restored yielding an improvement from a bad to a moderate morphological state. The latter upgrading might be sufficient to reach a ‘good ecological status’ as defined by the EU Water Framework Directive. The results of this study show the suitability of large wood recruitment and placement as appropriate methods to markedly improve the hydromorphological state of a large proportion of the streams in the study area.  相似文献   

16.
We used aerial photography from 1960, 1974 and 1994 to quantify meso-scale spatial and temporal invasion patterns of an exotic, leguminous shrub, Acacia nilotica, in a northern Australia grassland. The invasion was episodic, the population remained relatively stable from 1960 to 1974, then exhibited a large increase from 1974 to 1994. This episodic increase did not appear to be regulated by climate or changes in landscape attributes, but rather, paralleled a shift to cattle (a more effective dispersal vector) as the dominant domestic livestock species, implicating more effective dispersal as the proximate cause. We also measured much greater A. nilotica densities adjacent to water courses than in upland areas, suggesting either better quality habitat or greater numbers of seeds deposited there by cattle. We infer that habitat quality rather than seed availability regulates shrub density as density remained constant from 1974 to 1994 in areas that were occupied in the 1960 to 1974 period. There was a significant effect of landscape position on population dynamics of the invasion. A. nilotica increased in both extent and density in riparian areas but remained static in upland areas during 1960–1974. There were significant increases in extent and density in both riparian and upland areas in 1974–1994. Thus, it is likely that landscapes with fewer or smaller riparian areas would be less susceptable to the invasion of A. nilotica. However, the ability of domestic stock to transport seeds across distances that exceed the distance between riparian areas renders this argument less relevant.The transition from open grassland to shrubland may be irreversible in a practical sense, so control programs should emphasize containment of the invasion to existing levels as well as restoration of invaded areas. This will require strategies, tactics and operations to 1) control cattle movement, 2) exclude cattle from seed producing A. nilotica populations, 3) detect new populations early in the life cycle and implement broadscale, low-cost control techniques and 4) prioritize eradication efforts on populations that act as a seed source to uninfested areas.  相似文献   

17.
Efforts to quantify the effects of riparian buffers on watershed nutrient discharges have been confounded by a commonly used analysis, which estimates buffer potential as the percentage of forest or wetland within a fixed distance of streams. Effective landscape metrics must instead be developed based on a clear conceptual model and quantified at the appropriate spatial scale. We develop new metrics for riparian buffers in two stages of increasing functional specificity to ask: (1) Which riparian metrics are more distinct from measures of whole watershed land cover? (2) Do functional riparian metrics provide different information than fixed-distance metrics? (3) How do these patterns vary within and among different physiographic settings? Using publicly available geographic data, we studied 503 watersheds in four different physiographic provinces of the Chesapeake Bay Drainage. In addition to traditional fixed-distance measures, we calculated mean buffer width, gap frequency, and measures of variation in buffer width using both “unconstrained” metrics and “flow-path” metrics constrained by surface topography. There were distinct patterns of relationship between watershed and near-stream land cover in each physiographic province and strong correlations with watershed land cover confounded fixed-distance metrics. Flow-path metrics were more independent of watershed land cover than either fixed-distance or unconstrained measures, but both functional metrics provided greater detail, interpretability, and flexibility than the fixed-distance approach. Potential applications of the new metrics include exploring the potential for land cover patterns to influence water quality, accounting for buffers in statistical nutrient models, quantifying spatial patterns for process-based modeling, and targeting management actions such as buffer restoration.  相似文献   

18.
The erection of dams alters habitat and longitudinal stream connectivity for migratory diadromous and potamodromous fish species and interrupts much of organismal exchange between freshwater and marine ecosystems. In the US, this disruption began with colonial settlement in the seventeenth century but little quantitative assessment of historical impact on accessible habitat and population size has been conducted. We used published surveys, GIS layers and historical documents to create a database of 1356 dams, which was then analyzed to determine the historical timeline of construction, use and resultant fragmentation of watersheds in Maine, US. Historical information on the anadromous river herring was used to determine natural upstream boundaries to migration and establish total potential alewife spawning habitat in nine watersheds with historic populations. Dams in Maine were constructed beginning in 1634 and by 1850 had reduced accessible lake area to less than 5% of the virgin 892 km2 habitat and 20% of virgin stream habitat. There is a near total loss of accessible habitat by 1860 that followed a west-east pattern of European migration and settlement. Understanding historic trends allows current restoration targets to be assessed and prioritized within an ecosystem-based perspective and may inform expectations for future management of oceanic and freshwater living resources.  相似文献   

19.
Different organisms respond to spatial structure in different terms and across different spatial scales. As a consequence, efforts to reverse habitat loss and fragmentation through strategic habitat restoration ought to account for the different habitat density and scale requirements of various taxonomic groups. Here, we estimated the local density of floodplain forest surrounding each of ~20 million 10-m forested pixels of the Upper Mississippi and Illinois River floodplains by using moving windows of multiple sizes (1?C100 ha). We further identified forest pixels that met two local density thresholds: ??core?? forest pixels were nested in a 100% (unfragmented) forested window and ??dominant?? forest pixels were those nested in a >60% forested window. Finally, we fit two scaling functions to declines in the proportion of forest cover meeting these criteria with increasing window length for 107 management-relevant focal areas: a power function (i.e. self-similar, fractal-like scaling) and an exponential decay function (fractal dimension depends on scale). The exponential decay function consistently explained more variation in changes to the proportion of forest meeting both the ??core?? and ??dominant?? criteria with increasing window length than did the power function, suggesting that elevation, soil type, hydrology, and human land use constrain these forest types to a limited range of scales. To examine these scales, we transformed the decay constants to measures of the distance at which the probability of forest meeting the ??core?? and ??dominant?? criteria was cut in half (S 1/2, m). S 1/2 for core forest was typically between ~55 and ~95 m depending on location along the river, indicating that core forest cover is restricted to extremely fine scales. In contrast, half of all dominant forest cover was lost at scales that were typically between ~525 and 750 m, but S 1/2 was as long as 1,800 m. S 1/2 is a simple measure that (1) condenses information derived from multi-scale analyses, (2) allows for comparisons of the amount of forest habitat available to species with different habitat density and scale requirements, and (3) can be used as an index of the spatial continuity of habitat types that do not scale fractally.  相似文献   

20.
Temporal changes in a hydrological system and riparian ecosystem were examined with reference to land-use conversion in order to clarify the linkages between these two systems. First, the hydrological system of the Toikanbetsu River basin was divided into three components that measure water retention, inundation and conveyance. Variation in the hydrological system was expressed as a basis of delineating the three components and estimating their functions. The rainfall-runoff system was also examined using a model which can predict responses of surface-, subsurface- and base flows on rainfall intensity. Second, areas and fragmentation of the riparian forests, maximum stream temperature in summer and amount of coarse woody debris (CWD) were selected as parameters indicating the condition of the riparian ecosystem. Temporal changes in stream temperature and amount of CWD were estimated using multiple regression analysis and analysis of variance, respectively. The results indicated that the hydrological system has been altered since the 1970s, increasing flood peaks by 1.5–2.5 times and shortening peak appearance by 7 hours. Riparian forests have been disappearing since the 1960s due to extensive development of agricultural lands and river channelization. The summer maximum stream temperature increased from 22 °C in 1947 to 28 °C at present. The amount of CWD should substantially decrease with river channelization and associated forest cutting. Fish favoring cool water, such as masu salmon, could survive in 1947 although they are forced to migrate to cooler forested upstream tributaries now. The ecological systems were closely related to and distinctly altered by land-use. Finally, we propose a new perspective for understanding the two interrelated systems. Riparian ecosystems can be restored by restoring water retention and inundation functions, which also reduce the flood hazard generated by elevated flood peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号