首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Woo  J.-H.  Baek  J. M.  Kim  J.-W.  Carmichael  G. R.  Thongboonchoo  N.  Kim  S. T.  An  J. H. 《Water, air, and soil pollution》2003,148(1-4):259-278
Emissions in East Asia for 1993 by administrative units and source types are estimated to support regional emission assessments and transport modeling studies. Total emission of SOx, NOx, soil NOx, N2O, and NH3 are 24 150, 12 610, 1963, 908, and 8263 kton yr-1, respectively.China's emission contribution is the highest for every species.The area sources are the most significant source type for SOx and NOx, but the fraction due to mobile source is highest for NOx. Major LPSs are located from the middle to the east part of China, south and middle-west part of South Korea, and the east part of Japan. The area sources of SOx show a pattern similar to population density, whereas NH3 shows a strong landuse dependency. Detail emissions analysis reveals higher SOx emission `cores' within each province. The estimated emissions are used to estimate sulfur deposition in the regions. The seasonal average sulfur distribution amounts are estimated from the ATMOS2 chemical transport model. The results showed anti-correlation with temperature for sulfur (SO2 + SO4 -2) concentrations and a positive correlation with rainfall for deposition.  相似文献   

2.
An eulerian long-range transport model for the calculation of concentrations of SO2, SO4, NO x , and NO3 and wet and dry depositions of SO x (sum of SO2 and SO4) and NO y (sum of NO, NO2 and NO3) over Europe is presented. The model is developed in such a way that only routinely available, analyzed or prognostic meteorological fields are required as input data. In this way it is possible to obtain a forecast of the air quality during smog episodes. For evaluation of smog episodes the model provides a way to estimate the contributions of different sources and the effect of emission scenarios. The model has been evaluated for four winter and three summer episodes. The modeled concentrations of SO2 and SO, are in agreement with the available measurements. A less good agreement is found for NO2 and NO x (sum of NO and NO2) concentrations. For these components the model tends to underpredict the measured values.  相似文献   

3.
Regional oxidant distributions produced under various atmospheric conditions and emission scenarios are investigated using the Regional Acid Deposition Model (RADM). RADM is a complex, evolving three-dimensional Eulerian model that describes the chemistry, transport and deposition of tropospheric trace species including SO2, sulfate, NO x and volatile organic compounds as well as O3, other major oxidants and acids. The model calculates the short-term temporal evolution of atmospheric trace gas concentrations and their deposition on the regional scale. This study is focused on oxidant production in the eastern United States and southeastern Canada. The influence of atmospheric conditions is explored by comparing three characteristic winter, summer and spring/fall cases. Base-case 1985 emissions of SO x , NO x , volatile organic compounds (VOCs), NH3 and CO are specified using the comprehensive pollutant emissions inventory developed as part of the National Acid Precipitation Assessment Program (NAPAP). The perturbed case, which represents projected anthropogenic emission changes for 2010, indicates changes in daily total 80 km grid average NO x emissions ranging from increases of 75% to decreases of 45% and VOC emission changes ranging from increases of 65% to decreases of 20%. The largest NO x emission changes occur in the northeast, and the largest VOC changes occur in the Gulf Coast area. Ground level grid average midday O3 concentrations for the 1985 emission cases are highest (on the order of 70 to 100 ppb) in the New York City and Houston metropolitan areas for the summer and spring cases; the summer case also indicates relatively high grid average O3 concentrations of greater than 80 ppb in the southeast. Winter case values are much lower than summer O3 values throughout the region, with highs of 40 to 50 ppb occurring in the southeast and the Great Lakes area. Changes in NO x and other emissions under the complex 2010 emissions scenario for the summer case result in maximum O3 concentration reductions of 10% in the Houston area and increases in O3 of a few percent in some rural areas of the southeast. This study underscores the need for more comprehensive assessment of the complex relationships among regional emission changes, oxidant production and atmospheric conditions.  相似文献   

4.
Acid deposition is a serious problem throughout much of Asia. Emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) have been increasing steadily, as nations strive to increase their levels of economic development. Coal and fuel oil have been the main choices for powering industrial development; and, until recently, only a few countries had taken steps to avert the atmospheric emissions that accompany fuel combustion. This paper discusses trends in emissions of SO2 and NOx that have occurred in Asian countries in the period 1985–1997, using results from the RAINS-Asia computer model and energy-use trends from the IEA Energy Statistics and Balances database. Emissions of SO2 in Asia grew from 26.6 Tg in 1985 to 33.7 Tg in 1990 and 39.2 Tg in 1997. Though SO2 emissions used to grow as fast as fossil-fuel use, recent limitations on the sulfur content of coal and oil have slowed the growth. The annual-average emissions growth between 1990 and 1997 was only 2.2%, considerably less than the economic growth rate. Emissions of NOx, on the other hand, continue to grow rapidly, from 14.1 Tg in 1985 to 18.7 Tg in 1990 and 28.5 Tg in 1997 (6.2% per year between 1990 and 1997), with no signs of abating. Thus, though SO2 remains the major contributor to acidifying emissions in Asia, the role of NOx will become more and more important in the future.  相似文献   

5.
A long-term modelling (1991–1994) of oxidised sulphur, bound nitrogen and some heavy metals has been carried out by MSC-E/EMEP for the Northern Hemisphere. The transport unit of the model is an Eulerian scheme which could be classified as Pseudo-Lagrangian one. Vertical distribution described by means of Gaussian approximation and the exchange with the free troposphere are taken into account. Vertical movement is calculated proceeding from local mixing conditions, state of the surface, its height (topography) etc. The chemical unit for acid compounds contains 25 reactions and 14 compounds including sulphur and nitrogen compounds peroxyacetylnitrate, tropospheric ozone, volatile hydrocarbons (but methane) are considered as a whole via ozone creation potential. The model time step is 1 hour, meteorological data (winds, temperature, precipitation etc.) cover 6-hour intervals. The model results show that very significant part of the Arctic and West Asian acid pollution is produced by European countries. On the whole the Arctic pollution by SOx, NOx and NHx comes from sources of Old World. The main source of sulphur pollution is located in Russia and of nitrogen compound — in Central and Northern Europe. About 50% SOx, 70% NOx and 40% NHx deposition in Central Asia and Kazakhstan is-imported from external sources. A similar situation is observed in European and Asian parts of Russia.  相似文献   

6.
The contributions of the anthropogenic sources of NOx from various combinations of contiguous U.S. states or Canadian provinces to integrated deposition across selected states or provinces are estimated with the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model. The model assumes linearity between emissions and deposition, and uses the same parameterization methods, although with different rates, as in simulations of transport and deposition of SOX. Vertical distributions of emissions for the two classes of pollutants are substantially different in the gridded inventories used in simulations, with a weighted mean effective emission height of 160 m for NOX and 310 m for SOX. This might be expected to lead to an effective transport distance before deposition shorter for NOX than for SOX. However, the calculated fraction of NOX emissions deposited within the contiguous United States and Canada south of 60 deg N (57%) is not greatly different from the fraction calculated for SOX emissions (54%). This suggests that there may be compensating factors in the horizontal distribution of NOX emissions, and in the lower dry deposition velocities for NO/NO2 than for SO2 in ASTRAP.  相似文献   

7.
An overview of the role of NO x in the formation of rural O3, regional transport and its potential impact on urban air quality is presented. An analysis of a specific O3 excursion in southeast Michigan (8-2-90) is performed based on a combined urban and regional-scale model. The regional component of the model represents transport and photochemistry from sources as far away as Texas. Results suggest that rural O3 and regional transport sensitive to NO x emissions and relatively insensitive to changes in volatile organic carbon (VOC) emissions. This differs from the situation in urban areas, where O3 is sensitive to both NO x and VOC. Regional transport and upwind NO x emissions have a significant impact on peak O3 in Detroit. Implications for urban and regional-scale abatement strategies are discussed.  相似文献   

8.
This paper describes a computational system developed for the compilation of an anthropogenic emission inventory of gaseous pollutants for Greece. The inventory was developed using a geographical information system integrated with SQL programming language to provide high temporal gridded emission fields for CO, NO2, NO, SO2, NH3 and 23 non-methane volatile organic compounds (NMVOCs) species for the reference year 2003. Activity and statistical data from national sources were used for the quantification of emissions from the road transport, the other mobile sources and machinery sectors and from range activities using top-down or bottom-up methodologies. Annual emission data from existing national and European emission databases were also used. The emission data were spatially and temporally disaggregated using source-specific spatiotemporal indicators. On national scale, the road transport sector produces about 60% of the annual CO and NMVOC total emissions, with gasoline vehicles being the main CO and NMVOC emissions source. The road transport is responsible for approximately half of the higher alkanes and for more than half of the ethene and toluene emissions. The maritime sector accounts for about 40% of the annual total NOx emissions, most of which are emitted by the international shipping subsector, whilst SO2 is emitted mainly by the energy sector. The evaluation of the emissions inventory suggests that it provides a good representation of the amounts of gaseous pollutants emitted on national scale and a good characterisation of the relative composition of CO and NOx emission in the large urban centres.  相似文献   

9.
The technological options currently available to reduce SO2 and NOx emissions including abatement technologies and high efficient energy conversion technologies are reviewed. The energy emission model EFOMENV (Energy Flow Optimization Model-Environment) which takes into account all relevant emission reduction measures is used to determine the cost optimized energy pathway, the ranking of reduction measures and the corresponding costs as a function of given reduction levels of SO2 and/or NOx emissions for different scenarios in selected Central and Eastern European countries. It is shown that restructuring of the energy system is a major emission reduction option in all countries but with a potential varying greatly from country to country depending mainly on the existing structure and the age of the plants and on the development of the energy demand. The emission reduction costs for SO2 in Central and Eastern European countries are 50% to 70% lower than in Western countries due to high potential of fuel/technology switching and energy saving measures. Cost efficient measures to reduce CO2 emissions also lead to a significant decrease of SO2 and NOx emissions.  相似文献   

10.
For the January 1985 smog episode concentrations of SO2, sulphate (SO4), NO x (sum of NO and NO2) and nitrate (NO3) have been calculated for north-western Europe by means of an atmospheric transport model. The unfavorable dispersion conditions (moderate to low wind speeds, a low mixing height and a strong inversion) and a reduced dry deposition over the snow-covered or frozen soil, in combination with increased space heating emissions due to the exceptionally cold weather, gave rise to high ground level concentrations. In order to study the effectiveness of control measures during this type of episodes, calculations were made for various emission scenarios. The results were evaluated for four receptor areas, two areas relatively close to the major sources (The Netherlands and the Black Forest) and two more remote areas (Scotland and the SW coast of Sweden, near Gothenburg).  相似文献   

11.
Klimont  Z.  Cofala  J.  Schöpp  W.  Amann  M.  Streets  D.G.  Ichikawa  Y.  Fujita  S. 《Water, air, and soil pollution》2001,130(1-4):193-198
Starting from an inventory of SO2, NOx, VOC and NH3 emissions for the years 1990 and 1995 in East Asia (Japan, South and North Korea, China, Mongolia and Taiwan), the temporal development of the emissions of the four air pollutants is projected to the year 2030 based on scenarios of economic development. The projections are prepared at a regional level (prefectures or provinces of individual countries) and distinguish more than 100 source categories for each region. The emission estimates are presented with a spatial resolution of 1×1 degree longitude/latitude. First results suggest that, due to the emission control legislation taken in the region, SO2 emissions would only grow by about 46 percent until 2030. Emissions of NOx and VOC may increase by 95 and 65 percent, respectively, mainly driven by the expected increase in road traffic volume. Ammonia, mainly emitted from agriculture, is projected to double by 2030.  相似文献   

12.
Primary particulate matter is emitted directly into the atmosphere from various anthropogenic and natural sources such as power plants (combustion of fossil fuels) or forest fires. Secondary particles are formed by transformation of SO2, NOx, NH3, and VOC in the atmosphere. They both contribute to ambient particulate matter concentrations, which may have adverse effects on human health. Health hazards are caused by small particulate size, high number of especially fine (< 2.5 µm) and ultra-fine (< 0.1 µm) particles and/or their chemical composition. As part of an integrated assessment model developed at IIASA, a module on primary particulate matter (PM) emissions has been added to the existing SO2, NOx, NH3 and VOC sections. The module considers so far primary emissions of total suspended particles (TSP), PM10 and PM2.5 from aggregated stationary and mobile sources. A primary PM emission database has been established. Country specific emission factors for stationary sources have been calculated within the module using the ash content of solid fuels.  相似文献   

13.
Based on combined information available from air quality monitoring data and long-range transport models, European population exposure to SO2, NO2 and O3 has been estimated. This information has been combined with the results of epidemiological studies assessing strength of association between the exposure and health effects to estimate an impact of the pollution on health in Europe. The analysis indicates that a considerable number of health problems, ranging from mild irritation of the respiratory system to increased mortality, can be attributed to short-term peaks of pollution observed in Europe. Chronic impacts of prolonged elevated SO2 levels on lung function are estimated to occur in close to10 million people in Europe.  相似文献   

14.
A theoretical meridional model of the O3 layer is presented. Two-dimensional transport by eddies and mean motion is considered together with photochemical reactions involving O, N, and H. The model is used to evaluate the effect of increased contents of H2O and NOx in the stratosphere. It is found that a doubling of stratospheric humidity will reduce the total amount of O3 by less than 1 %, while a doubling of NOx will result in an 18 % reduction for middle latitudes and summer. A 10 % increase in NOx will reduce the total O3 by about 2.8%. The relations between UV radiation and total O3 are described, in particular, for wavelengths of biological interest (290 to 320 nm). A 1% decrease in total O3 will result in a 2 % increase in erythemogenic UV radiation.  相似文献   

15.
Monocyclic Aromatic Hydrocarbons in Kathmandu During the Winter Season   总被引:1,自引:0,他引:1  
Mixing ratios of seven monocyclic aromatic hydrocarbons, as well as NO2, SO2 and O3, were measured by long path differential optical absorption spectroscopy (DOAS) at a suburban site in Kathmandu, Nepal, during Jan.–Feb. 2003. The results showed average benzene (3.9?±?1.8 ppbv), toluene (13.3?±?7.1 ppbv), and sum of xylene isomers (42.2?±?15.7 ppbv) mixing ratios in Kathmandu. The xylenes concentrations were higher than in the large cities that have been studied. The observed ratio of toluene to benzene (2.9?±?1.8) reflected the small fraction of vehicles with catalytic converters in the Kathamndu. Analysis of the late afternoon time series of aromatics, NO x , and wind data indicated that road traffic was one of the main sources of aromatics in the urban air. In addition, the correlations between aromatics, SO2, NO x , and PM10 during the night strongly suggested that fossil and biomass fuel burning made an important contribution to air pollution in the Kathmandu valley. Aromatic pollution was further strengthened by daily recurring stable meteorological conditions and the surrounding topography. The chemical reaction of aromatics with free radicals during the daytime could also be deduced. High ratios of phenol/benzene and para-cresol/toluene could not be explained by chemical processes, and suggested direct emission of phenol and para-cresol in the Kathmandu atmosphere.  相似文献   

16.
Calculating nitrogen deposition in Europe   总被引:1,自引:0,他引:1  
Nitrogen deposition calculations for Europe were performed by separate models describing the long-range transport of ammonia and oxidized N. A linearized version of a non-linear atmospheric chemistry model was used for calculating oxidized N. Model computations were found to be consistent with the observed spatial pattern of wet nitrate deposition in Europe. Interannual meteorological variability was estimated to cause a typical year-to-year variation in annual oxidized N deposition of about 6 to 10%. Nitrogen deposition was computed for several NO x emissions reduction scenarios. These scenarios were derived from an OECD study and applied to the 27 largest countries in Europe. Most reduction scenarios affected the deposition pattern of oxidized N, but the most extreme NO x emission reduction scenario did not change very much the overall pattern of total (oxidized N plus ammonia N) N deposition. Depending on the desired level of environmental protection, it may be necessary to reduce ammonia emissions in addition to NO x emissions in order to reduce N deposition in Europe.  相似文献   

17.
Accurate emission inventories are crucial for informed decisions about emission control strategies. Emission inventory activities are now well established throughout the world and a large body of resources is available to assist in estimating emissions at the global, regional and local scale. Work is ongoing to refine methodologies and to address additional sources and pollutants such as fine particulate matter. During the last decade innovative concepts for emission control legislation were developed. Market based instruments can achieve envisaged emission reductions at lower costs than conventional approaches. Air quality management is now understood as a multi-pollutant, multi-effect task, which offers a significant cost saving potential if synergistic effects are fully utilized. Integrated assessment models proved useful in managing the vast volume of relevant information needed for the design of cost-effective emission control strategies. Europe and North America have embarked on ambitious control strategies that will lead to significant reductions in the emissions of some of the conventional pollutants (e.g., SO2, NOx, VOC). There are also first indications of a structural break that could reverse the long-term growth trend of SO2 emissions also in the fast developing nations of Asia.  相似文献   

18.
Acidifying emissions from energy production and industry have decreased considerably during the last two decades in Finland. Especially the emissions of sulphur dioxide have dropped sharply with 85% in 1980–1998, although the energy use has increased 30% during the same period. The reduction has occurred through two mechanisms: by replacing the combustion of heavy fuel oil with cleaner energy carriers, and by direct emission reduction controls, e.g. flue gas desulphurization. In this study the Finnish cost curves for SO2 and NOx were first calculated to produce a consistent comprehensive view on further emission reduction costs and potentials. The data on technical and cost-related parameters were based on actual national experiences from power plants and industry. Most of the cost-efficient sulphur emission controls were already in use. For NOx, a large share of further reduction potential still remained. Second, a case on the emission reductions and costs for fuel switching in a 205 MWth peat power plant of Tampere Power Utility in Finland was studied. Fuel switching to natural gas was found less cost-efficient in SO2 and NOx emission reduction when compared to flue gas cleaning techniques. The findings provided new information on fuel switching as an alternative potential reduction measure, which is not considered in international assessments.  相似文献   

19.
Modeling studies on sulfur deposition and transport in East Asia   总被引:1,自引:0,他引:1  
A three dimensional regional Eulerian model of sulfur deposition and tranport has been developed. It includes emission, transport, diffusion, gas-phase and aqeous-phase chemical process, dry depostion, rainout and washout process. A looking up table method is provided to deal with the gas-phase chemical process including sulfur transfer. Calculated values have reasonable agreement with observations. Distribution of sulfur deposition and transport in East Asia are also analyzed in the paper. Simulation shows that sulfate (SO 4 2– ) is the main substance to transport in long range transport. Some amount of sulfur emission of different countries transport across boundaries, but the main origin of sulfur deposition in each country in East Asia is from herself. Furthermore, some transport paths on different layers and outlet or inlet zones are found.  相似文献   

20.
Six-week-old rooted cuttings of Populus nigra L. ‘LOENEN’ and Populus maximowiczii Henri X Populus nigra L. ‘ROCHESTER’, differing in their phenomenological sensitivity to O3, were submitted to low concentrations of O3, NOx, and SO2. Exposure was performed in open top-chambers from 25.5. until 6.7.1988. Comparing the response of the two poplars by 77 biochemical criteria the macroscopic O3- sensitivity of ‘LOENEN’ was clearly reflected in changes of the pool sizes of the different nonstructural carbohydrates, polyols, and phenolics of the leaf-lamina, petiole, shoot-axis, and roots. In contrast, both varieties revealed the same response to NOx/SO2-mixtures. It can be concluded that ‘LOENEN’ together with ‘ROCHESTER’-poplars as controls, are an appropriate system to specifically indicate O3 in a mixture of air pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号