共查询到14条相似文献,搜索用时 78 毫秒
1.
以180幅木材样本图片为对象,研究以小波变换方法提取特征参数,分析几种小波基的特点和性质,最终以对称性为依据,选择使用sym4小波对图像进行二级小波分解,可以得到一级水平细节HL1、垂直细节LH1、对角细节HH1,二级的近似LL2、水平细节HL2、垂直细节LH2、对角细节HH2共7个子图,提取整幅图像的熵和每个子图小波系数的均值及标准差作为特征参数。将木材纹理按照直纹、抛物线和乱纹3种纹理的分类标准,以BP神经网络作为分类器进行了木材纹理分类的验证,并与灰度共生矩阵的方法进行了对比。试验表明:采用小波变换的方法对木材纹理特征进行描述,不但提高了分类的准确率,重要的是缩短了运算时间,可以达到在线监测的要求。 相似文献
2.
木材纹理分析中小波基的选择和分解级数的确定 总被引:2,自引:0,他引:2
针对小波多分辨率下木材纹理分析中小波基的类型和分解级数进行了研究.用小波基重构误差和小波基的性质确定小波基;用信息熵和重构图像能量确定分解级数.实验证明,选用Symlets4小波基对木材纹理图像进行2级分解就能够获得较高的分类识别率. 相似文献
3.
本文用主分量分析法分析了木材纹理的14个灰度共生矩阵特征参数,从中提取了4个综合参数,并分别统计了采用这两套特征参数,最近邻分类器,K近邻分类器和神经网络分类器对木材样本分类正确率,结果表明采用主分量分析提取的综合参数不仅能减少数据量,而且获得了较高的分类精度。 相似文献
4.
基于图像纹理特征的木材树种识别 总被引:7,自引:0,他引:7
利用木材图像的颜色、灰度、纹理等内容实现树种的相似性匹配检索,提取色调、饱和度、亮度、对比度、二阶角矩、方差和、长行程加重因子、分形维数、小波水平能量比重共9个特征参数,依据最大相似性数学原理,基于最小差值参数判别法和综合特征阈值法来检索样本.结果显示:基于图像纹理特征能够实现木材树种的检索和识别,综合特征阈值法的检索正确率与唯一性通常要好于最小差值判别法;但当被检索样本图像的纹理较弱或不呈现纹理特征时,检索结果的唯一性并不理想.综合而言,基于图像纹理特征最大相似性的木材树种检索识别较易实现,是一种值得继续发展和应用推广的木材树种识别方法. 相似文献
5.
谢永华 《林业机械与木工设备》2006,34(6):29-30
不变矩是模式识别中的一种重要方法,它具有平移不变性、比例不变性和旋转不变性等优点。本文将其引入到木材纹理的计算机视觉研究领域,提取了木材纹理的不变矩参数,并用提取的特征参数对木材纹理进行了分类研究,最近邻分类器的正确率为86.67%,获得了较高的分类正确率,从而验证了不变矩参数对木材纹理描述的有效性。 相似文献
6.
7.
8.
9.
基于分形理论的木材纹理特征研究 总被引:9,自引:0,他引:9
介绍了一种利用自相关函数来估算图像分形维数的方法,并将其应用到木材的纹理分类检测中。实验表明,分形维数值直接反映了木材纹理的粗糙程度,可定性地作为描述木材纹理粗糙度的一种度量。 相似文献
10.
对5种木材进行聚氨酯清漆透明涂饰处理,借助数字图像处理技术定量检测涂饰前后9种材色和纹理参数的变化:色调、饱和度、亮度、对比度、二阶角矩、方差和、长行程加重因子、分形维数、小波水平能量分布比重.结果表明:透明涂饰总体上有利于增强木材表面的视觉效果,但影响效果视素材的纹理情况而定.素材纹理原本清晰、明显时,其纹理效果略有变化,但并不显著;而原本呈弱纹理及或隐纹理的素材,透明涂饰对改变其视觉效果的影响作用显著.基于参数的t检验结果,饱和度、亮度、方差和3个参数可以作为涂饰对纹理影响性的重要指标,进而建立起反映透明涂饰对木材视觉效果综合影响的坐标公式. 相似文献
11.
基于空间灰度共生矩阵木材纹理分类识别的研究 总被引:1,自引:2,他引:1
以10种木材纹理样本为对象,研究了木材纹理参数体系的建立方法,并进行了分类识别的仿真实验。首先,针对木材纹理特点并结合类别可分性判据,构造了适于描述木材的空间灰度共生矩阵,并在此基础上提取了木材的11个纹理特征参数。其次,借助相关性分析对参数进行了特征选择,进而建立了能直接与人的感官对应的木材纹理参数体系。最后,利用 BP 神经网络分类器对木材样本进行了分类识别研究,识别率为87.50%,验证了参数体系的有效性,表明用本文提出的纹理参数体系对木材进行分类识别是可行的。 相似文献
12.
将高斯—马尔可夫随机场(GMRF)引入木材纹理的研究,提取了二阶与五阶特征参数,并对二阶特征参数做了详细分析,得出通过θ2可以判断纹理的主方向,而结合θ1、θ2、θ3、θ4能够区分开木材的弦切和径切纹理。将五阶特征参数组成的特征向量输入给BP神经网络分类器,其分类识别率约为85%,表明了高阶GMRF参数对木材纹理描述的有效性。 相似文献
13.