首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
‘Polima’ cytoplasmic male sterility (CMS) was transferred from ‘Polima’ Brassica napus ‘ISN 706’to five different cultivars of Brassica campestris (‘Pusa kalyani’, ‘Pant toria’, ‘Candle’, ‘Tobin’ and ‘ATC 94211′) by repeated backcrossing. It was observed that, while ‘Polima’ CMS manifested complete and stable male sterility in the nuclear backgrounds of ‘Pusa kalyani’, ‘Pant toria’, and ‘Tobin’, the cultivars ‘Candle’ and ‘ATC 94211’possessed the restorer gene for this CMS in the heterozygous condition. An analysis of F1 and F2 generations of ‘Polima’‘Pusa kalyani’בCandle’ and ‘Polima’‘Pusa kalyani’בATC 94211’ revealed that restoration is controlled by a single dominant gene. Identification of stable maintainers and restorers of ‘Polima’ CMS could facilitate the development of hybrid varieties in B. campestris.  相似文献   

2.
The Polima cytoplasmic male sterility (CMS) system has been successfully used in three/two-line hybrid production in rapeseed (Brassica napus L.). However, the sterility of the Polima (pol) CMS lines is sensitive to temperature fluctuations. Also, traces of pollen can cause self-pollination within the CMS lines, which results in reduced levels of F1 hybrid seed purity and leads to a significant yield loss. Self-incompatibility (SI) is another important approach for hybrid seed production in rapeseed. Despite having a wide range of restorers and being easily selected in a breeding program, SI system has some drawbacks. In this study, SI genes from a self-incompatible line of Brassica napus were transferred to a pol CMS line and S372A, a novel line of combined cytoplasmic male sterility with self-incompatibility was bred. Due to the SI genes, this line produced very few seeds when it was selfed at low temperature and no seeds at high temperature. This suggested that the line with CMS + SI had combined the advantages and overcome the disadvantages of both the pol CMS and SI systems. Furthermore, our results showed that most of the maintainers and all the restorers of the pol CMS system were also maintainers and restorers of the CMS + SI line, respectively. This indicates that the CMS + SI system can be easily used to establish three-line hybrids of rapeseed, and we believe this novel system could be extended to other species of Brassica.  相似文献   

3.
甘蓝型油菜隐性细胞核雄性不育与波里马细胞质雄性不育可能具有完全不同的不育基因系统;采用有性杂交和连续回交的方法,将甘蓝型油菜隐性细胞核不育基因导入到含有波里马不育细胞质的基因型中,并得到甘蓝型油莱隐性细胞核 波里马细胞质雄性不育系RGCMS—S45A和RGCMS—117A及其相应的保持系S45B和117B;采用测交方法,从隐性细胞核雄性不育系中筛选出甘蓝型油菜隐性细胞核 波里马细胞质雄性不育保持系9个;波里马细胞质雄性不育的恢复系均是隐性细胞核 波里马细胞质雄性不育的恢复系。  相似文献   

4.
一个白菜型油菜细胞质雄性不育的遗传研究   总被引:2,自引:0,他引:2  
杨光圣 Brow.  GG 《作物学报》1998,24(6):705-710
1993年春在白菜型油菜品种“浠水白”中发现了几株雄性不育株,遗传研究结果表明,“浠水白”雄性不育株为细胞质雄性不育,所有调查过的白菜型油菜品种(系)均具有这种雄性水育的保持系。与pol CMS和napCMS的保持系和恢复系的测交结果表明,“浠水白”雄性不育与nap CMS具有相同的恢保关系,与pol CMS具有完全不同的恢保关系。EcoRⅠ,HindⅢ,PstⅠ和SalⅠ四种限制性内切酶的线粒体  相似文献   

5.
‘Polima’ cytoplasmic male sterility (CMS) was transferred to three different genotypes of B. napus i.e. GSL-1, ISN706 and HNS-8 by repeated backcrossing and was found to be completely stable in the nuclear background of synthetic B. napus genotype, ISN706, derived from a cross B. campestris ssp. oleifera var. brown sarson ×B. oleracea var. botrytis cv. Tusa Katki'. The BC5 and BC6 generation lines of ISN706, GSL-1 and HNS-8 with ‘Polima’ CMS were grown under a range of temperature and photo-period conditions to test their stability. No breakdown in sterility was observed in ‘Polima’ ISN706 and, therefore, this genotype can be used as a maintainer for hybrid seed production.  相似文献   

6.
J. Li    Z. Tang    X. Zhang  L. Shen 《Plant Breeding》1995,114(6):552-554
All rapeseed lines with Polima male sterility (MS) that are applied in hybrid cultivars have the problem that their sterility varies with temperature. To overcome this problem, two double-MS lines with genie (GMS) as well as cytoplasmic male sterility (CMS) genes were synthesized through seven generations of breeding, based on a systematic study of changes in fertility of the genie and cytoplasmic male sterility lines. The fertility of the new sterility lines was determined by observation of the floral organs and by pollen staining. The results showed that, in the double-MS lines, half the plants maintained the features of the Polima CMS line, while the other half behaved like the GMS line. The GMS genes were correctly expressed in the Pol cytoplasm, but there was little interaction between the GMS and CMS genetic systems.  相似文献   

7.
Fu  Tingdong  Yang  Guangsheng Yang  Xiaoniu 《Plant Breeding》1990,104(2):115-120
Polima CMS lines can be divided into three groups according to the sensitivity of male sterility to temperature: 1) high temperature CMS lines (62.9%), 2) low temperature CMS lines (28.6 %) and 3) stable CMS lines (8.5 %). The heterosis of Pol CMS hybrids is evident and common in some of the characters tested, especially in plant seed yield and siliqua number. The cytoplasm has no deleterious effects on the FI characters tested.  相似文献   

8.
Summary A high frequency of male sterile mutants regeneration was shown in callus cultures derived from leaves and panicles of haploid sorghum (Msc1, A1 cytoplasm) and a spontaneous autodiploid obtained from this haploid. The cultures derived from the embryos of this autodiploid yielded significantly fewer mutants. Absolutely or partially male sterile mutants appeared among the regenerants or in the progeny of fertile regenerants. In the self-fertilized progenies of partially male sterile mutants and in the hybrids of sterile mutants with autodiploid line (i.e. under one and the same nuclear genome) male sterility mutations were inherited as cytoplasmic. Non-Mendelian segregation of sterile, partially male sterile and fertile plants was observed in these progenies. Partially male sterile plants were characterized by somatic segregation of male sterility genetic factors. In test-crosses with some CMS A1 fertility restorers, mutations were manifested as nuclear recessive while with others as nuclear dominant. These differences are supposed to be the result of interaction of fertility restorer genes of these testers with the novel cytoplasm. Male sterility mutations accompanied with female sterility were inherited as nuclear recessives.Abbreviations f fertile - ps partially male sterile - s male sterile plants  相似文献   

9.
Summary Most of the commercial hybrids of indica rice are based on wild abortive (WA) source of cytoplasmic-genetic male sterility (CMS). Such cytoplasmic uniformity may lead to genetic vulnerability to disease and insect pests. To overcome this problem, diversification of CMS sources is essential. Crosses of 46 accessions of O. perennis and two accessions of O. rufipogon as female parents were made with two restorers (IR54, IR64) of WA cytosterility. Sterile hybrids were backcrossed with the respective recurrent parents. Of all the backcross derivatives, one line having the cytoplasm of O. perennis Acc 104823 and the nuclear background of IR64 was found to be stable for male sterility. The newly developed CMS line has been designated as IR66707A. This line is completely sterile (0% seed set) under selfed conditions. Crosses of IR66707A with 10 restorers of WA cytoplasm showed almost complete (93–100%) pollen sterility, indicating that the male sterility source of IR66707A is different from WA sterility. Southern hybridization of IR66707A, O. perennis (cytoplasmic donor), IR66707B (maintainer) and V20A (WA cytoplasm) using mitochondrial DNA specific probes (5 endonucleases × 8 probes) showed identical banding patterns between IR66707A and O. perennis. However, in more than half of the combinations, different banding patterns were observed between IR66707A and IR66707B and between IR66707A and V20A. The results suggest that IR66707A has the same cytoplasm as the donor (O. perennis), and CMS may not be caused by any major rearrangement or modification of mtDNA. The new CMS source identified will be useful in cytoplasmic diversification in hybrid rice breeding.  相似文献   

10.
Search for male sterility-inducing cytoplasm in wild species of the genus Oryza was attempted with a view to diversify the base of the cytoplasmic genetic male sterility system currently used in the development of commercial rice hybrids. A total of 132 interspecific crosses were made involving accessions of four wild and two cultivated species, all belonging to the A genome. Wild accessions possessing sterility-inducing cytoplasms were identified following reciprocal and sterile F2 backcross methods. Sterile segregants were pursued through substitution backcrosses to develop cytoplasmic male-sterile (CMS) lines. CMS lines were developed with the cytoplasm of either O. rufipogon (VNI) or O. nivara (DRW 21018, DRW 21001, DRW 21039, DRW 21030 and RPW 21111). Based on shape, staining, and abortive pattern of pollen and also on type of interaction with a set of restorers and maintainers for known cytoplasmic male steriles of WA source (V 20A), the newly-developed CMS lines were grouped into four classes. Of these, RPMS 1 and RPMS 2 showed gametophytic male sterility with a restorer reaction different from WA cytoplasmic male-sterile stocks.  相似文献   

11.
体细胞杂交在油菜细胞质雄性不育创建和改良中的应用   总被引:11,自引:1,他引:11  
胡琼  李云昌 《作物学报》2006,32(1):138-143
油菜细胞质雄性不育作为生产油菜杂交种的主要授粉控制系统得到广泛利用,但由于油菜种内自然发生的有利用价值的雄性不育细胞质类型不多,所以种属间转移现有不育细胞质及发掘新型不育细胞质意义重大。体细胞杂交不仅避开了有性杂交亲和障碍的限制,还可实现两个杂交亲本细胞质基因组的重组,是一种快速有效、应用广泛的转移和诱导雄性不育细胞质的手段。本文综述了利用原生质体杂交技术在油菜种内、种间和属间转移雄性不育细胞质以及通过细胞质基因组重组改良和创建新型雄性不育细胞质的研究进展,并讨论了利用体细胞杂交方法创建新型雄性不育细胞质的应用前景。  相似文献   

12.
T. J. Zhao  J. Y. Gai 《Euphytica》2006,152(3):387-396
Most of the cytoplasmic-nuclear male-sterile (CMS) lines of soybean were developed only from a limited cytoplasm sources and performed not as good as required in hybrid seed production, therefore, to explore new male-sterile cytoplasm sources should be one of the effective ways to improve the pollination and hybridization for a better pod-set in utilization of heterosis of soybeans. In the present study, total 80 crosses between 70 cultivated and annual wild soybean accessions and three maintainers (N2899, N21249, and N23998) of NJCMS1A were made for detecting potential new sources with male-sterile cytoplasm. The results showed that in addition to the crosses with N8855.1 (the cytoplasm donor parent of NJCMS1A) and its derived line NG99-893 as cytoplasm parent, there appeared three crosses, including N21566 × N21249 and N23168 × N21249, with male-sterile plants in their progenies. According to the male fertility performance of backcrosses and reciprocal crosses with the tester N21249, the landrace N21566 and annual wild soybean accession N23168 were further confirmed to have male-sterile cytoplasm. Accordingly, it was understood that the source with male-sterile cytoplasm in soybean gene pool might be not occasional. The results also showed that the genetic system of male sterility of the newly found cytoplasm source N21566 was different from the old cytoplasm source N8855.1, while N23168 was to be further studied. Based on the above results, the derived male-sterile plants from [(N21566 × N21249) F1 × N21249] BC1F1 were back-crossed with the recurrent parent N21249 for five successive times, and a new CMS line and its maintainer line, designated as NJCMS3A and NJCMS3B, respectively, were obtained. NJCMS3A had normal female fertility and stable male sterility. Its microspore abortion was mainly at middle uninucleate stage, earlier than that of NJCMS1A and NJCMS2A. The male fertility of F1s between NJCMS3A and 20 pollen parents showed that 7 accessions could restore its male fertility and other 13 could maintain its male sterility. The male sterility of NJCMS3A and its restoration were controlled by one pair of gametophyte male-sterile gene according to male fertility segregation of crosses between NJCMS3A and three restorers. The nuclear gene(s) of male sterility in NJCMS3A appeared different from the previously reported CMS lines, NJCMS1A and NJCMS2A. The development of NJCMS3A demonstrated the feasibility to discover new CMS system through choosing maintainers with suitable nuclear background.  相似文献   

13.
In CMS (cytoplasmic male sterility)‐based hybrid rye (Secale cereale L.) breeding, effective pollen‐fertility restoration is an essential prerequisite for achieving maximum grain yield on the one hand and for minimizing ergot (Claviceps purpurea) infestation on the other. Restorer genes for the CMS‐inducing ‘Pampa’ cytoplasm derived from landraces collected in Iran and Argentina are used by breeders for achieving this goal. Here, restorer genes from four germplasm sources (‘Altevogt 14160’, ‘IRAN III’, ‘Trenelense’ and ‘Pico Gentario’) were analysed by producing three‐way cross hybrids between an elite CMS single cross and pollinators with and without a given restorer gene. Materials were evaluated on large drilled plots for restorer index (RI), grain yield, plant height and other traits in six environments. In experiment 1, a restorer gene from ‘Altevogt 14160’ was used. Seven pairs of marker‐selected carrier and non‐carrier backcross lines served as pollinators. In experiment 2, the pollinators were 17 backcross line pairs from the other three germplasm sources. These lines were grouped as high (RI > 67%) and low restorers (RI < 30%), respectively, using testcrosses with a highly diagnostic CMS tester. Hybrids carrying an exotic restorer gene suffered from a significant grain yield reduction by 4.4% and 9.4% and were 9.3 and 4.8 cm taller in experiments 1 and 2, respectively. Thousand‐kernel weight was reduced, whereas quality traits were only slightly affected. For all traits, significant genetic variance existed among the testcrosses to the presence vs. absence of a given exotic restorer gene. This offers a chance for the breeder to reduce or ultimately overcome the presently observed performance reductions brought about by exotic restorer genes.  相似文献   

14.
我国甘蓝型油菜细胞质雄性不育的类型主要有:ogura CMS、nap CMS、pol CMS、Shan 2A CMS、Hau CMS、NCa CMS、Nsa CMS和NEA CMS。pol CMS和Shan 2A CMS在我国油菜杂种优势利用中发挥着重要的作用。新型不育胞质的育成以及在育种上的应用,不仅丰富了细胞质雄性不育种质资源,而且为我国油菜产业可持续发展提供了保证。  相似文献   

15.
Eighteen genotypes of Brassica napus were crossed to a cytoplasmic male sterile (CMS) line of B. napus BO 15 carrying B. tournefortii cytoplasm (‘tour’ cytoplasm). Fourteen genotypes were found to be stable maintainers of the ‘tour’ CMS. Of the remaining four genotypes, GSL-1 and ‘Asahi-natane’ were found to be heterozygous and ‘Mangun’ and ‘Yudal’ were homozygous for the restorer gene. Analysis of the F1 and F2 progenies of (CMS) BO 15 בMangun’ and (CMS) BO 15 בYudal’ showed that fertility restoration is controlled by a single dominant gene. The availability of a number of stable maintainer lines and the simple inheritance pattern of fertility restorer gene makes ‘tour’ CMS a useful system for hybrid seed production in rapeseed.  相似文献   

16.
Z. X. Fan    W. X. Lei    D. F. Hong    J. P. He    L. L. Wan    Z. H. Xu    P. W. Liu    G. S. Yang 《Plant Breeding》2007,126(3):297-301
Over the past decade, the polima cytoplasmic male sterility ( pol CMS) three-line and two-line systems have been developed for the production of hybrid seed in Brassica napus oilseed rape in China. The discovery of the novel pol CMS restorer line FL-204 is described here. It restores male fertility of hybrid plants in the pol CMS system, but hybrid seed production can only be carried out under autumn sowing in Wuhan in south China under moderate temperatures at flowering. The restorer cannot be used as a male for hybrid seed production in northwestern China (Gansu) under spring sowing conditions, because there it is more or less male sterile due to high temperatures at flowering. Because of this behaviour, it is referred to as a fertility temperature-sensitive restorer (FTSR) in this paper. F2, BC1 as well as double haploid populations were constructed to determine the inheritance of fertility restoration of FL-204 in the autumn at Wuhan and under spring sowing conditions at Gansu, respectively. Deviations from Mendelian genetics were observed. It was hypothesized that the change of fertility was the result of the interaction between nuclear genes [restoring gene ( Rf ) and temperature-sensitive genes ( ts )] and the cytoplasm. The Rf gene in FL-204 was incapable of restoring male fertility of pol CMS lines under spring sowing conditions at Gansu where it is inactivated by the recessive ts gene present in FL-204. However, the ts gene(s) could be non-functional under moderate temperature conditions at flowering at Wuhan which allows full expression of male fertility in FL-204. The recessive ts gene(s) can only be expressed in plants containing the pol sterile cytoplasm. A method for the utilization of the FTSR pol CMS restorer FL-204 for the production of hybrid seed in B. napus oilseed rape is proposed.  相似文献   

17.
Twenty‐seven improved aromatic lines of germplasm and 18 non‐aromatic disease‐resistant genotypes of rice were test‐crossed with four cytoplasmic male‐sterile lines (IR 58025A, IR 62829A, PMS 3A and PMS 10A). Thirteen aromatic and 10 non‐aromatic genotypes were selected based on pollen fertility, and crosses were repeated to confirm sterility‐maintaining and fertility‐restoring ability. Genotypes were categorized as effective restorers (> 80% spikelet fertility), partial restorers (21‐79% spikelet fertility) and maintainers (< 1% spikelet fertility). The effective basmati restorers identified were Basmati 385, Chandan, P1031‐8‐5‐1, HKR 241‐IET‐12020, SAF Khalsa 7 and Karnal Local. The basmati maintainers identified were Basmati 370, Pusa basmati 1, P615‐K‐167‐13 and P1173‐4‐1. The frequency of restorers obtained was higher for the non‐aromatic than the aromatic basmati type. The performance of restorers varied with cytoplasmic male‐sterile (CMS) line, location and season of testing. The differential ability to restore fertility in the CMS lines that have the wild abortive (WA) cytosterile system could result from different nuclear backgrounds of the CMS lines. These restorers and maintainers possess acceptable grain dimensions, a desirable degree of aroma, volume expansion through linear kernel elongation and cooking quality characteristics of basmati rice. These genotypes will contribute to developing basmati hybrids and provide restorers and maintainers with acceptable key basmati quality characteristics.  相似文献   

18.
The male sterility system in hybrid seed production can eliminate the cost of emasculation and ensure seed hybridity through avoidance of self pollination. GMS and CMS are two types of male sterility system that currently employed in pepper breeding. Conversion from GMS to CMS will increase the male sterility proportion of female parent from 50 to 100%. In this study, segregation analysis of four male sterile mutants consisting of one CMS mutant (CA1) and three GMS mutants (GA1, GA3 and GA4) showed that each had single recessive gene inheritance. A modified complementation test was performed by replacing male sterile mutants with their maintainer line as male parent. The nuclear restorer gene for CMS was independent of all nuclear restorer genes for GMS and all nuclear restorer genes for GMS were independent each other. Further observation on CMS and GMS male sterility loci revealed that GA1 and GA3 had mutated in both nuclear restorer genes for CMS and GMS, while CA1 and GA4 each carried mutation in single male sterility system of nuclear restorer gene for CMS and GMS, respectively. Conversion from GMS to CMS in the case of lines carried mutations in both sterility systems required only S-type cytoplasm donor, while lines carried mutation in single nuclear restorer gene for GMS required not only S-type cytoplasm but also rf allele donors. The important finding is the broader function of maintainer line in certain male sterility system that can be used as a maintainer or restorer line for other male sterility systems. We also confirmed that line CC1 is the general restorer for both CMS and GMS systems.  相似文献   

19.
W. L. Wei    H. Z. Wang    G. H. Liu 《Plant Breeding》2009,128(4):426-428
It is very important for rapeseed hybrid production to develop and utilize a novel cytoplasmic male sterility (CMS) system concerning the possible risk because of a narrow cytoplasm background. Here the anatomy of anther development in the CMS system, named NCa , was observed using light microscope and transmission electron microscope, and the restriction fragment length polymorphism (RFLP) analyses of mitochondrial DNA of NCa sterile line were also performed in comparison with the other rapeseed sterile lines, such as pol , nap , ogura , and tour . The anther abortion of this CMS line occurred at the later uninucleate microspore stage, and the anatomic aborting characteristics were obviously different from all the other rapeseed CMS lines reported before. The RFLP analyses revealed that five probe/enzyme combinations could distinguish the five CMS lines. The results of anatomic observations and mitochondrial DNA polymorphism indicated that the NCa CMS system is a novel one which differs from the pol , nap , ogura , and tour systems.  相似文献   

20.
Male fertility restoration in new types of sorghum cytoplasmic male sterility‐inducing cytoplasms (A4, ‘9E’, ‘M35’), characterized by the formation of non‐dehiscent anthers, is difficult. Lines with fertility‐restorer genes for these unique cytoplasms do occur, but rarely, and when found tend to be unstable in their inheritance and expression. The aim of this research was to explore reasons for this instability. Seven lines in three unique cytoplasms, ‘9E’, A4 and ‘M35’, and six lines that restore with these cytoplasms were grown at the Agricultural Research Institute for South‐East Region in Saratov, Russia from 1993 to 2004. Levels of male fertility restoration and various environmental factors were recorded. It is reported that for sorghum hybrids in the A4, ‘9E’ and ‘M35’ male‐sterile cytoplasms, the level of plant male fertility is determined by the level of water available to plants during anther and pollen formation that which ‘switches on’ the expression of fertility‐restoring genes, and is possibly involved in an unusual type of male fertility inheritance in these cytoplasms. The creation of reliable line‐fertility restorers capable of the restoration of male fertility of F1 hybrids in ‘M35’ cytoplasm under conditions of water stress is also reported. Current research explore mechanisms involved possible in responses to water levels at various growth stages and their influence on fertility within these cytoplasms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号