首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 756 毫秒
1.
Context

Black bear connectivity studies are scarce in the southern distribution where the species is endangered. The identification of corridors is a strategy to promote conservation in human-modified landscapes.

Objectives

Assess and validate long-distance corridors in the southern black bear distribution using resistance models, occurrence records, and radio-telemetry of an individual that dispersed between the Sierras Madres of Mexico.

Methods

We acquired black bear occurrence records from several sources and telemetry records from one dispersal individual in northern Mexico. We generated ensemble habitat suitability models and resistance landscape surfaces to generate cumulative resistant kernel and least-cost paths to identify connectivity core areas and corridors of importance through Natural Protected Areas. Finally, we assessed long-distance corridors.

Results

We developed three habitat suitability models for black bears southern range; one matches the current distribution of the species. When including radio-tracking records, the landscape resistance is reduced to arid sites with low habitat suitability. We used least resistance connectivity surfaces to merge subpopulations within each Sierra Madre. The long-distance corridor models indicate narrow routes that require individuals with plastic behavioral dispersal capacity. Almost 20% of the connectivity core areas are within Natural Protected Areas. These are the first large-scale corridors using resistance layers in the southern black bear distribution.

Conclusions

Corridors can be functional for a range of temperate and dry habitat species. Landscape connectivity models should include the monitoring of dispersal individuals to identify the plasticity of organisms and the tangible barriers for them.

  相似文献   

2.
Context

Modifications in natural landcover generally result in a loss of habitat availability for wildlife and it’s persistence will depend largely on their spatial configuration and functional connections. Argenteohyla siemersi is a threatened and endemic amphibian whose habitat is composed of forest patches near rivers and water bodies edges.

Objectives

This study aimed to analyse the accessible habitat for this species and identify key elements to maintain its ecological network in two different types of land uses: an anthropized area with extensive cattle raising and a protected area.

Methods

The structural and functional characteristics of both landscapes were analyzed. The connectivity at landscape level and the contribution of each habitat patch were evaluated through simulation models with different dispersion distances in the context of the graph theory.

Results

In both landscapes, nine types of landcover were identified with different compositions. Remarkable differences were found in habitat connectivity for this amphibian species between both landscapes. As the percentage of dispersion distance increases, reachable habitat increases as well, although with higher percentages in the protected area. Two corridors were identified in the protected landscape and one in the rangeland one; patches and key links constituted all of them.

Conclusions

The present work provides spatially explicit results with a quantitative basis. It could be useful as a tool for the development of management plans aimed at guaranteeing the functionality of the ecological network for this endangered species and, therefore, contribute to its long-term conservation.

  相似文献   

3.
Predicting the vulnerability of landscapes to both the initial colonisation and the subsequent spread of invasive species remains a major challenge. The aim of this study was to assess the relative importance of sub-patch level factors and landscape factors for the invasion of the megaforb Heracleum mantegazzianum. In particular, we tested which factors affect the presence in suitable habitat patches and the cover-percentage within invaded patches. For this purpose, we used standard (logistic) regression modelling techniques. The regression analyses were based on inventories of suitable habitat patches in 20 study areas (each 1 km2) in cultural landscapes of Germany. The cover percentage in invaded patches was independent from landscape factors, except for patch shape, and even unsatisfactorily explained by sub-patch level factors included in the analysis (R 2 = 0.19). In contrast, presence of H. mantegazzianum was affected by both local and landscape factors. Woody habitat structure decreased the occurrence probability, whereas vicinity to transport corridors (rivers, roads), high habitat connectivity, patch size and perimeter-area ratio of habitat patches had positive effects. The significance of corridors and habitat connectivity shows that dispersal of H. mantegazzianum through the landscape matrix is limited. We conclude that cultural landscapes of Germany function as patch-corridor-matrix mosaics for the spread of H. mantegazzianum. Our results highlight the importance of landscape structure and habitat configuration for invasive spread. Furthermore, this study shows that both local and landscape factors should be incorporated into spatially explicit models to predict spatiotemporal dynamics and equilibrium stages of plant invasions.  相似文献   

4.
Context

Many connectivity metrics have been used to measure the connectivity of a landscape and to evaluate the effects of land-use changes and potential mitigation measures. However, there are still gaps in our understanding of how to accurately quantify landscape connectivity.

Objectives

A number of metrics only measure between-patch connectivity, i.e. the connectivity between different habitat patches, which can produce misleading results. This paper demonstrates that the inclusion of within-patch connectivity is important for accurate results.

Methods

The behavior of two metrics is compared: the Connectance Index (CONNECT), which measures only between-patch connectivity, and the effective mesh size (meff), which includes both within-patch and between-patch connectivity. The connectivity values of both metrics were calculated on a set of simulated landscapes. Twenty cities were then added to these landscapes to calculate the resulting changes in connectivity.

Results

We found that when using CONNECT counter-intuitive results occurred due to not including within-patch connectivity, such as scenarios where connectivity increased with increasing habitat loss and fragmentation. These counter-intuitive results were resolved when using meff. For example, landscapes with low habitat amount may be particularly sensitive to urban development, but this is not reflected by CONNECT.

Conclusions

Applying misleading results from metrics like CONNECT can have detrimental effects on natural ecosystems, because reductions in within-patch connectivity by human activities are neglected. Therefore, this paper provides evidence for the crucial need to consider the balance between within-patch connectivity and between-patch connectivity when calculating the connectivity of landscapes.

  相似文献   

5.
Bu  Hongliang  McShea  William J.  Wang  Dajun  Wang  Fang  Chen  Youping  Gu  Xiaodong  Yu  Lin  Jiang  Shiwei  Zhang  Fahui  Li  Sheng 《Landscape Ecology》2021,36(9):2549-2564
Context

The downlisting of giant panda (Ailuropoda melanoleuca) from Endangered to Vulnerable in IUCN Red List confirms the effectiveness of current conservation practices. However, future survival of giant panda is still in jeopardy due to habitat fragmentation and climate change. Maintaining movement corridors between habitat patches in the newly established Giant Panda National Park (GPNP) is the key for the long-term sustainability of the species.

Objectives

We evaluated the impacts of conversion from natural forest to plantation on giant panda habitat connectivity, which is permitted within collective forests and encouraged by the policies for the economic benefits of local communities. We modeled distribution of giant panda habitat in Minshan Mountains which harbors its largest population, and delineated movement corridors between core habitat patches under management scenarios of different forest conversion proportions.

Methods

We applied an integrated species distribution model based on inhomogeneous Poisson point process to combine presence-only data and site occupancy data, and least-cost models to identify potential movement corridors between core habitat patches.

Results

We found that current distribution of plantation has not damaged connectivity between core habitat patches of giant panda. However, it could be severely degraded if mass conversion occurred. Since the GPNP incorporates all the core habitats identified from our model, controlling natural forest conversion inside GPNP would maintain the movement corridors for giant panda.

Conclusions

We recommend no expansion of plantations inside the GPNP, and improving collective forest management for expansion of ecological forest in adjoining habitat patches.

  相似文献   

6.
Context

Functional connectivity is vital for plant species dispersal, but little is known about how habitat loss and the presence of green infrastructure interact to affect both functional and structural connectivity, and the impacts of each on species groups.

Objectives

We investigate how changes in the spatial configuration of species-rich grasslands and related green infrastructure such as road verges, hedgerows and forest borders in three European countries have influenced landscape connectivity, and the effects on grassland plant biodiversity.

Methods

We mapped past and present land use for 36 landscapes in Belgium, Germany and Sweden, to estimate connectivity based on simple habitat spatial configuration (structural connectivity) and accounting for effective dispersal and establishment (functional connectivity) around focal grasslands. We used the resulting measures of landscape change to interpret patterns in plant communities.

Results

Increased presence of landscape connecting elements could not compensate for large scale losses of grassland area resulting in substantial declines in structural and functional connectivity. Generalist species were negatively affected by connectivity, and responded most strongly to structural connectivity, while functional connectivity determined the occurrence of grassland specialists in focal grasslands. Restored patches had more generalist species, and a lower density of grassland specialist species than ancient patches.

Conclusions

Protecting both species rich grasslands and dispersal pathways within landscapes is essential for maintaining grassland biodiversity. Our results show that increases in green infrastructure have not been sufficient to offset loss of semi-natural habitat, and that landscape links must be functionally effective in order to contribute to grassland diversity.

  相似文献   

7.
Graph-based analysis is a promising approach for analyzing the functional and structural connectivity of landscapes. In human-shaped landscapes, species have become vulnerable to land degradation and connectivity loss between habitat patches. Movement across the landscape is a key process for species survival that needs to be further investigated for heterogeneous human-dominated landscapes. The common frog (Rana temporaria) was used as a case study to explore and provide a graph connectivity analysis framework that integrates habitat suitability and dispersal responses to landscape permeability. The main habitat patches influencing habitat availability and connectivity were highlighted by using the software Conefor Sensinode 2.2. One of the main advantages of the presented graph-theoretical approach is its ability to provide a large choice of variables to be used based on the study’s assumptions and knowledge about target species. Based on dispersal simulation modelling in potential suitable habitat corridors, three distinct patterns of nodes connections of differing importance were revealed. These patterns are locally influenced by anthropogenic barriers, landscape permeability, and habitat suitability. And they are affected by different suitability and availability gradients to maximize the best possible settlement by the common frog within a terrestrial habitat continuum. The study determined the key role of landscape-based approaches for identifying the “availability-suitability-connectivity” patterns from a local to regional approach to provide an operational tool for landscape planning.  相似文献   

8.
Context

Graph-theoretic evaluations of habitat connectivity often rely upon least-cost path analyses to evaluate connectedness of habitat patches, based on an underlying cost surface. We present two improvements upon these methods.

Objectives

As a case study to test these methods, we evaluated habitat connectivity for the endangered San Martin titi monkey (Plecturocebus oenanthe) in north-central Peru, to prioritize habitat patches for conservation.

Methods

First, rather than using a single least-cost path between habitat patches, we analyzed multigraphs made up of multiple low-cost paths. This allows us to differentiate between patches connected through a single narrow corridor, and patches connected by a wide swath of traversable land. We evaluate potential movement pathways by iteratively removing paths and recomputing connectivity metrics. Second, instead of performing a sensitivity analysis by varying costs uniformly across the landscape, we generated landscapes with spatially varying costs.

Results

This approach produced a more informative assessment of connectivity than standard graph analyses. Of the 4340 habitat patches considered across the landscape, we identified the most important 100, those frequently ranked highly through repeated network modifications, for multiple metrics and cost surfaces.

Conclusions

These methods represent a novel approach for assessing connectivity, better accounting for spatial configurations of habitat patches and uncertainty in cost surfaces. The ability to identify habitat patches with more possible routes to other patches is of interest for resiliency planning and prioritization in the face of continued habitat loss and climate change. These methods should be broadly applicable to conservation planning for other wildlife species.

  相似文献   

9.
Context

Functional connectivity of semiaquatic species is poorly studied despite that freshwater ecosystems are amongst the most threatened worldwide due to habitat deterioration. The Neotropical otter, Lontra longicaudis, is a threatened species that represents a good model to evaluate the effect of landscape-riverscape features on genetic structure and gene flow of freshwater species.

Objectives

We aimed to assess the spatial genetic structure of L. longicaudis and to evaluate the landscape-riverscape attributes that shape its genetic structure and gene flow at local sites (habitat patches) and between sites (landscape matrix).

Methods

We conducted the study in three basins located in Veracruz, Mexico, which have a high degree of ecosystem deterioration. We used a non-invasive genetic sampling and a landscape genetics individual-based approach to test the effect stream hierarchical structure, isolation-by-distance, and isolation-by-resistance on genetic structure and gene flow.

Results

We found genetic structure that corresponded to the latitudinal and altitudinal heterogeneity of the landscape and riverscape, as well as to the hierarchical structure of the streams. Open areas and steep slopes were the variables affecting genetic structure at local sites, whereas areas with suitable habitat conditions, higher ecosystem integrity and larger streams enhanced gene flow between sites.

Conclusions

The landscape-riverscape characteristics that maintain functional connectivity of L. longicaudis differed between the upper, middle, and lower basins. Our results have important implications for the conservation of the species, including the maintenance of larger suitable areas in Actopan and the necessity to improve connectivity in Jamapa, through the establishment of biological corridors.

  相似文献   

10.
Assessing landscape connectivity is important to understand the ecology of landscapes and to evaluate alternative conservation strategies. The question is though, how to quantify connectivity appropriately, especially when the information available about the suitability of the matrix surrounding habitat is limited. Our goal here was to investigate the effects of matrix representation on assessments of the connectivity among habitat patches and of the relative importance of individual patches for the connectivity within a habitat network. We evaluated a set of 50 × 50 km2 test areas in the Carpathian Mountains and considered three different matrix representations (binary, categorical and continuous) using two types of connections among habitat patches (shortest lines and least-cost paths). We compared connections, and the importance of patches, based on (1) isolation, (2) incidence-functional, and (3) graph measures. Our results showed that matrix representation can greatly affect assessments of connections (i.e., connection length, effective distance, and spatial location), but not patch prioritization. Although patch importance was not much affected by matrix representation, it was influenced by the connectivity measure and its parameterization. We found the biggest differences in the case of the integral index of connectivity and equally weighted patches, but no consistent pattern in response to changing dispersal distance. Connectivity assessments in more fragmented landscapes were more sensitive to the selection of matrix representation. Although we recommend using continuous matrix representation whenever possible, our results indicated that simpler matrix representations can be also used as a proxy to delineate those patches that are important for overall connectivity, but not to identify connections among habitat patches.  相似文献   

11.

Context

In fragmented landscapes, connectivity between subpopulations is vital for species’ persistence. Various techniques are used to assess the degree of connectivity between habitat patches, yet their performance is seldom evaluated. Models are regularly based on habitat selection by individuals in resident populations, yet dispersers may not require habitat which supports permanent residence.

Objectives and methods

Using a database of African wild dog (Lycaon pictus) occurrence records in north-eastern South Africa (n = 576), we developed and compared ecological niche models (ENM) for wild dogs packs and dispersers. Additionally, we used least cost path (LCP) and current flow models to assess connectivity. Results were further validated using occurrence records (n = 339) for cheetah (Acinonyx jubatus).

Results and conclusions

The ENM for wild dog packs identified large but isolated patches of suitable habitat, while the disperser ENM had greater suitability values for areas in between highly suitable patches. Without disperser-specific data, models omitted large areas which were confirmed to have provided connectivity. Although models derived from a potentially subjective cost layer have been criticised, the current flow model outperformed the other connectivity techniques and provided the most meaningful predictions for conservation planning. We identified five priority conservation areas for wild dogs, two of which had a greater feasibility for recolonisation. The scarcity of disperser-specific data promotes models using habitat data for resident individuals but here we illustrate the pitfalls thereof. Our study provides insights into the performance of these frequently employed techniques and how they may affect conservation management decisions.
  相似文献   

12.
Context

Climate and land-use change have led to disturbance regimes in many ecosystems without a historical analog, leading to uncertainty about how species adapted to past conditions will respond to novel post-disturbance landscapes.

Objectives

We examined habitat selection by spotted owls in a post-fire landscape. We tested whether selection or avoidance of severely burned areas could be explained by patch size or configuration, and whether variation in selection among individuals could be explained by differences in habitat availability.

Methods

We applied mixed-effects models to GPS data from 20 spotted owls in the Sierra Nevada, California, USA, with individual owls occupying home ranges spanning a broad range of post-fire conditions after the 2014 King Fire.

Results

Individual spotted owls whose home ranges experienced less severe fire (<?5% of home range severely burned) tended to select severely burned forest, but owls avoided severely burned forest when more of their home range was affected (~ 5–40%). Owls also tended to select severe fire patches that were smaller in size and more complex in shape, and rarely traveled?>?100-m into severe fire patches. Spotted owls avoided areas that had experienced post-fire salvage logging but the interpretation of this effect was nuanced. Owls also avoided areas that were classified as open and/or young forest prior to the fire.

Conclusions

Our results support the hypothesis that spotted owls are adapted to historical fire regimes characterized by small severe fire patches in this region. Shifts in disturbance regimes that produce novel landscape patterns characterized by large, homogeneous patches of high-severity fire may negatively affect this species.

  相似文献   

13.
Context

Although the edge effect is known to be an important factor influencing the recruitment of trees in temperate forests, little is known of its synergistic relationships with landscape and fragment attributes.

Objectives

We investigated how the edge effect on regeneration of oaks (Quercus spp.) varies with respect to fragment geometry, connectivity and landscape composition.

Methods

We recorded oak sapling density along edge-interior gradients in 29 forest fragments at the periphery of Mexico City and examined the data with Generalized Additive Models.

Results

A nonlinear and landscape-mediated edge effect was supported by data, including the interactions of the edge distance with patch connectivity, shape and size. Saplings were more abundant at a distance of ca. 50 m from the edge of small, large and connected patches, but large patches also exhibited reduced recruitment towards the interior of the patch. Conversely, sapling density in simple-shaped or connected patches was lower at the edge, exhibiting linear and concave-down increase trends towards the interior of patches, respectively.

Conclusions

Boundary conditions could be interacting with interior forest conditions, making regeneration more frequent at 50 m from the edge. Shady and cooler sites in large patches may be inhibiting oak regeneration. The activity of acorn-dispersing animals and oak predators may increase in unconnected patches, thus increasing the likelihood of edge effects. These results provide insights into the restoration of temperate forest patches in heterogeneous fragmented landscapes.

  相似文献   

14.
Studies on the distribution of mammalian carnivores in fragmented landscapes have focused mainly on structural aspects such as patch and landscape features; similarly, habitat connectivity is usually associated with landscape structure. The influence of food resources on carnivore patch use and the important effect on habitat connectivity have been overlooked. The aim of this study is to evaluate the relative importance of food resources on patch use patterns and to test if food availability can overcome structural constraints on patch use. We carried out a patch-use survey of two carnivores: the beech marten (Martes foina) and the badger (Meles meles) in a sample of 39 woodland patches in a fragmented landscape in central Italy. We used the logistic model to investigate the relative effects on carnivore distribution of patch, patch neighbourhood and landscape scale variables as well as the relative abundance of food resources. Our results show how carnivore movements in fragmented landscapes are determined not only by patch/landscape structure but also by the relative abundance of food resources. The important take-home message of our research is that, within certain structural limits (e.g. within certain limits of patch isolation), by modifying the relative amount of resources and their distribution, it is possible to increase suitability in smaller/relatively isolated patches. Conversely, however, there are certain thresholds above which an increase in resources will not achieve high probability of presence. Our findings have important and generalizable consequences for highly fragmented landscapes in areas where it may not be possible to increase patch sizes and/or reduce isolation so, for instance, forest regimes that will increase resource availability could be implemented. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
In fragmented landscapes, the likelihood that a species occupies a particular habitat patch is thought to be a function of both patch area and patch isolation. Ecologically scaled landscape indices (ESLIs) combine a species’ ecological profile, i.e., area requirements and dispersal ability, with indices of patch area and connectivity. Since their introduction, ESLIs for area have been modified to incorporate patch quality. ESLIs for connectivity have been modified to incorporate niche breadth, which may influence a species’ ease in crossing the non-habitat matrix between patches. We evaluated the ability of 4 ESLIs, the original and modified indices of area and connectivity, to explain patterns in patch occupancy of 5 forest rodents. Occupancy of eastern gray squirrels (Sciurus carolinensis), North American red squirrels (Tamiasciurus hudsconicus), fox squirrels (Sciurus niger), white-footed mice (Peromyscus leucopus), and eastern chipmunks (Tamias striatus) was modeled at 471 sites in 35 landscapes sampled from the upper Wabash River basin in Indiana. Models containing ESLIs received support for gray squirrels, red squirrels, and chipmunks. Modified ESLIs were important in models for red squirrels. However, none of the models demonstrated high predictive ability. Incorporating habitat quality and using surrogate measures of dispersal can have important effects on model results. Additionally, different responses of species to area, isolation, and habitat quality suggest that generalizing patterns of metapopulation dynamics was not justified, even across closely related species.  相似文献   

16.
Context

Urbanization is a substantial force shaping the genetic and demographic structure of natural populations. Urban development and major highways can limit animal movements, and thus gene flow, even in highly mobile species. Characterizing varying species responses to human activity and fragmentation is important for maintaining genetic continuity in wild animals and for preserving biodiversity. As one of the only common and wide-ranging large wild herbivores in much of urban North America, deer play an important ecological role in urban ecosystems, yet the genetic impacts of development on deer are not well known.

Objectives

We assessed genetic connectivity for mule deer to understand their genetic response to habitat fragmentation, due to development and highway barriers, in an increasingly urbanized landscape.

Methods

Using non-invasive sampling across a broad region of southern California, we investigated genetic structure among several natural areas that were separated by major highways and applied least-cost path modelling to determine if landscape context and highway attributes influence genetic distance for mule deer.

Results

We observed significant yet variable differentiation between subregions. We show that genetic structure corresponds with highway boundaries in certain habitat patches, and that particular landscape configurations more greatly limit gene flow between patches.

Conclusions

As a large and highly mobile species generally considered to be well adapted to human activity, mule deer nonetheless showed genetic impacts of intensive urbanization. Because of this potential vulnerability, mule deer and other ungulates may require further consideration for effective habitat management and maintenance of landscape connectivity in human-dominated landscapes.

  相似文献   

17.
Context

Biodiversity in tropical region has declined in the last decades, mainly due to forest conversion into agricultural areas. Consequently, species occupancy in these landscapes is strongly governed by environmental changes acting at multiple spatial scales.

Objectives

We investigated which environmental predictors best determines the occupancy probability of 68 bird species exhibiting different ecological traits in forest patches.

Methods.

We conducted point-count bird surveys in 40 forest sites of the Brazilian Atlantic forest. Using six variables related to landscape composition and configuration and local vegetation structure, we predicted the occupancy probability of each species accounting for imperfect detections.

Results

Landscape composition, especially forest cover, best predicted bird occupancy probability. Specifically, most bird species showed greater occupancy probability in sites inserted in more forested landscapes, while some species presented higher occurrence in patches surrounded by low-quality matrices. Conversely, only three species showed greater occupancy in landscapes with higher number of patches and dominated by forest edges. Also, several species exhibited greater occupancy in sites harbouring either larger trees or lower number of understory plants. Of uttermost importance, our study revealed that a minimum of 54% of forest cover is required to ensure high (> 60%) occupancy probability of forest species.

Conclusions

We highlighted that maintaining only 20% of native vegetation in private property according to Brazilian environmental law is insufficient to guarantee a greater occupancy for most bird species. We recommend that policy actions should safeguard existing forest remnants, expand restoration projects, and curb human-induced disturbances to minimise degradation within forest patches.

  相似文献   

18.
Loss of connectivity is one of the main causes of decreases in habitat availability and, thus, in species abundance and occurrence in fragmented landscapes. It is therefore important to measure habitat connectivity for conservation purposes, but there are several difficulties in quantifying connectivity, including the need for species movement behavioral data and the existence of few consistent indices to describe such data. In the present study, we used a graph theoretical framework to measure habitat availability, and we evaluate whether this variable is adequate to explain the occurrence pattern of an Atlantic rainforest bird (Pyriglena leucoptera, Thamnophilidae). The playback technique was used to parameterize the connectivity component of habitat availability indices and to determine the presence or absence of the study species in forest patches. Patch- and landscape-level habitat availability indices were considered as explanatory variables. Two of these were landscape-level indices, which varied in terms of how inter-patch connections are defined, using either a binary or probabilistic approach. This study produced four striking results. First, even short open gaps may disrupt habitat continuity for P. leucoptera. Second, the occurrence of P. leucoptera was positively affected by habitat availability. Third, proper measures of this explanatory variable should account for the landscape context around the focal patch, emphasizing the importance of habitat connectivity. Finally, habitat availability indices should consider probabilistic and not binary inter-patch connections when intending to explain the occurrence of bird species in fragmented landscapes. We discuss some conservation implications of our results, stressing the advantages of an ecologically scaled graph theoretical framework.  相似文献   

19.
Gao  Boyu  Gong  Peng  Zhang  Wenyuan  Yang  Jun  Si  Yali 《Landscape Ecology》2021,36(1):179-190
Context

With the expansion in urbanization, understanding how biodiversity responds to the altered landscape becomes a major concern. Most studies focus on habitat effects on biodiversity, yet much less attention has been paid to surrounding landscape matrices and their joint effects.

Objective

We investigated how habitat and landscape matrices affect waterbird diversity across scales in the Yangtze River Floodplain, a typical area with high biodiversity and severe human-wildlife conflict.

Methods

The compositional and structural features of the landscape were calculated at fine and coarse scales. The ordinary least squares regression model was adopted, following a test showing no significant spatial autocorrelation in the spatial lag and spatial error models, to estimate the relationship between landscape metrics and waterbird diversity.

Results

Well-connected grassland and shrub surrounded by isolated and regular-shaped developed area maintained higher waterbird diversity at fine scales. Regular-shaped developed area and cropland, irregular-shaped forest, and aggregated distribution of wetland and shrub positively affected waterbird diversity at coarse scales.

Conclusions

Habitat and landscape matrices jointly affected waterbird diversity. Regular-shaped developed area facilitated higher waterbird diversity and showed the most pronounced effect at coarse scales. The conservation efforts should not only focus on habitat quality and capacity, but also habitat connectivity and complexity when formulating development plans. We suggest planners minimize the expansion of the developed area into critical habitats and leave buffers to maintain habitat connectivity and shape complexity to reduce the disturbance to birds. Our findings provide important insights and practical measures to protect biodiversity in human-dominated landscapes.

  相似文献   

20.
Persistence of wildlife populations depends on the degree to which landscape features facilitate animal movements between isolated habitat patches. Due to limited data availability, the effect of landscape features on animal dispersal is typically estimated using expert opinion. With sufficient data, however, resistance surfaces can be estimated empirically. After modeling suitable prospecting habitat using an extensive dataset from the federally endangered red-cockaded woodpecker (Picoides borealis), we used data from over 800 prospecting events from 34 radio-tagged birds to identify the best relationship between habitat suitability and resistance surfaces. Our results demonstrated that juvenile female P. borealis prospecting for new territories beyond their natal territories preferred to traverse through forests with tall canopy and minimal midstory vegetation. The non-linear relationship between habitat suitability and resistance surfaces was the most biologically relevant transformation, which in turn identified the specific forest composition that promoted and inhibited prospecting and dispersal behavior. These results corresponded with over 60 % of dispersal events from an independent dataset of short-distance dispersal events. This new understanding of P. borealis prospecting behavior will help to identify areas necessary for maintaining habitat connectivity and to implement effective management strategies. Our approach also provides a framework to not only estimate and evaluate resistance surfaces based on species-specific responses to intervening landscape features, but also addresses an often-neglected step, selecting a biologically relevant function to transform habitat suitability model into a resistance surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号