首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study the potential use of microfauna as an indicator of effluent quality and operational parameters in an activated sludge system for treating piggery wastewater, an experimental sequencing batch reactor was set up and evaluated by biological and physical–chemical analyses for 12 months. Results show that microfauna (and specifically ciliate protozoa) are a good parameter for assessing effluent quality in terms of both chemical oxygen demand (COD) and ammonia and for assessing the organic and nitrogen load of the system. Specifically, the abundance of ciliates decreases from 20,000 individuals·mL?1 to ca. 2,500 individuals·mL?1 and from ca. 10,000 individuals mL?1 to ca. 200 individuals mL?1 when effluent concentration is between 550 and 750 mg L?1 and above 100 mg L?1 to the COD and ammonia concentrations, respectively. Furthermore, microfauna abundance is reduced from ca. 18,000 individuals mL?1 (organic load between 0.1 and 0.2 mg COD mg total suspended solids (TSS)?1 day?1) to ca. 500 individuals mL?1 (organic load between 0.3 and 04 mg COD mg TSS?1 day?1). Microfauna abundance also decreases as nitrogen loading increases. Nitrogen loading in the range of 5–60 mg NH4–N g TSS?1 day?1 does not have any significant effect on microfauna abundance. However, ammonia loading from 60 to 120 mg NH4–N g TSS?1 day?1 reduces microfauna abundance ca. 6-fold. Ciliate protozoa were the largest microfauna group during the whole period of study, representing ca. 75% of the total microfauna abundance. The largest group in the ciliate community was that of the free-swimming ciliates. This was followed by the group of attached and crawling ciliates. Specifically, the dominant ciliate species during the whole study period were Uronema nigricans, Vorticella microstoma-complex, Epistylis coronata, and Acineria uncinata.  相似文献   

2.
Abstract

Soil salinization and sodication affect large areas of agricultural land in the world. Amelioration of these soils to make them suitable for agricultural production depends on understanding sodium dynamics and chemical interactions governing nutrient availability. Three locations in eastern Croatia were characterized to the 5‐m depth. The two solonetz‐solonchak soils were alkaline, whereas the solonetz soil had near‐neutral A/E horizon and alkaline deeper horizons. Electrical conductivity of the saturated extract (ECe) was greater than 4 dS m?1 in the top horizons in the solonetz‐solonchak soils. The solonetz soil had 2.8–4.7 dS m?1 in shallow A/E, CG, and G horizons and up to 6.3 dS m?1 below 1.5 m. Highly alkalinized sodic horizons (exchangeable sodium percentage, ESP >20) had 24–47% Ca2+ and 27–33% Mg2+ on the cation exchange complex. Sodium adsorption ratio (SAR) was high (18–26) in the P horizon and even more so in Bt,na horizon (35–36) of solonetz‐solonchak soils. A strong negative exponential relationship existed between soluble Ca2+ and SAR (SAR increased greatly when Ca2+ dropped to around 3 mg dm?3). An increase in pH to greater than 8.4 resulted in an exponential increase in SAR. Leaching of Na+ with successive volumes of water was similarly effective for the P and Bt,na horizons in the solonetz‐solonchak soils, but SAR remained greater than 15 even after six successive cycles of leaching. In conclusion, extensive amelioration of tested soils with gypsum and leaching will be required to overcome poor physical and chemical characteristics caused by various degrees of alkalization and sodication to bring these soils into production.  相似文献   

3.
Growth behaviour and yield performance of Bt cotton hybrids under sub-optimal rainfall situation is of practical significance, because more than 60% of the cotton area is under rainfed condition in India. A field trial conducted in a sandy clay loam soil during the seasons 2006–2007, 2007–2008, and 2008–2009 to study the growth behaviour and yield performance under scanty rainfall situation revealed that growth in both Bt and non-Bt cotton hybrids significantly differed under these parameters. The crop experienced moisture stress at the early stages of growth and again during boll development phase in 2006–2007 and 2008–2009. However, Bt hybrids (1691 kg ha?1) produced higher seed cotton yield than non-Bt hybrids (1092 kg ha?1), while the controlled variety (LRA 5166) performed the average of these two (1399 kg ha?1). Similar trend was evident in respect of bolls per plant (at 90 DAP) and the final harvested bolls in both Bt and non-Bt cotton. Because of Bt gene, the early formed bolls were protected from the boll worms which led to less damage and higher yield with Bt hybrids. Amongst the hybrids, RCHB 708 Bt (1917 kg ha?1) performed better over the others.  相似文献   

4.
Static granular bed reactor (SGBR) and upflow anaerobic sludge blanket (UASB) reactor were demonstrated at mesophilic condition for the treatment of pulp and paper mill wastewater. The hydraulic retention times (HRTs) were varied from 4 to 24 h following 29-day start-up period. The overall chemical oxygen demand (COD) removal efficiency of the SGBR was higher than the UASB during this study. At 4 h HRT, the COD removal was greater than 70 % for the SGBR and 60 % for the UASB. Biomass yield and volatile fatty acids concentration of SGBR were slightly less than UASB at organic loading rates ranging from 1.2 to 5.1 kg/m3/day. The results indicated that the SGBR system can be considered a viable alternative system for anaerobic treatment for pulp and paper wastewater.  相似文献   

5.
A sandy soil was amended with different types of sewage sludge (digested, dried, and composted) and pig slurry. The composted sludges displayed higher organic‐matter stability (39–45%) than only digested sludge (26–39%) or digested + dried sludge (23–32%). The microbial biomass of the dried sludge was undetectable. Digested and composted sludges and pig slurry displayed microbial biomasses (12492–13887 µg g?1, 1221–2050 µg g?1, and 5511 µg g?1, respectively) greater than the soil (108 µg g?1). The wastes were applied at seven doses, ranging from 10 to 900 g kg?1. Soils were incubated for 28 days. Substrate‐induced respiration (SIR) was measured for 12 consecutive hours on day 1 and on day 28. The results showed that SIR increased with the dose of organic amendment. However, SIR decreased when moderate doses of pig slurry or high doses of digested + dried sludge were tested. The possibility of using this inhibition as an ecotoxicological indicator is discussed.  相似文献   

6.
Laboratory-scale models consisting of a simple upflow anaerobic sludge blanket reactor (UASBR) and an upflow anaerobic filter (UAF) in series were subjected to organic loadings of 0.19 to 0.55 kg COD m?3 d?1 at 20°C. COD and SS removals were 95 to 98% and 98 to 99%, respectively. Biogas produced by the system amounted to 0.31 to 0.32 m3 CH4 kg?1 COD removed. The UASBR was more stable than the UAF in performance. No sign of deterioration in final effluent quality was observed during 420 days of operation under low loading.  相似文献   

7.
In this study an attempt has been made to find a solution to the problem of disposal of distillery effluents through anaerobic followed by aerobic treatment. Accordingly, experimental studies were planned and carried out in two phases. The first phase experimentation was conducted to study the performance of Semicontinuous Fixed Film Anaerobic Reactors (SCFFAR) which simulate Downflow Stationary Fixed Film anaerobic reactors (DSFF) for partial treatment of distillery waste. Second phase experimentation included studies on degradation of anaerobically treated effluent employing semicontinuous aerobic reactors with sludge recycle. The results indicated that the distillery waste should be diluted to bring down the COD to about 50 000 mg L?1 before the same is treated by stationery fixed film anaerobic reactors and this dilution can be achieved by circulating the treated effluent. Further the reduction of COD beyond 9000 to 10 000 mg L?1 by anaerobic treatment appears to be uneconomical. Results of second phase of the study show that the aerobic degradation of anaerobically treated effluent can achieve significant COD reduction (approx. 67%). However, reduction of COD of final effluent below 500 mg L?1 appears to be very difficult. The settling characteristics of the sludge produced in aerobic study depended on the BSRT value and improved with increase in BSRT.  相似文献   

8.
This study evaluates the treatment efficacy and biogas yield of an integrated system composed of a plug-flow biodigester (with sludge recirculation) followed by polishing in a stabilization pond. The system was operated in real scale for 12 months at ambient temperature and under continuous flow. The volumetric yields of biogas varied according to the organic loads applied, between 114 and 294 Kg COD day?1, reaching levels of 0.026 to 0.173 m3 m?3 day?1, with concentrations of CH4 between 56 and 70%. The monthly biogas productions were between 378.5 and 2186.1 m3 month?1 equal to an energy potential of approximately 2070 to 19,168 KWh month?1.The average yearly removals of BOD5,20 and COD by the integrated treatment system were 70 and 86%, respectively. The average annual removals of NH4 and TKN were 88.5 and 85.5%, respectively. The pH values were always near neutral, and the alkalinity was in ranges propitious for anaerobic digestion. The results of this study indicate good efficacy in terms of removal of organic matter and nitrogen compounds, with the added benefits of generation of energy and use of the treated effluent as biofertilizer, enabling significant cost reductions to cattle farmers.  相似文献   

9.
A study of physicochemical and biological treatment of pharmaceutical wastewater by the activated sludge process was performed in an oxidation ditch. The physicochemical study using different coagulants revealed that all the coagulants used are not effective and their doses required were very high for COD reduction. In the biological oxidation study, it was found that the wastewater could be processed at all organic loadings and phenol concentrations encountered in wastewater. The yield coefficient and decay coefficient were 0.75 (COD basis) and 0.01 day?1 (COD basis), respectively.  相似文献   

10.
The photo-Fenton oxidation treatment combined with a coagulation/flocculation process was investigated for removal of chemical oxygen demand (COD) from a refractory petroleum refinery wastewater. Scrap iron shavings were used as the catalyst source. A response surface methodology (RSM) with a cubic IV optimal design was employed for optimizing the treatment process. Kinetic studies showed that the proposed process could be described by a two-stage, second-order reaction model. Experiments showed that precipitation of iron ions can be utilized as a post-oxidation coagulation stage to improve the overall treatment efficiency. More than 96.9% of the COD removal was achieved under optimal conditions, with a post-oxidation coagulation stage accounting for about 30% of the removal, thus confirming the collaborative role of oxidation and coagulation in the overall treatment. A low-velocity gradient of 8.0 s?1 for a short mixing time of 10 min resulted in optimum post-oxidation coagulation. Comparison of photo-Fenton oxidation to a standard Fenton reaction in the same wastewater showed more rapid COD removal for photo-Fenton, with an initial second-order rate constant of 4.0 × 10?4 L mg?1 min?1 compared to the Fenton reaction’s overall second-order rate constant of 7.0 × 10?5 L mg?1 min?1.  相似文献   

11.
Wu  Chuan  Li  Chuxuan  Jiang  Jun  Hartley  William  Kong  Xiangfeng  Wu  Yujun  Xue  Shengguo 《Journal of Soils and Sediments》2020,20(8):3083-3090
Purpose

Biomass fermentation has been proposed as a simple and economical strategy to alleviate the high alkalinity of bauxite residue. This study investigates the neutralization of bauxite residue following the application of biomass as an alkali modifier by natural fermentation.

Materials and methods

Fresh bauxite residue samples were collected from Pingguo refinery (Aluminum Corporation of China). Samples were treated with straw mulching (SC), straw mixing (SM), bagasse mulching (BC), and bagasse mixing (BM), respectively. Treatments were analyzed for pH, EC, metal cations, and soluble alkali (OH?, Al(OH)4? and CO32?). The mineral phase and Na speciation were analyzed by X-ray diffraction (XRD) and near-edge X-ray absorption fine structure (Na-XANES).

Results and discussion

Optimum application rate for either straw or bagasse was 20% (w/w), reducing leachate pH from 10.26 to 8.56. During biomass transformation, the alkaline mineral grossular was completely dissolved, while calcite and cancrinite were dissolved to a lesser degree. No treatment changed the spatial distribution of Na+, but the basic anions (OH?, CO32?, and Al(OH)4?) were significantly reduced.

Conclusions

Following treatment application, soluble alkali in the residues was significantly reduced while the alkaline minerals were slightly dissolved. This was determined as the main cause for the decrease in residue pH.

  相似文献   

12.
Sludge derived from cow manure anaerobically digested to produce biogas (methane; CH4) was applied to maize (Zea mays L.) cultivated in a nutrient-low, alkaline, saline soil with electrolytic conductivity 9.4 dS m?1 and pH 9.3. Carbon dioxide (CO2) emission increased 3.1 times when sludge was applied to soil, 1.6 times when cultivated with maize and 3.5 times in sludge-amended maize cultivated soil compared to the unamended uncultivated soil (1.51 mg C kg?1 soil day?1). Nitrous oxide (N2O) emission from unamended soil was -0.0004 μg nitrogen (N) kg?1 soil day?1 and similar from soil cultivated with maize (0.27 μg N kg?1 soil day?1). Application of sludge increased the N2O emission to 4.59 μg N kg?1 soil day?1, but cultivating this soil reduced it to 2.42 μg N kg?1 soil day?1. It was found that application of anaerobic digested cow manure stimulated maize development in an alkaline saline soil and increased emissions of CO2 and N2O.  相似文献   

13.
The concentration of medically used radionuclides has been studied in sludge from the sewage treatment plant serving the borough of Malmo. In this area all nuclear medicine procedures are carried out in one hospital and almost all patients live in the borough. Therefore, the input of medically used radionuclides into the sewage system can be estimated with good accuracy. Samples of digested sludge have been taken once or twice a week during half a year. Iodine-131 (physical half life (T) = R.05 d) was detected in all samples. The 131I-activity concentration due to medical use varied between (0.03±0.01) and (0.12±0.02) nCi kg?1. The ratio between the total output of 131I via the sludge and an adherent input of the radionuclide into the sewage system was determined to (2.6 ± 0.6) × 10?3, which is equivalent to a ratio of (2 ± 1) × 10?2 for stable I. Occasionally measurable activities of 198Au (T=2.7 d) and 201T1(T=3.l d) have been found. The radioactivity concentration of medically used radionuclides in the sludge is low and constitutes no health problems for the persons involved. The sludge however has proved to be a very sensitive and suitable integrator of radioactive material released from a large urban area.  相似文献   

14.

Purpose

A total of 58 dewatered sludge samples were collected from 58 sewage treatment plants (STPs) geographically located in 31 provincial cities of China; the concentrations of heavy metals and antibiotics were determined to monitor the pollutant levels on a large scale, and the pollutant concentrations in sludge samples from different sources of sewage sludge and different geographical regions were compared.

Materials and methods

All the samples were divided into two portions, one of which was air-dried for determination of heavy metals. The other portion was placed in a brown glass bottle and frozen at ?20 °C for antibiotics analysis. Total heavy metals were digested with aqua regia and determined by atomic absorption spectrophotometry (Varian SpectrAA 220FS and Varian SpectrAA 220Z). The antibiotics were extracted with EDTA-sodium phosphate buffer with acetonitrile/Mg(NO3)2-NH3?H2O, v/v, 3:1 and analysed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) and quantified by the isotope-labelled internal standard method.

Results and discussion

In all the sludge samples, zinc was the most abundant metal followed by copper, with relatively low concentrations of chromium, lead, nickel and cadmium. Only 20 % of samples exceeded the Chinese class A values of heavy metal standards for agricultural use (GJ/T309-2009). Sixteen different antibiotics were detected in all the sludge samples, and fluoroquinolones (FQs) and tetracyclines (TCs) were more abundant than sulfonamides (SAs). Concentrations of ∑FQs, ∑TCs and ∑SAs ranged from 1,569 to 23,825 μg kg?1 (mean 8,274 μg kg?1, dry weight), from 592 to 37,895 μg kg?1 (mean 8,326 μg kg?1, dry weight) and from 20.1 to 117 μg kg?1 (mean 55.4 μg kg?1, dry weight), respectively. Tetracyclines (except chlortetracycline) were significantly correlated with zinc and lead. No significant regional trends were observed in the concentrations of heavy metals and antibiotics in sludges.

Conclusions

Heavy metal concentrations are not the major factor restricting domestic and mixed flow sludge application, but the antibiotic concentrations in sludges are problematic; regulation of antibiotic use and establishment of standards to ensure safe handling of sludges are needed.  相似文献   

15.
Chestnut agro-industrial companies consume a high volume of water for washing and processing fruit, generating a large volume of wastewater. This work studied the biodegradation of chestnut processing wastewater through aerobic assays, varying substrate, and biomass concentrations. In general, this wastewater presents a good biodegradability, especially in experiments with relatively low chemical oxygen demand (COD) (0.4 and 0.6?g O2 L?1) allowing a COD removal of 85?C90?%. The best results were obtained in the reactor initially loaded with 2?g?L?1 of biomass and 0.4 or 0.6?g O2 L?1 of COD. These experiments also showed high COD removal rates: 4.25 and 3.88?g COD g?1 volatile suspended solids (VSS) h?1, respectively. The sedimentation rate, evaluated for different initial values of biomass (1, 2, and 3?g?L?1), always presented higher values in the experiments with 2 and 3?g?L?1 of biomass, regardless of the initial COD value used. After comparing different kinetic models (Monod, Contois, and Haldane), it was observed that the Haldane inhibition model satisfactorily describes the COD biodegradation. AQUASIM software allowed calculating the kinetic constant ranges: K s, 1.59?C6.99?g COD L?1; ?? max, 25?C40?g COD g?1 VSS day?1; and K i values, 0.07?C0.11. These kinetic constants corresponds to maximum rates (??*) between 1.48 and 4.25?g COD g?1 VSS day?1 for substrate concentrations (S*) from 0.38 to 0.88?g COD L?1.  相似文献   

16.
Abstract

Alkaline‐treated wastewater sludges with varying doses of fly ash were added to a clay soil at rates equivalent to 100 t (dry weight) raw sludge ha?1 soil, and the variations in ammonium, nitrate, and total nitrogen contents were monitored throughout an incubation period of 360 days at 28°C. The results showed that inhibition of organic nitrogen mineralization occurred in soil amended with fly ash–containing sludge during the first 90 days of incubation. After the total incubation period of 360 days, the inhibition effects of alkaline sludge amendments totally disappeared. In fact, mineralization was enhanced in alkaline pasteurized sludges containing 80% and 120% fly ash. The overall results indicated that application of sludges amended with fly ash may prolong the use (3 to 6 months) of nitrogen from the organic nitrogen pool in sludge.  相似文献   

17.
The aim of this work was to evaluate the role of three biopolymers used as coagulant?Cflocculant aids in the treatment of a high-load cosmetic industry wastewater (WW) located in Mexico. Discussion is based on a surface response methodology. When using guar, locust bean gum, and Opuntia mucilage, conductivity and turbidity removals as high as 20.1 and 67.8?% were found, respectively. Chemical oxygen demand (COD) removals as high as 38.6?% were observed. The maximum removal efficiency was found for mucilage, with 21.1?mg?COD/mg polymer. At the end of the process, pH was in the range of 5.8?C7.3 for an initial wastewater pH value of 5.6. The production of sludge was very dependent on the WW organic load. An analysis of some metal content in the sludges is presented. From the response surface analysis, it was observed that the parameter which strongly affected the removal of COD, turbidity, oil and greases (O&G), and the amount of sludge including their metal contents was the polymer dose. Only in the case of O&G removal was a combination of dose?Cwastewater organic load responsible for the removals. The values of R 2 for the correlation process were between 0.5451 (O&G) and 0.7989 (COD). The p values for the different expressions were between 0.1985 (COD) and 0.7195 (O&G). The values of adequate precisior (AP) indicate how feasible it is to use the surface response analysis (AP?>?4). Most of the analysis indicated that AP?>?4, except in the case of the O&G removal analysis where AP?=?2.9.  相似文献   

18.

Purpose

Treated and processed sewage sludges (biosolids) generated during the treatment of wastewater usually contain substantial concentrations of nutrients, especially phosphorus, which is essential for plant growth. Sewage sludge therefore can be used as an alternative fertiliser in agriculture. But since sewage sludge could also contain pollutants, analysis and ecotoxicological tests on affected soil and stream water organisms are necessary in order to guarantee its harmless use.

Materials and methods

Three test species were chosen to cover the environmental compartments, water, sediment and soil. The following test species and parameters were applied to evaluate the acute effects of three sewage sludge samples: Lemna minor (growth inhibition, discolouration and colony breakup), Gammarus fossarum (mortality, behaviour) and Eisenia fetida (avoidance behaviour). Chemical assessment included nutrients, organic pollutants and heavy metals.

Results and discussion

The assessment of a non-dewatered sludge (S1) sample resulted in an inhibition of growth of L. minor starting from 0.6 g total solid (TS)?l?1 after 7 days (EC50 1.2 g TS l?1). G. fossarum displayed significantly decreased movement activity at 0.5 and 1.2 g TS l?1 sludge concentration during an exposure time of 2 days, leading to decreased survival after 4 days of exposure in 0.5 g TS l?1 (LC50 0.5 g TS l?1). After 2 days, E. fetida exhibited an increased avoidance behaviour of contaminated soil from 0.2 g TS kg?1 sewage sludge (EC50 0.4 g TS kg?1). The dewatered sludge samples (S2 and S3) had a lower toxic effect on the test organisms. G. fossarum was the most sensitive test species in the applied test setups. The realistic application amounts of the tested sewage sludge samples of approximately 6.0 g TS kg?1 (maximum allowed application amount of sewage sludge) and approximately 3 g TS kg?1 (maximum agronomical relevant application amount) in worst case studies are higher than the analysed EC50/LC50 values of S1 and of the LC50 (G. fossarum) of S2 and S3.

Conclusions

All three tested sewage sludge samples have to be classified as toxic at high concentration levels under laboratory conditions. Realistic output quantities of S1 will negatively influence soil invertebrates and freshwater organisms (plants and crustacean), whereas the dewatered sludge samples will most likely not have any acute toxic effect on the test organisms in the field. Test with environmental samples should be conducted in order to support this hypothesis.
  相似文献   

19.
The purpose of this study was to investigate the response of δ15N in herbage and cattle tail switch hair to long-term grazing pressure on a rough fescue grassland (Festuca campestris Rydb.) near Stavely, Alberta, Canada. Cattle have grazed the paddocks from 15 May to 15 November annually since 1949. Stocking rates were 0, 2.4 and 4.8 animal unit months ha?1 for non-grazing (Control), moderate grazing (MG) and heavy grazing (HG), respectively. Green standing crop (GSC) was sampled monthly throughout the grazing season in 2007. The GSC was fractioned into neutral detergent fiber (NDF), acid detergent fiber (ADF), and their total nitrogen (TN) concentration and δ15N values in NDF, ADF and GSC were determined. Tail switch hair samples from cows (>2 years old) and calves (<1 year) were collected at the end of the grazing season in 2007 and 2008 and analysed for δ15N values. The TN concentrations in NDF and δ15N values in herbage NDF and ADF fractions were higher (P?15N values in tail hair also decreased (P?15N values in tail hair increased with herbage δ15N values. The δ15N values in tail hair were enriched by +5.2‰ compared to herbage δ15N values in 2007. Changes in δ15N value in GSC and cattle hair reflect the influence of grazing practices on N cycles through the animal/plant/soil system on this rough fescue grassland.  相似文献   

20.
The effect of alkali stress on crop production has gained importance around the world. Avocado (Persea americana Mill.) is considered a salt-sensitive species, but the effect of alkaline water on avocados has not been sufficiently studied. Plant growth, leaf damage, and chemical analysis were evaluated in response to alkali salt (NaHCO3) and neutral salt (NaCl) stresses on six clonally propagated avocado rootstocks. All plants exhibited exclusion mechanisms by the accumulation of Na+ and Cl? in their root systems, Na+ was concentrated to a greater extent than Cl?. The accumulation of Na+ in the leaves was greater when applied as NaHCO3 compared to the NaCl treatment. Although Cl? toxicity is more commonly observed under usual field conditions, in our experiments when Na+ reached the leaves it caused nearly two times more leaf necrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号