首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The responses of 92 barley genotypes to selected Puccinia hordei pathotypes were assessed in greenhouse tests at seedling growth stages and in the field at adult plant growth stages to identify known and/or unknown resistances. On the basis of multipathotype tests, 35 genotypes were postulated to carry Rph1, Rph2, Rph4, Rph5, Rph12, RphCantala, alone or in combination (Rph2 + Rph4 and Rph1 + Rph2), whereas 52 genotypes lacked seedling resistance to P. hordei to the pathotypes used. Five genotypes carried seedling resistance that was effective to all pathotypes, of which four were believed to carry uncharacterised resistance based on pedigree information. Field tests at adult plant growth stages indicated that while 28 genotypes were susceptible, 57 carried uncharacterised APR to P. hordei. Pedigree analysis indicated that APR in the test genotypes could have been derived from three different sources. The resistant responses of seven cultivars at adult plant growth stages were believed to be due to the presence of seedling resistance effective against the field pathotypes.  相似文献   

2.
Summary A set of 105 European wheat cultivars, comprising 68 cultivars with known seedling resistance genes and 37 cultivars that had not been tested previously, was tested for resistance to selected Australian pathotypes of P. triticina in seedling greenhouse tests and adult plant field tests. Only 4% of the cultivars were susceptible at all growth stages. Twelve cultivars lacked detectable seedling resistance to leaf rust, and among the remaining cultivars, 10 designated genes were present either singly or in combination. Lr13 was the most frequently detected gene, present in 67 cultivars, followed by the rye-derived gene Lr26, present in 19 cultivars. Other genes present were Lr1, Lr3a, Lr3ka, Lr10, Lr14a, Lr17b, Lr20 and Lr37. There was evidence for unidentified seedling resistance in addition to known resistance genes in 11 cultivars. Field tests with known pathotypes of P. triticina demonstrated that 57% of the cultivars carried adult plant resistance (APR) to P. triticina. The genetic identity of the APR is largely unknown. Genetic studies on selected cultivars with unidentified seedling resistances as well as all of those identified to carry APR are required to determine the number and inheritance of the genes involved, to determine their relationships with previously designated rust resistance genes, and to assess their potential value in breeding for resistance to leaf rust.  相似文献   

3.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases on wheat in China. To assess resistance in wheat cultivars and breeding lines in China, 330 leading cultivars and 164 advanced breeding lines were evaluated with stripe rust. In the greenhouse tests, seedlings of the entries were inoculated separately with several Pst pathotypes. In the field tests, the entries were evaluated for stripe rust resistance in Yangling, Shaanxi Province artificially inoculated and in Tianshui, Gansu Province under natural infection of Pst. The oversummering/wintering and spring epidemic zones of resistance genes were postulated using molecular markers for Yr5, Yr9, Yr10, Yr15, Yr17, Yr18, and Yr26, in combination with resistance spectra. Out of the 494 wheat entries, 16 (3.24 %) entries had all-stage resistance (ASR) in all race tests, 99 (20.04 %) had adult-plant resistance (APR), 28 (5.67 %) were considered to have slow-rusting (SR), and 351 (71.05 %) were susceptible to one or more races in both seedling and adult-plant stages. Advanced breeding lines had a higher percentage (37.2 %) of resistant entries (The sum of ASR, APR and SR) than leading cultivars (24.85 %). Among the epidemic regions, southern Gansu had a higher percentage of resistant entries than any other regions. Based on stripe rust reactions and molecular markers, two cultivars were found to possibly have Yr5 while no entries have Yr10 or Yr15. Resistance genes Yr9, Yr17, Yr18, and Yr26 were found in 134 (29.4 %), 45 (9.1 %), 10 (2 %), and 15 (3 %) entries, respectively.  相似文献   

4.
A total of 105 European wheat cultivars were assessed for seedling and adult plant resistance (APR) to stem rust using an array of Australian isolates of Puccinia graminis f. sp. tritici. Twenty-seven cultivars were susceptible at both seedling and adult plant growth stages. Twelve catalogued seedling stem rust resistance genes (Sr7b, Sr8a, Sr8b, Sr9b, Sr9g, Sr11, Sr15, Sr17, Sr29, Sr31, Sr36 and Sr38) were detected in the remaining cultivars, and 13 cultivars carried additional seedling resistance genes that could not be postulated with the isolates used. Low levels of APR to stem rust were found in the cultivars Artaban, Forno, Mec, Mercia, Pandas and Vlada. Although the genetic identity of this APR was not determined, it was clear that the only designated stem rust APR gene Sr2 was not present in any of the cultivars tested based on the absence of the linked traits seedling chlorosis and pseudo black chaff. One of these cultivars, Forno, is believed to carry the leaf rust APR gene Lr34, previously reported to be associated with improved resistance to stem rust. A detailed genetic characterisation of the APRs in these cultivars will be needed to understand their modes of inheritance and relationships with catalogued stem rust resistance genes. Such knowledge may help in developing cultivars with effective gene combinations that confer higher levels of protection.  相似文献   

5.
Stripe rust of wheat caused by the fungal pathogen is a destructive foliar disease of wheat. Thus, it is crucial step to characterize the resistant germplasm for stripe rust in a diverse germplasm pool for their ultimate utilization in efficient crop rust resistance breeding. In the present study, we followed two pronged strategies involving integrated phenotypic and molecular characterization of 440 diverse wheat germplasm lines for rust resistance. The germplasm panel was extensively evaluated in field epiphytotic conditions during two consecutive years. After rigorous screening, 72 accessions were successfully revealed as resistant to moderately resistant to stripe rust. Subsequently, entries were then evaluated for their field agronomicperformances, considering prerequisites for serving as a donor germplasm,particularly for yield and 33 potential rust-resistant accessions were identified. Furthermore, to detect the sources of resistance, accessions were molecular characterized for potential race-specific resistance genes Yr5, Yr10,Yr15, and effective adult plant resistance (APR) gene Lr34/Yr18/pm38. We identified the 22 accessions possessing one or more single resistance genes and two accessions were observed with at least three of them. Moreover, Lr34/Yr18/pm38 was determined to confer resistance when observed along with any of the race-specific genes. Thus, the study not only provides proof of concept methodology to identify candidate resistant sources from large germplasm collections but simultaneouslyconfirmed the contribution of combining race-specific andnon-specific APR genes. The finding could further assist in the potential deployment of resistant genes directly into the stripe rust breeding program by involving marker-assisted approaches.  相似文献   

6.
Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating wheat diseases worldwide. Triticum aestivum-Haynaldia villosa 6VS/6AL translocation lines carrying the Yr26 gene on chromosome 1B, are resistant to most races of Pst used in virulence tests. In order to better utilize Yr26 for wheat improvement, we attempted to screen SSR and EST-based STS markers closely linked with Yr26. A total of 500 F2 plants and the F2:3 progenies derived from a cross between 92R137 and susceptible cultivar Yangmai 5 were inoculated with race CYR32. The analysis confirmed that stripe rust resistance was controlled by a single dominant gene, Yr26. Among 35 pairs of genomic SSR markers and 81 pairs of STS markers derived from EST sequences located on chromosome 1B, Yr26 was flanked by 5 SSR and 7 STS markers. The markers were mapped in deletion bins using CS aneuploid and deletion lines. The closest flanking marker loci, Xwe173 and Xbarc181, mapped in 1BL and the genetic distances from Yr26 were 1.4 cM and 6.7 cM, respectively. Some of these markers were previously reported on 1BS. Eight common wheat cultivars and lines developed from the T. aestivum-H. villosa 6VS/6AL translocation lines by different research groups were tested for presence of the markers. Five lines with Yr26 carried the flanking markers whereas three lines without Yr26 did not. The results indicated that the flanking markers should be useful in marker-assisted selection for incorporating Yr26 into wheat cultivars.  相似文献   

7.
The wheat (Triticum aestivum L.) gene Lr34/Yr18 conditions resistance to leaf rust, stripe rust, and stem rust, along with other diseases such as powdery mildew. This makes it one of the most important genes in wheat. In Canada, Lr34 has provided effective leaf rust resistance since it was first incorporated into the cultivar Glenlea, registered in 1972. Recently, molecular markers were discovered that are either closely linked to this locus, or contained within the gene. Canadian wheat cultivars released from 1900 to 2007, breeding lines and related parental lines, were tested for sequence based markers caSNP12, caIND11, caIND10, caSNP4, microsatellite markers wms1220, cam11, csLVMS1, swm10, csLV34, and insertion site based polymorphism marker caISBP1. Thirty different molecular marker haplotypes were found among the 375 lines tested; 5 haplotypes had the resistance allele for Lr34, and 25 haplotypes had a susceptibility allele at this locus. The numbers of lines in each haplotype group varied from 1 to 140. The largest group was represented by the leaf rust susceptible cultivar “Thatcher” and many lines derived from “Thatcher”. The 5 haplotypes that had the resistance allele for Lr34 were identical for the markers tested within the coding region of the gene but differed in the linked markers wms1220, caISBP1, cam11, and csLV34. The presence of the resistance or susceptibility allele at the Lr34 locus was tracked through the ancestries of the Canadian wheat classes, revealing that the resistance allele was present in many cultivars released since the 1970s, but not generally in the older cultivars.  相似文献   

8.
Stripe (yellow) rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks. (Pst), is an important disease of wheat (Triticum aestivum L.) globally. Use of host resistance is an important strategy to manage the disease. The cultivar Flinor has temperature-sensitive resistance to stripe rust. To map quantitative trait loci (QTLs) for these temperature-sensitive resistances, Flinor was crossed with susceptible cultivar Ming Xian 169. The seedlings of the parents, and F1, F3 progeny were screened against Chinese yellow rust race CYR32 in controlled-temperature growth chambers under different temperature regimes. Genetic analysis confirmed two genes for temperature-sensitive stripe rust resistance. A linkage map of SSR markers was constructed using 130 F3 families derived from the cross. Two temperature-sensitive resistance QTLs were detected on chromosome 5B, designated QYr-tem-5B.1 and QYr-tem-5B.2, respectively, and are separated by a genetic distance of over 50 cM. The loci contributed 33.12 and 37.33% of the total phenotypic variation for infection type, respectively, and up to 70.45% collectively. Favorable alleles of these two QTLs came from Flinor. These two QTLs are temperature-sensitive resistance loci and different from previously reported QTLs for resistance to stripe rust.  相似文献   

9.
Summary Seedlings of 38 wild emmer derivatives, and a total of 53 advanced wheat varieties/lines introduced from the International Maize and Wheat Improvement Centre (CIMMYT) or other sources, Nepalese breeding lines and local cultivars were inoculated with 18 different yellow rust isolates to postulate yellow rust resistance genes (Yr). Many wild emmer wheat derivatives used were resistant to all isolates indicating the presence of undescribed genes. Some derivatives carried Yr9, Yr6 and/or YrSU. Genes Yr1, Yr2, Yr6, Yr7, Yr8, Yr15, YrSU and YrA+ are no longer effective in Nepal; Yr4, Yr5, Yr9, Yr10, YrSP and YrSD are still effective; the effectiveness of Yr3 remains unclear. This study shows that stripe rust resistance in seedling stage of most Nepalese cultivars and advanced materials is based on Yr9 with combinations of Yr2, Yr6, Yr7, and YrA+, of which only Yr9 is still effective in Nepal. In many countries Yr9 has lost its effectiveness. Therefore the introduction of new Yr-genes from wild emmer wheat in Nepalese cultivars is highly important.  相似文献   

10.
Three recombinant inbred line populations from the crosses RL6071/Thatcher, RL6071/RL6058 (Thatcher Lr34), and Thatcher/RL6058, were used to study the genetics of stem rust resistance in Thatcher and TcLr34. Segregation of stem rust response in each population was used to determine the number of genes conferring resistance, as well as the effect of the leaf rust resistance gene Lr34 on stem rust resistance. The relationship between resistance in seedling and adult plants was also examined, and an attempt was made to identify microsatellite markers linked to genes that were effective in adult plants. In field plot tests at least three additive resistance genes segregated in the RL6071/RL6058 population, whereas two resistance genes segregated in the RL6071/Thatcher population. The presence of the gene Lr34 permitted the expression of additional stem rust resistance in Thatcher-derived lines both at the seedling and adult plant stages. Seedling resistance to races TPMK and RKQQ was significantly associated with resistance in adult plants, whereas seedling resistance to races QCCD and QCCB may have made a minor contribution. The seedling resistance genes Sr16 and Sr12 may have contributed to resistance in adult plants. A molecular marker linked to resistance in adult plants was identified on chromosome 2BL.  相似文献   

11.
Leaf rust caused by Puccinia triticina is the most common and widely distributed of the three wheat rusts. Losses from leaf rust are usually less damaging than those from stem rust and stripe rust, but leaf rust causes greater annual losses due to its more frequent and widespread occurrence. Yield losses from leaf rust are mostly due to reductions in kernel weight. Many laboratories worldwide conduct leaf rust surveys and virulence analyses. Most currently important races (pathotypes) have either evolved through mutations in existing populations or migrated from other, often unknown, areas. Several leaf rust resistance genes are cataloged, and high levels of slow rusting adult plant resistance are available in high yielding CIMMYT wheats. This paper summarizes the importance of leaf rust in the main wheat production areas as reflected by yield losses, the complexity of virulence variation in pathogen populations, the role cultivars with race-specific resistance play in pathogen evolution, and the control measures currently practiced in various regions of the world.  相似文献   

12.
A collection of 112 African barley accessions were assessed for response to Puccinia hordei in seedling greenhouse tests using 10 pathotypes and in adult plant field tests over three successive field seasons in Australia. One of the 10 pathotypes (viz. 5457P+) used in seedling tests was also used in field tests to allow assessment of the presence of adult plant resistance (APR) in lines that were seedling susceptible to this pathotype. The seedling resistance genes Rph1, Rph2, Rph3, Rph9.am and Rph9.z were postulated in a number of accessions, singly and in various combinations, with Rph2 and Rph9.z being the most common. Twenty-six accessions carried seedling resistance that was either uncharacterized or could not be determined using the 10 P. hordei pathotypes. One accession carried high levels of APR and 11 accessions showed moderate levels of APR, all of which were susceptible to all P. hordei pathotypes at the seedling stage. All barley accessions were genotyped for the presence of marker alleles that are closely linked to the APR genes Rph20 and Rph23 (bPb-0837 and Ebmac0603, respectively). No accession was positive for bPb-0837, suggesting that Rph20 is not frequent in African germplasm. Thirteen accessions were postulated to carry Rph23 based on the presence of the marker allele Ebmac0603 found in Yerong (Rph23), and 10 out of the 11 accessions with moderate APR lacked the bPb-0837 and Ebmac0603 marker alleles, indicating that they likely carry new uncharacterized APR genes. Inheritance studies were performed using populations derived from four of the accessions that carried APR (Clho 9776, Clho 11958, Mecknes Maroc and Sinai) by crossing with the susceptible barley genotype Gus. Chi squared analysis of the phenotypic data from F3 populations suggested that CIho9776 carried a single APR gene and CIho11958, Mecknes Maroc and Sinai each carried two genes for APR to leaf rust.  相似文献   

13.
Asian rust, caused by the fungus Phakopsora pachyrhizi, is the most severe disease currently threatening soybean crops in Brazil. The development of resistant cultivars is a top priority. Genetic characterization of resistance genes is important for estimating the improvement when these genes are introduced into soybean plants and for planning breeding strategies against this disease. Here, we infected an F2 population of 140 plants derived from a cross between ‘An-76’, a line carrying two resistance genes (Rpp2 and Rpp4), and ‘Kinoshita’, a cultivar carrying Rpp5, with a Brazilian rust population. We scored six characters of rust resistance (lesion color [LC], frequency of lesions having uredinia [%LU], number of uredinia per lesion [NoU], frequency of open uredinia [%OU], sporulation level [SL], and incubation period [IP]) to identify the genetic contributions of the three genes to these characters. Furthermore, we selected genotypes carrying these three loci in homozygosis by marker-assisted selection and evaluated their genetic effect in comparison with their ancestors, An-76, PI230970, PI459025, Kinoshita and BRS184. All three genes contributed to the phenotypes of these characters in F2 population and when pyramided, they significantly contributed to increase the resistance in comparison to their ancestors. Rpp2, previously reported as being defeated by the same rust population, showed a large contribution to resistance, and its resistance allele seemed to be recessive. Rpp5 had the largest contribution among the three genes, especially to SL and NoU. Only Rpp5 showed a significant contribution to LC. No QTLs for IP were detected in the regions of the three genes. We consider that these genes could contribute differently to resistance to soybean rust, and that genetic background plays an important role in Rpp2 activity. All three loci together worked additively to increase resistance when they were pyramided in a single genotype indicating that the pyramiding strategy is one good breeding strategy to increase soybean rust resistance.  相似文献   

14.
Summary Two RAPD markers linked to gene for resistance (assayed as pustule number cm−2 leaf area) to rust [Uromyces fabae (Pers.) de Bary] in pea (Pisum sativum L.) were identified using a mapping population of 31 BC1F1 [HUVP 1 (HUVP 1 × FC 1] plants, FC 1 being the resistant parent. The analysis of genetics of rust resistance was based on the parents, F1, F2, BC1F1 and BC1F2 generations. Rust resistance in pea is of non-hypersensitive type; it appeared to be governed by a single partially dominant gene for which symbol Ruf is proposed. Further, this trait seems to be affected by some polygenes in addition to the proposed oligogene Ruf. A total of 614 decamer primers were used to survey the parental polymorphism with regard to DNA amplification by polymerase chain reaction. The primers that amplified polymorphic bands present in the resistant parent (FC 1) were used for bulked segregant analysis. Those markers that amplified consistently and differentially in the resistant and susceptible bulks were separately tested with the 31 BC1F1 individuals. Two RAPD makers, viz., SC10-82360 (primer, GCCGTGAAGT), and SCRI-711000 (primer, GTGGCGTAGT), flanking the rust resistance gene (Ruf) with a distance of 10.8 cM (0.097 rF and LOD of 5.05) and 24.5 cM (0.194 rF and a LOD of 2.72), respectively, were identified. These RAPD markers were not close enough to Ruf to allow a dependable maker-assisted selection for rust resistance. However, if the two makers flanking Ruf were used together, the effectiveness of MAS would be improved considerably.  相似文献   

15.
Submergence is a major stress causing yield losses particularly in the direct-seeded rice cultivation system and necessitates the development of a simple, rapid and reliable bioassay for a large scale screening of rice germplasms with tolerance against submergence stress. We developed two new bioassay methods that were based primarily on the seedling vigor evaluated by the ability of fast shoot elongation under submerged conditions, and compared their effectiveness with two other available methods. All four bioassay methods using cultivars of 7 indica and 6 japonica types revealed significant and consistent cultivar differences in seedling vigor under submergence and/or submergence tolerance. Japonica cultivars were more vigorous than indica cultivars, with Nipponbare being the most vigorous. The simplest test tube method showed the highest correlations to all other methods. Our results suggest that seedling vigor serves as a submergence avoidance mechanism and confers tolerance on rice seedlings to flooding during early crop establishment. A possible relationship is discussed between seedling vigor based on fast shoot elongation and submergence tolerance defined by recovery from submergence stress.  相似文献   

16.
Crown rust, which is caused by Puccinia coronata f. sp. avenae, P. Syd. & Syd., is the most destructive disease of cultivated oats (Avena sativa L.) throughout the world. Resistance to the disease that is based on a single gene is often short-lived because of the extremely great genetic diversity of P. coronata, which suggests that there is a need to develop oat cultivars with several resistance genes. This study aimed to identify amplified fragment length polymorphism AFLP markers that are linked to the major resistance gene, Pc68, and to amplify the F6 genetic map from Pc68/5*Starter × UFRGS8. Seventy-eight markers with normal segregation were discovered and distributed in 12 linkage groups. The map covered 409.4 cM of the Avena sativa genome. Two AFLP markers were linked in repulsion to Pc68: U8PM22 and U8PM25, which flank the gene at 18.60 and 18.83 centiMorgans (cM), respectively. The marker U8PM25 is located in the linkage group 4_12 in the Kanota × Ogle reference oat population. These markers should be useful for transferring Pc68 to genotypes with good agronomic characteristics and for pyramiding crown rust resistance genes.  相似文献   

17.
The 1BL.1RS wheat-rye translocation from Petkus rye has contributed substantially to the world wheat production. However, following the breakdown of disease resistance genes in 1RS, its importance for wheat improvement decreased. We have developed a new 1BL.1RS line, R14, by means of crossing rye inbred line L155, selected from Petkus rye to several wheat cultivars. One new gene each, for stripe rust and powdery mildew resistance, located on 1RS of the line R14, are tentatively named YrCn17 and PmCn17. YrCn17 and PmCn17 confer resistance to Puccinia striiformis f. sp. tritici pathotypes that are virulent on Yr9, and Blumeria graminis f. sp. tritici pathotypes virulent on Pm8. These two new resistances, YrCn17 and PmCn17, are now available for wheat improvement programs. The present study indicates that rye cultivars may carry yet untapped variations as potential sources of resistance.  相似文献   

18.
Leaf rust caused by the fungus Puccinia triticina is one of the most important diseases of wheat (Triticum aestivum) worldwide. The use of resistant wheat cultivars is considered the most economical and environment-friendly approach in controlling the disease. The Lr38 gene, introgressed from Agropyron intermedium, confers a stable seedling and adult plant resistance against multiple isolates tested in Europe. In the present study, 94 F2 plants resulting from a cross made between the resistant Thatcher-derived near-isogenic line (NIL) RL6097, and the susceptible Ethiopian wheat cultivar Kubsa were used to map the Thatcher Lr38 locus in wheat using simple sequence repeat (SSR) markers. Out of 54 markers tested, 15 SSRs were polymorphic between the two parents and subsequently genotyped in the population. The P. triticina isolate DZ7-24 (race FGJTJ), discriminating Lr38 resistant and susceptible plants, was used to inoculate seedlings of the two parents and the segregating population. The SSR markers Xwmc773 and Xbarc273 flanked the Lr38 locus at a distance of 6.1 and 7.9 cM, respectively, to the proximal end of wheat chromosome arm 6DL. The SSR markers Xcfd5 and Xcfd60 both flanked the locus at a distance of 22.1 cM to the distal end of 6DL. In future, these SSR markers can be used by wheat breeders and pathologists for marker assisted selection (MAS) of Lr38-mediated leaf rust resistance in wheat.  相似文献   

19.
The stripe (yellow) rust resistance gene Yr27 was located in wheat (Triticum aestivum L.) chromosome 2B and shown to be closely linked to the leaf (brown) rust resistance genes Lr13 and Lr23 in the proximal region of the short arm. Gene Yr27 was genetically independent of Lr16, which is distally located in the same arm. While Yr27 was often difficult to score in segregating seedling populations, it is apparently quite effective in conferring resistance to avirulent cultures under field conditions. The occurrence of Yr27 in Mexican wheat germplasm and the current over-dependence on Yr27 for crop protection in Asia are discussed.  相似文献   

20.
Genetic Analysis of Resistance to Soil-Borne Wheat Mosaic Virus Derived from Aegilops tauschii. Euphytica. Soil-Borne Wheat Mosaic Virus (SBWMV), vectored by the soil inhabiting organism Polymyxa graminis, causes damage to wheat (Triticum aestivum) yields in most of the wheat growing regions of the world. In localized fields, the entire crop may be lost to the virus. Although many winter wheat cultivars contain resistance to SBWMV, the inheritance of resistance is poorly understood. A linkage analysis of a segregating recombinant inbred line population from the cross KS96WGRC40 × Wichita identified a gene of major effect conferring resistance to SBWMV in the germplasm KS96WGRC40. The SBWMV resistance gene within KS96WGRC40 was derived from accession TA2397 of Aegilops taushcii and is located on the long arm of chromosome 5D, flanked by microsatellite markers Xcfd10 and Xbarc144. The relationship of this locus with a previously identified QTL for SBWMV resistance and the Sbm1 gene conferring resistance to soil-borne cereal mosaic virus is not known, but suggests that a gene on 5DL conferring resistance to both viruses may be present in T. aestivum, as well as the D-genome donor Ae. tauschii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号