首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
雨滴机械打击和消散作用对土壤团聚体的破坏特征   总被引:10,自引:1,他引:9  
土壤团聚体是土壤结构的基本单元,其稳定性是描述土壤抵抗侵蚀过程中破坏作用的重要指标。但溅蚀过程中,雨滴对团聚体的消散和机械打击两种破坏作用的相对贡献及其破坏机制尚未明晰。利用酒精和超纯水作为雨滴形成材料,模拟机械打击单独作用及消散和机械打击共同作用,分别在五个高度(0.5、1、1.5、2和2.5 m)对塿土和黄绵土进行溅蚀实验。结果表明:当降雨动能相同时,塿土的溅蚀率均小于黄绵土。同时,超纯水雨滴对土壤的机械打击和消散共同作用所导致的溅蚀率均大于酒精雨滴单一机械打击作用的溅蚀率。随着降雨动能增加,两种雨滴对两种土壤的溅蚀率均呈幂函数增加;团聚体因消散破坏作用和机械打击作用的溅蚀率均亦随之增加。但两种土壤的消散破坏作用和机械打击作用的贡献率分别随着降雨动能增加而减小和增加。在相同降雨动能时,塿土消散破坏作用的贡献率均大于黄绵土,而机械打击作用贡献率均小于黄绵土。研究结果对深入理解溅蚀过程中团聚体破坏机理及评价溅蚀过程中团聚体稳定性具有重要意义。  相似文献   

2.
溅蚀研究进展   总被引:6,自引:0,他引:6  
溅蚀是水蚀的初始阶段,是雨滴对地表击打直接作用的结果,是一个动能减少,地表土壤颗粒发生位移的过程。溅蚀主要发生在坡面产生径流之前和刚产生径流时,是水蚀的主要形式之一。国内外学者对溅蚀的影响因素的研究主要集中在降雨特征、土壤特性以及地形因素等方面,其中主要影响因子包括:坡度、降雨特征、植被覆盖和土层结构。溅蚀量随坡度的增大逐渐增多,但是坡度超过临界坡度时,随坡度增大而减小;随降雨强度和雨滴大小增大而增大;地表植被对降雨有直接的再分配的过程,主要表现为截流、透流和干流3方面,当地表覆盖物超过1cm时,溅蚀可以完全消失;不同级配的土壤颗粒抗溅蚀能力不同,粒径在0.15mm附近的颗粒最容易被溅蚀,溅蚀同时随着土壤结皮厚度增大,土壤抗溅蚀能力增强。然而目前国内外对溅蚀的研究主要是在实验室模拟条件下完成的,较少有野外实地的研究,更缺乏在实际农业生产条件下的研究。所以需要在前人的基础上结合我国有些地方坡耕地较多的情况,在不同作物、作物生产方式和土地耕作方式等条件下,探讨坡耕地溅蚀规律。  相似文献   

3.
To study and model the interrill erosion process in an unmanaged Japanese cypress (Chamaecyparis obtusa) plantation, soil splash detachment rates were estimated based on the quantification of throughfall raindrop indices. Throughfall drops and soil splash detachment were simultaneously observed in the field, and observed data were compared with estimates produced by previous models. Observations took place over five months in 2005, during six observation periods. Raindrop indices of kinetic energy (KE), momentum (M), and momentum multiplied by the drop diameter (MD) were calculated from drop diameters and velocities. The median volume diameter of 1.99 mm for the overall observation period was well bounded by those from other Japanese cypress plantations. Throughfall consisted of large drops, generated as drips, exceeding 3 mm in diameter. The fall height was insufficient for the drops to attain terminal velocity, with 91% of the drops reaching less than 90% terminal velocity. The observed throughfall raindrop indices had strong correlation with throughfall rainfall intensity, even though throughfall raindrops occurred in seven rainfall events with different meteorological conditions. The values of observed KE and M were lower than previous model-derived estimations. Earlier models tended to overestimate throughfall KE and M, partly because the expected velocity was greater than that observed, and partly because they did not consider the effect of the splash water component during throughfall. The splash detachment rate in forests was weakly correlated with the total-amount raindrop indices but strongly correlated with the maximum value of raindrop indices over a short time scale such as 1 h. This result indicates that continuous and concentrated raindrop impacts over a short time duration cause splash detachment in the forest floor. Development of a comprehensive model of the process of forest floor soil surface erosion requires more detailed measurement of actual throughfall drops.  相似文献   

4.
Splash erosion plays a vital role in the loss of eroded materials. Unlike those in slope central areas, laterally ejected splashed materials in slope border areas cannot be replenished easily because slope edges prevent splash erosion particles from entering the slope. Thus, splashed materials in slope border areas are less than those in slope central areas because of the lack of source areas for splash-eroded materials. However, this phenomenon, called the slope border effect, has received minimal attention by researchers. The partially missing splash erosion induced by the slope border effect on sediment transport was investigated to understand the slope erosion mechanism further in this paper. A modified soil pan divided into four areas, namely, central erosion test area (length = 100 cm, width = 35 cm, depth = 45 cm), border erosion test area (length = 100 cm, width = 35 cm, depth = 45 cm), splash compensate border area (length = 110 cm, width = 30 cm, depth = 45 cm) and splash collection area (length = 100 cm, width = 2.5 cm, depth = 45 cm) was used to monitor diffusion and splash erosion under simulated rainfall. Results showed that the splash detachment rate increased with the increase in slope but initially decreased and then increased with the increase in rainfall intensity. The runoff rate and diffuse erosion rates for complete splash erosion (SE) treatments were higher than those without partial splash erosion (SEL). Under low rainfall erosive power and runoff transport capacity (e.g., 5° slope and 60 mm h−1), the transported clay in SE treatments was approximately 2% more than that in SEL treatments. This amount changed to more than 2% sand under high rainfall and runoff erosive power. However, the mass fraction accounted for by silt particles in the sediments of the SEL treatments was more than that in the SE treatments. Thus, the partially missing splash erosion can weaken the selective transport ability of runoff for sediments. The effect of missing partial splash erosion on diffuse erosion was enhanced with an increase in erosive power. The results of our paper will provide insights into the effect of the boundary effect zone of slope on soil erosion and its related mechanisms.  相似文献   

5.
植被对降雨的再分配分析   总被引:9,自引:2,他引:9       下载免费PDF全文
 定量分析植被对降雨的再分配过程和植被影响雨滴溅蚀的方式,并比较了它们在被分配前后的击溅侵蚀能量。植被对降雨的再分配主要有3种形式:截流、透流和干流,其中,只有透流能溅蚀地面。再分配减少了溅蚀地面的雨量,但增加了雨滴直径。经过比较,结论如下:1)枯落物覆盖度与溅蚀能量呈线性负相关,枯落物覆盖度越大,溅蚀能量越小;2)在降雨量达到透流(经枝叶聚集部分)临界雨量以后,植被高度是所有植被特性中影响溅蚀能量贡献率最大的因子,植被越高,溅蚀能量越大;3)在降雨量达到透流(经枝叶聚集部分)临界雨量以后,雨滴终速度越大,植被所能减少的溅蚀能量越多。  相似文献   

6.
Splash droplet characteristics were studied using cine-photography and a simple droplet collection method. Two sizes of falling drop, two heights of fall and a number of target materials including soil, sand, water and rotating sandpaper were used. For a 6 mm drop falling at near terminal velocity about 5000 splash droplets were collected ranging in size from 10 um to more than 3 mm in diameter. The amount of soil material carried by splash droplets was much less in the presence of surface water and increased with the size of water stable aggregates. The energy and momentum balance showed a higher proportion of impact energy and momentum in the resulting splash droplets as the impact energy increased. This suggests that kinetic energy is not a reliable indicator of the erosivity of rain drops.  相似文献   

7.
《Geoderma》2005,124(3-4):279-292
Splash is an important process in interrill erosion because it produces movement of soil fragments. However, this process is technically difficult to measure and little is known about its size selectivity. In this study, a splash ring device was used to characterise the spatial variation of the quantity and the aggregate size distribution of splashed soil fragments. Soil aggregates were placed at the centre of an experimental device subjected to a 29 mm h−1 simulated rainfall with a kinetic energy of 17 J mm−1. Splashed soil fragments were collected in concentric rings and analysed for masses and fragment size distributions. Four different soils, with various textures, were tested.Soils fragments were splashed across the whole splash device up to 45 cm from the source, and the quantity of splashed fragments decreased exponentially with the distance. For the four tested soils, the splash parameters were significantly correlated to the results of aggregate stability measurements with r=−0.96 and r=0.95, respectively, for the total splashed mass and the mean weight diameter (MWD) of the whole splashed fragments. The measurement of the splashed fragment size distributions showed that fragments up to 2000 μm were transported by raindrop impacts. The mass percentage of the coarsest fractions of splashed soil fragments exponentially decreased with the distance from the source. The extent of this decrease depends on the soil type. The size distributions of splashed soil fragments were compared with those of soil fragments produced by breakdown. Comparison of splash data to aggregate breakdown data showed an enrichment of the 200–1000 μm size fraction in the splashed fragments.  相似文献   

8.
通过室内模拟降雨试验,探究单颗粒液滴飞溅对泥沙颗粒起动的影响。试验共设计4种地表坡度(0,15°,25°,35°)及4种粒径的均匀沙(0.098~0.104,0.104~0.5,0.5~0.78,1~1.4 mm),选取当量直径为4.5 mm的液滴进行模拟试验,同时利用高吸水树脂材料泡发后的水球作为对照组。结果表明,颗粒直径和坡度的变化对颗粒起动的影响较为显著,飞溅子液滴对液滴溅蚀具有重要意义。随着颗粒直径的增大,颗粒的起动逐渐由液滴冲击和子液滴飞溅裹挟共同作用转变为液滴冲击动能传递为主,飞溅携带为辅。当颗粒直径相同时,坡度的增大导致飞溅沙粒不再均衡,斜坡下方的颗粒飞溅量和位移随坡度的增大而增大。坡度越大,下方颗粒溅蚀深度与上方的差距也越大,导致上方颗粒失去支撑,整体失稳垮塌,发生微小滑坡。同种粒径时,树脂水球溅蚀坑的宽深比明显小于相同直径的液滴溅蚀坑,液滴溅蚀量远大于树脂水球直接撞击作用下起动的颗粒量,子液滴的拖曳对颗粒起动具有重要意义。  相似文献   

9.
雨滴击溅对耕作层土壤团聚体粒径分布的影响   总被引:7,自引:4,他引:3  
为研究不同雨滴直径的降雨对耕作层团聚体的破碎及其粒径分布特征的影响,该文选取4个雨滴直径(2.67~3.79 mm)对耕层土壤(0~20 cm)团聚体进行雨滴击溅试验,每次试验各滴5 000滴,每1 000滴收集1次溅蚀团聚体。结果表明:1)所有收集次序中雨滴直径3.79 mm溅蚀量最大,累积雨滴数为2 000、3 000和4 000时,溅蚀量与雨滴直径均呈显著的指数函数关系。2)各雨滴直径的溅蚀量随粒径减小呈增大-减小-增大趋势,2 mm粒径的溅蚀量几乎为0,0.053 mm粒径的溅蚀量随雨滴直径增大而增大。3)相同雨滴直径不同累积雨滴数之间平均重量直径值差异不显著,相同累积雨滴数不同雨滴直径之间平均重量直径值差异不显著(P0.05)。4)不同雨滴直径溅蚀团聚体富集率随粒径变化一致,1 mm粒径溅蚀量团聚体富集率值接近0,0.053~1 mm粒径团聚体富集,1 mm粒径团聚体主要破碎成0.053~1 mm粒径团聚体,且粒级越小,富集率越高。研究可为黄土高原地区水土保持提供理论依据。  相似文献   

10.
Localization of litter fall beneath canopies of desert shrub species results in development of vertical and horizontal soil nitrogen distribution patterns. Concentration of these patterns increases towards the immediate surface of the profile and towards the under-canopy micro-habitat. Similar patterns of N mineralization activity were found in soils collected from shrub communities along an aridity gradient from northern to southern Utah. Mineralization rates were greatest in the 0–2.5 cm horizon of profiles and NO3?-N dominated. Below this level activity decreased abruptly and NH4+-N became quantitatively more significant. Mineralization activity peaks in surface soil reflected greater susceptibility of organic N residues to decomposition as well as the higher concentrations of total N in the 0–2.5 cm layer. Results for Atriplex confertifolia communities indicated that N compounds in litter of this species may be particularly prone to microbial breakdown and mineralization. Mineralization of N proceeded at a greater rate in soils from beneath shrub canopies than in soils from interspace areas between shrubs. Development of higher concentrations of total N and mineralization activity in surface soil generally, and under-canopy soil in particular, is interpreted as a structural and functional organization of the N capital of shrub communities that enhances N availability and therefore water-use efficiency of the vegetation.  相似文献   

11.
前期土壤含水率对红壤团聚体稳定性及溅蚀的影响   总被引:13,自引:6,他引:7  
为了探究前期含水率对南方红壤团聚体稳定性及溅蚀的影响,选取泥质页岩和第四纪红黏土发育的4个典型红壤为研究对象,就5个前期含水率(3%、5%、10%、15%、20%)条件下3~5 mm团聚体水稳定性特征及其与溅蚀的关系进行了初步的探讨。结果表明,消散作用是团聚体破碎最有效的机制,土壤前期含水率越大,团聚体破碎程度越小。随着前期含水率的升高,泥质页岩发育的2种红壤水稳性团聚体平均质量直径(MWDwa)显著增大;第四纪红黏土发育的2种红壤水稳性团聚体平均质量直径(MWDwa)先增大后减小,拐点出现在含水率为15%条件下。泥质页岩发育2种红壤溅蚀量随前期含水率的升高显著减小;第四纪红黏土发育2种红壤溅蚀量随前期含水率的升高呈现先减小后增大的趋势,在含水率为15%时达到最小。团聚体水稳性较高的土样,溅蚀粒径分布呈双峰曲线分布,主要分布1~0.5和0.05 mm范围内,且前期含水率越高,0.05 mm溅蚀颗粒含量越大;而团聚体水稳定性较差的土样,除前期含水率为20%外,溅蚀粒径分布呈单峰曲线分布,主要分布在0.25~1mm。该结果为红壤区农业水土工程及机侵蚀机理研究提供一定的参考,对完善坡面水蚀模型具有一定的参考价值。  相似文献   

12.
28年生油松人工林内天然降雨的溅蚀试验结果表明,当I30为0.07mm/min或P0为3.57mm时,无枯落物层覆盖的林地发生溅蚀,当I30为0.25mm/min或Po为45.8mm时,具1cm枯落物层的林地不发生溅蚀。从溅蚀月动态看出,7、8月份占全年溅蚀量的70%以上。在同一土壤和同一坡度条件下,I30、P0、H1是溅蚀发生的主要因素,且溅蚀量与其呈二次多项式回归关系。但当枯落物层具有一定厚度时溅蚀与其它因素无关。具有1cm厚的枯落物层即可防止土壤溅蚀量的79.7%.  相似文献   

13.
Extreme soil water repellency can have substantial implications for soil hydrology, plant growth and erosion, including enhanced splash erosion caused by raindrop impact. Previous studies of water droplet impact behaviour on man‐made super‐hydrophobic surfaces, with which water‐repellent soil shares similar characteristics, revealed three distinct modes of splash behaviour (rebound, pinning and fragmentation) distinguished by two transition velocities: rebound‐to‐pinning (vmin) and pinning‐to‐fragmentation (v*). By using high‐speed videography of single water droplet impacts we show that splash behaviour is influenced by the hydrophobicity of immobile particles, with hydrophobic glass spheres exhibiting all three modes of splash behaviour in the hydrophobic state but hydrophilic spheres exhibiting solely pinning behaviour. We found that increasing the particle size of fixed glass spheres increases vmin. A study of droplet impact on hydrophobic sand shows that the increased roughness of the immobile particles makes impacting droplets more likely to fragment at slower impact velocities. The mobility of the particles influenced droplet impact behaviour, with loose, hydrophobic particles displaying significantly greater vmin values than their fixed analogues. The surface tension of the water droplet also lifted loose, hydrophobic particles from the surface, forming highly mobile ‘liquid marbles'. Water‐repellent soil was also shown to form ‘liquid marbles' at both the slow (approximately 0.3–2.1 m s?1) and fast (about 7 m s?1) droplet impact velocities studied. The observation of very mobile liquid marbles upon water droplet impact on water‐repellent soil is significant as this provided a mechanism that may enhance erosion rates of water‐repellent soil.  相似文献   

14.
土粒表面电场对土壤团聚体破碎及溅蚀的影响   总被引:1,自引:1,他引:0  
团聚体是土壤结构的基本单元,其稳定性是评估土壤抗侵蚀能力的重要指标。土壤团聚体破碎是降雨溅蚀发生的关键一步。土粒表面电场对团聚体稳定性具有重要影响,必然也会深刻影响降雨溅蚀过程。该文以黄土母质发育的黄绵土和塿土为研究对象,采用不同浓度的电解质溶液定量调控土粒表面电场,研究不同电场强度对团聚体破碎及溅蚀的影响。结果发现:1)随电解质浓度的降低,土粒表面电位升高,表面电场增大,黄绵土和塿土团聚体平均重量直径减小,团聚体稳定性降低,降雨溅蚀量增大。2)电解质浓度小于10-2 mol/L,黄绵土和塿土表面电位绝对值分别高于202.0和231.6 mV,此时团聚体稳定性和溅蚀量变化不明显,表明表面电位202.0和231.6 mV分别是影响黄绵土和塿土团聚体稳定性及溅蚀的关键电位。3)随着土粒表面电场的减弱,团聚体破碎后释放的<0.15 mm微团聚体含量减小,>0.25 mm大团聚体含量增加,团聚体倾向于破碎为更大粒级的团聚体。4)电场作用下团聚体的破碎特征对降雨溅蚀具有重要的影响,溅蚀量与团聚体破碎释放的<0.15 mm微团聚体含量呈显著正相关,与>0.25 mm大团聚体含量呈显著负相关。上述结果表明,当降雨进入土壤后,对于干燥的土壤而言,土壤溶液电解质浓度被迅速稀释,土粒表面产生强大的电场,该电场通过影响团聚体破碎程度进而影响降雨溅蚀。该研究有助于加深对降雨溅蚀的科学认识,同时也为土壤团聚体稳定性及降雨溅蚀的人为调控提供了一定的理论依据。  相似文献   

15.
为了研究鄱阳湖流域3种典型母质对土壤溅蚀的影响,设计一种可收集过程样的溅蚀盘,通过室内模拟降雨试验,分析不同降雨强度(30,60,90,120,150 mm/h)和母质(第四纪沉积物母质、花岗岩母质、红砂岩母质)条件下红壤溅蚀特征。结果表明:第四纪沉积物母质红壤总溅蚀量最低,其次是花岗岩母质红壤,红砂岩母质红壤总溅蚀量最高,土壤质地、有机质、游离氧化铁等指标对总溅蚀量影响较大;随着雨强的增大,总溅蚀量呈对数函数关系增加;总溅蚀量80%以上分布在0—15 cm范围内,随着雨强增大,溅蚀颗粒分布越集中。  相似文献   

16.
山杨林枯落物对面蚀的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

17.
植被具有良好的水土保持效益,深入了解覆被结构特征与产流产沙关系是研究植被防蚀功能的基础。以鄂中地区典型森林植被为对象,通过人工模拟降雨试验研究5种覆被结构(灌木、草本、枯落物、灌木+草本、灌木+草本+枯落物)和侵蚀性降雨(60,90,120 mm/h)对坡面侵蚀产沙过程的影响。结果表明:(1)坡面产流率、产沙率随降雨时间先迅速增大,后缓慢增大,最后达到稳定趋势。降雨强度是坡面侵蚀产沙的主导因素,与产流时间、产流率和产沙率呈显著正相关关系(p<0.01)。(2)在有/无枯落物存在的情况下,植被覆盖度、植株密度分别是坡面产流产沙的主要影响因素。径流含沙量在不同覆被结构覆盖下表现为:草本>灌木>枯落物>灌木+草本>灌草枯。(3)结构特征参数对产流产沙影响的优先等级为覆盖度、生物量、植株密度、多样性指标,即水平结构>竖直结构>物种组成>空间格局。研究结果旨在揭示覆被结构对坡面侵蚀产沙的作用机理,为南方林地土壤侵蚀模型的构建提供科学参考。  相似文献   

18.
《CATENA》2005,59(2):205-230
Desert pavement is a distinctive feature widespread across arid lands of the world. It plays a dynamic role in geomorphic, hydrologic, and ecologic processes. Where desert pavement predominates, infiltration is limited and rainfall is delivered as runoff to nearby bare ground areas where shrubs cluster. Desert pavement surfaces may appear monotonously flat and barren, but we have found, instead, that they are a complex association of landscape and hydrologic elements governed by their surface characteristics. Previously, we identified six unique surface mosaic types that accurately capture the subtle, but distinct, variations in surface clast arrangements for a desert pavement landscape formed on a single-aged basalt flow in the Mojave Desert. We now report that these surface mosaics predict the spatial distribution of fundamental desert vegetation and soil characteristics. Characteristics of soil morphology and texture, the leaching depth of soluble salts, percent plant cover, and shrub species diversity are remarkably consistent for each mosaic type across a 580,000-year-old basalt flow even when measured >1 km apart. Hydrologic character is distinctly different between desert pavement and bare ground regions and vegetation distributions reflect the spatially heterogeneous soil moisture. Where desert shrubs cluster on the three bare ground surface mosaics, leaching is deep, removing most soluble salts to below the 50-cm depth. Where shrubs are absent or few, on the three desert pavement mosaics, leaching depths are shallow, with soluble salt depth distributions as well as desert shrub percent cover precisely controlled by the percent clast cover of the surface.  相似文献   

19.
Splash cups have long been successfully used for both the quantification of kinetic energy of rainfall and the detachability of soil particles by rainfall impact, the so‐called “splash erosion”. Measurements of kinetic energy, however, have been difficult to operate in the field especially in remote areas, on steep slopes, and in forests since boundary conditions need to be controlled precisely. This paper introduces a new splash cup based on Ellison's archetype that reliably and accurately measures kinetic energy as a function of sand loss under a large variety of conditions. The Tübingen splash cup (T splash cup) is relatively easy to operate under harsh field conditions, and it can be used in experimental designs with a large number of plots and replications at reasonably low costs. The cup is constructed from plastic laboratory flasks and plastic pipes from water‐supply equipments. The unit sand is held by a removable carrier system that can easily be replaced in the field. The splash cups have been calibrated in combination with a laser distrometer using a linear regression function with r2 = 0.98. They measure kinetic energy over a wide range of rainfall intensities from 0.6 to 40 L m–2 h–1. Kinetic energy per area varies between 10 and 250 J m–2. Two years of field test measurements in a subtropical forest ecosystem in China proved the reliability, durability, and usability of our new splash cups and allowed detecting differences in kinetic energy between different tree species and biodiversity levels.  相似文献   

20.
This laboratory rainfall simulation study investigates the effects of soil properties, slope steepness, and cover density on rainfall erosion potential of 153 soil samples collected in Southern Alberta, Canada. Simulated rainfall amount was held constant for these tests Of all the factors examined, simulated vegetative cover was found to be most significant. When cover was held constant, soil aggregate stability is the best predictor of variations of soil erodibility. Organic carbon content, texture and runoff amount (infiltration capacity) are other significant variables Slope was found to be significantly related to wash loss but not splash loss Two factors were proposed to explain the lack of relationship between splash loss and slope: (a) the proportion of splashed particles collected outside the sample plan may vary with the size of the pan; (b) soil transportability by splash increases only slightly with slope angle and therefore splash loss is only marginally related to slope steepness  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号