首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The productivity of a mixed sward comprising perennial ryegrass cv. Fantoom and white clover cv. Aran was measured under eight defoliation management systems and two fertilizer N rates (0 and 75 kg ha-1) applied in spring. The defoliations involved a basic six-harvest simulated grazing system together with the interposition of silage cuts once or twice at varying times during the growing season; evaluation was made over three harvest years, 1983-85. Mean annual production of total herbage DM over the three years was 8.351 tha-1 without N and 9.49 tha-1 with 75 kg N ha-1, a mean response of 15.2 kg DM per kg applied N. The responses for individual treatments occurred mainly at the first cuts, whether for simulated grazing (a mean of 12 9 kg DM) or for silage (a mean of 259 kg DM); however, this influence of spring N was not sustained at other cuts over the season. Mean annual white clover DM production was 4.19 t ha-1 with no N and 3.32 t ha-1 with 75 kg ha-1 N, but the reduction due to N was not significant in any year. The mean amount of clover stolon DM present post harvest over all management systems was 1.33 t ha-1 with no N and 1.03 t ha-1 with 75 kg ha-1 N. Mean annual DM production of total herbage from the six-harvest system was 8.11 t ha-1 Compared with 8 88 t ha-1 (a 9% increase) from the systems with one silage cut and 9.241 ha-1 (a 14% increase) from the systems with two silage cuts. Corresponding white clover DM production was 4.02, 3 87 and 3 53 t ha-1, respectively, and mean stolon DM amounts post harvest, 1 12,1.15 and 1-23 t ha-1, respectively. It is concluded that grass/white clover swards are suitable for management systems which involve cutting for conservation. Spring N application did not greatly reduce white clover production in this experiment where white clover was at higher levels than are likely in farming practice and the swards were not grazed. More knowledge of spring N rates, and indeed of N application rates generally, would be advantageous in future assessment of silage cutting systems.  相似文献   

2.
Two field experiments were carried out at North Wyke, Devon in 1985 (Experiment A) and 1986 (Experiment B) to investigate the effectiveness of either cutting or rotational sheep-grazing managements for raising the clover content of clover-depleted swards. Subplots were pretreated in March with (a) propyzamide at 0·4kg a.i. ha-1, (b) chlorpyrifos at 0·72 kg a.i. ha-1 and methiocarb at 0·22 kg a.i. ha-1, (c) carbofuran at 1·3 kg a.i. ha-1, or (d) not so treated, in order to reduce grass tiller density, control insect and mollusk pests, or control all invertebrate pests respectively (a-c), Carbofuran was not applied to swards that were to be grazed subsequently. The propyzamide pretreatment (a) significantly reduced the quantity of herbage dry matter (DM) grazed and the silage DM yields in both years, but raised the numbers of active clover buds, and clover stolon density and its weight in 1986, though not in 1985, The pesticide package (b) raised the quantity of herbage DM grazed in both years, and the silage DM yield in 1986, Carbofuran (c) raised silage yields in 1985. Neither pretreatment (b) nor (c) significantly affected clover performance. In comparison with sheep grazing, cutting showed a trend to higher DM yields, and significantly raised clover stolon density and weight in both years, and active bud numbers in 1986. The periodic sheep grazing management included recovery intervals of 14 d and 35 d. In 1986 (but not 1985) the longer recovery interval raised herbage DM consumption, but had no effect on clover development. The cutting management included nitrogen inputs of either 100 kg ha-1 in March, or none. N input raised annual DM yields in 1986 (but not 1985) but did not affect clover DM yields or performance in either year. The experiments at North Wyke were supported by on-farm experiments using exclosure cages at ten sites in 1985 and nine in 1986, in Yorkshire, Wales, the Midlands and Devon. In both years, application of propyzamide as in treatment (a) reduced DM yields (P<0.001) and raised the proportion of clover (P<0.001) in May harvests. The density of active clover buds (P<0.05), stolon density (P<0.001) and stolon weight (P<0.001) were increased by October. A combined carbofuran and methiocarb treatment significantly (P<0.001) increased herbage yields, but did not affect measures of clover performance. Unlike the main experiments, a comparison of grazing (outside the cages) and cutting management (within the cages) showed no effect on clover development. It was concluded that cutting, or rotational sheep grazing with a long recovery interval, would promote clover development in the clover depleted sward. Though successful in the overall assessment, application of propyzamide gave highly variable results on different sites and was not sufficiently reliable.  相似文献   

3.
Continuous stocking with sheep at high stocking rates may reduce the content of white clover (Trifolium repens) in mixed grass-clover swards. The present experiment was carried out to investigate the effects on sward production and composition of resting a perennial ryegrass (Lolium perenne)- white clover sward from grazing and taking a cut for conservation. Swards were set-stocked with 25 and 45 yearling wethers ha?1 either throughout a grazing season, or on swards that were rested for a 6-week period and then cut in early, mid- or late season. In an additional treatment swards were cut only and not grazed. Net herbage accumulation was higher at the lower of the two stocking rates and was marginally increased by the inclusion of a rest period at the high but not the low stocking rate. Clover content was higher at the lower stocking rate and was increased by the inclusion of a rest period by 30% at 45 sheep ha?1and by 11% at 25 sheep ha?1 The effect was most marked at the end of the rest period before cutting. When rested from grazing the tiller density of ryegrass decreased although tiller length increased, and clover stolon length, petiole length and leaflet diameter increased though leaf and node number per unit length of stolon decreased; the reverse applied when the sward was returned to grazing after cutting. At the high stocking rate, rest periods in mid-season or later maintained the greatest clover content and marginally increased total net herbage accumulation. At the low stocking rate the timing of the rest period had no significant effect on total net herbage accumulation or on clover content. These results show that the combination of grazing and cutting is of benefit where the stocking rate is high enough to threaten clover survival and limit sheep performance. However, at such a stocking rate, feed reserves are at a minimum throughout the grazing season and so opportunities for resting the sward are probably low.  相似文献   

4.
In 1976, 1977 and 1978 a red clover-perennial ryegrass sward was cut twice for silage, and in the autumn of 1976 and 1977 it was either grazed at low and high stocking rates, i.e. seventeen and thirty-four lambs per ha respectively, or was cut with a forage harvester. The effects of grazing on yield in the following year were examined. Herbage growth in the grazing period was slow and did not differ significantly between the treatments. The yield of silage dry matter taken in May and July was highest in ungrazed plots (9·8 and 8·1 t ha-1 in 1977 and 1978 respectively) and lowest in plots stocked at the high rate (5·9 and 5·7 t ha-1 in 1977 and 1978 respectively). The aftermath yield for grazing in 1977 was slightly but significantly greater on treatments grazed in the previous year compared with ungrazed treatments. Red clover content decreased markedly during grazing, the high stocking rate treatment containing 2·4% clover and the ungrazed treatment 57·3% clover. The high stocking rate treatment also had the lowest red clover content in the first silage cut. Red clover content in grazed plots increased to a level similar to that in ungrazed plots by the start of the grazing period in the subsequent harvest year. Animal performance was higher at the low than at the high stocking rate but herbage consumption per head did not differ significantly between the two grazing treatments. Possible reasons for the adverse effect of grazing on the red clover are defoliation and treading. It is concluded that such experiments can form the basis of an economic assessment of red clover and help the farmer decide whether or not he should integrate the crop into his system.  相似文献   

5.
Two experiments are described in which the effect of grazing or defoliating mixed swards at different times over winter and spring on clover content and development was investigated. In the first experiment swards were grazed with sheep (to about 3 cm) for a short period in (a) November, (b) November, January and March, (c) March or (d) not at all, in three consecutive years. All swards were grazed intermittently during the grazing season with cattle and cut for silage once each year. Each plot received either 0 or 50 kg N ha?1 in March. The effect of N fertilizer was to reduce clover content in each summer and clover growing point density in the third year. In two of the three years, treatments involving grazing in March had lower subsequent net annual herbage accumulation compared with the other two treatments and higher clover content in summer of the third year. Reduction in growing point density in all plots during the grazing season was associated with cattle grazing when conditions were wet, suggesting that stolon burial was implicated. Grazing with sheep in November, January and March resulted in significantly more visible (when counted in situ) clover growing points in April in year 2 and more total growing points (counted after dissection of turves) in the third year than the November grazed and ungrazed treatments which had, on occasions, higher grass tiller density. In a microplot experiment, high herbage mass standing over winter was associated with lower potential photosynthesis per unit clover lamina area and lower growing point density in March. Cutting herbage in March to 2-3 cm resulted in higher clover content and higher growing point number per unit stolon length. The latter was significantly correlated with total irradiance and red: far red at the canopy base. Potential photosynthesis of clover was not affected by cutting in March. It is concluded that growing point density can be increased by grazing or cutting during winter or spring. However, in order for these new stolons to contribute to clover yield during the summer, they have to be maintained until then by ensuring that competition from grass is minimized by keeping the sward short in winter and spring and avoiding the burial of stolons during grazing.  相似文献   

6.
Turnover rates of grass laminae and clover leaf tissue were estimated over a range of intervals within three periods each year in the second to fourth years (1983-85) of a trial involving swards continuously grazed by steers and receiving either 60 kg N ha-1 in spring (60N) or 360 kg N ha?1 throughout the year (360N). Within the 60N swards initial stocking rates at turnout were low (60N LS) at 7-2 steers ha?1 and high (60N HS) at 90 steers ha?1 in 1983, and in 1984 and 1985 corresponding rates were 10-8 and 13-5 ha?1. The 360N swards were initially stocked at turnout at 96 (360N LS) and 120 (360N HS) steers ha?1. Stocking rates were reduced by 33% in midsummer except for 60N in 1984 and 1985 when they were reduced by 50%. Meaned over 3 years, 360N HS had lower herbage mass than 60N LS. Tiller density in 360N was almost 50% higher than in 60N and clover growing point density was only one quarter that of 60N with the 60N LS having lower clover densities than 60N HS in 1985. Generally, leaf extension rate per tiller was higher in 360N than 60N and, when significant, 60N LS had higher senescence rates per tiller than 360N HS. Rate of increase in new clover lamina tissue per stolon was not affected by treatments, whereas in 1983 LS had higher senescence rates of clover laminae than HS. Petiole growth per stolon was higher in LS than HS in 1983 and 1984, the mean over these years for 360N HS being 77% that of 60N LS. Petiole senescence per stolon was lower in 360N HS than 60N LS only in 1983. When comparing 60N HS and 360N LS (representing similar levels of grazing intensity, having similar herbage mass) the gross growth of leaf material in the former was 75% of the latter, in contrast to 57% for net growth. Clover contributed 18% to the estimated growth of leaves compared to a mean of 7% in herbage mass. Taking inflorescence and pseudostem into account in 1984 and 1985,60N HS had 7% clover in standing herbage and 14% in net growth. Therefore, the contribution of clover to growth is considerably higher than its presence in herbage mass would suggest in continuously grazed swards. It is concluded that low-N swards, owing to their lower tiller density and slower grass leaf extension rate, will be less efficiently grazed than swards at higher N levels at a given herbage mass, but the presence of clover will partly offset that disadvantage.  相似文献   

7.
White clover can reduce fertilizer‐N requirements, improve sward nutritive value and increase environmental sustainability of grazed grasslands. Results of previous experiments in glasshouse conditions and on mown plots have suggested that white clover may be more susceptible than perennial ryegrass to treading damage on wet soils. However, this phenomenon has not been investigated under actual grazing conditions. This experiment examined the effects of treading on clover content, herbage production and soil properties within three clover‐based grazing systems on a wet soil in Ireland for 1 year. Treading resulted in soil compaction, as evidenced by increased soil bulk density (< 0·001) and reductions in the proportion of large (air‐filled) soil pores (< 0·001). Treading reduced annual herbage production of both grass and white clover by similar amounts 0·59 and 0·45 t ha?1 respectively (< 0·001). Treading reduced the sward clover content in June (< 0·01) but had no effect on annual clover content, clover stolon mass or clover content at the end of the experiment. Therefore, there was little evidence that white clover is more susceptible to treading damage than perennial ryegrass under grazing conditions on wet soils.  相似文献   

8.
Tetraploid red clover (cv. Hungaropoly) was sown at seed rates of 6,12 or 18 kg ha?1 alone and in mixture with timothy (cv. Scots) at 2, 4 or 6 kg ha?1 or with tall fescue (cv. S170) at 6,12 or 18 kg ha?1. Two ‘silage’ crops and an ‘aftermath grazing’ crop were harvested in 2 successive years. In harvest years 1 and 2, total herbage production levels of 11.12 and 7.47 t dry matter (DM) ha?1 respectively were obtained from pure-sown red clover compared with 11.84 and 8.78 t DM ha?1 for red clover-timothy and 12.23 and 9.64 t DM ha?1 for red clover-tall fescue. Corresponding red clover production levels were 10.93 and 5.30 t DM ha?1 (red clover swards), 8.04 and 3.131 ha?1 (red clover-timothy), and 6.42 and 109 t ha?1 (red clover-tall fescue). Total herbage organic matter digestibility was improved by the timothy companion grass but not consistently by the tall fescue, whereas crude protein (CP) concentration was decreased by the addition of either grass. Increased seed rate intensified these effects, as well as the general effect of the companion grass in depressing red clover DM, digestible organic matter (DOM) and CP production. Total herbage DM, DOM and CP were not markedly affected by increasing red clover seed rate but red clover DM, DOM and CP were increased as red clover seed rate was raised, due to increases in the red clover component. The potential for silage cropping of red clover swards was confirmed but there was advantage in sowing a companion grass. Taking yield and quality parameters into consideration, timothy proved a better companion than tall fescue. A seed rate of 2 or 4 kg ha?1 timothy and 12 kg ha?1 red clover proved the most satisfactory.  相似文献   

9.
Seven cultivars of white clover (Trifolium repens L.) (Kent, S184, Huia, Menna, Donna, Alice and Nesta) and a commercial mixture, ‘Ensign’, were strip-seeded into an upland perennial rye-grass (Lolium perenne L.) sward in late June 1986. Swards were first grazed by sheep, either on 5/6 August (early) or on 19/20 August (late) and then every 14–21 days (frequently) or 28–42 days (infrequently) during 1986, followed by a common grazing regime in 1987. During April to mid-June 1988 the swards received either a moderate amount of nitrogen or none and were cut frequently or once only in mid-June. Growth of individual seedlings was assessed before and after grazing during 1986 and stolon accumulation and distribution and sward colonization were assessed during 1987 and 1988. All cultivars emerged rapidly and satisfactorily and there were no consistent significant differences in the overall dry matter accumulation per seedling during establishment. During the first autumn the proportion of the aboveground biomass removed during grazing was smallest in Kent (c. 20%) and largest in Nesta (c. 40%). Kent and S184 produced most leaves and stolons and the greatest length of stolons per seedling and per individual stolon, and Nesta and Alice the fewest leaves and stolons and shortest stolons. Seedlings grazed early had heavier and longer stolons than those grazed late; those grazed frequently had more leaves, stolons and growing points than those grazed infrequently, especially following early grazing. During 1987 Kent and S184 had consistently the largest number of stolon growing points, and weight and length of stolons per unit area; these two cultivars and Nesta also colonized the sward more rapidly than the other cultivars. All cultivars contributed substantially and similarly to herbage production in late September. There were no residual effects of the 1986 treatments after the summer of 1987. During 1988 additions of nitrogen fertilizer at 100 kg N ha-1 or allowing the herbage to remain undefoliated between mid-April and mid-June both independently halved the number of stolon growing points per unit area; together they reduced it by 80%. Nitrogen also, on average, halved stolon weights but less so in Nesta, Alice and Huia and more so in all other cultivars. Infrequent defoliation greatly decreased stolon weights in Kent and S184 but had no significant effects on the other cultivars. Sward colonization was almost complete by June and entirely so by October for all cultivars in all treatments. Implications of the results for the after-management of strip-seeded white clover are discussed.  相似文献   

10.
The sustainability of white clover in grass/clover swards of an upland sheep system, which included silage making, was studied over 5 years for four nitrogen fertilizer rates [0 (N0), 50 (N50), 100 (N100) and 150 (N150) kg N ha?1]. A common stocking rate of 6 ewes ha?1 was used at all rates of N fertilizer with additional stocking rates at the N0 fertilizer rate of 4 ewes ha?1 and at the N150 fertilizer rate of 10 ewes ha?1. Grazed sward height was controlled, for ewes with their lambs, from spring until weaning in late summer by adjusting the proportions of the total area to be grazed in response to changes in herbage growth; surplus pasture areas were harvested for silage. Thereafter sward height was controlled on separate areas for ewes and weaned lambs. Areas of pasture continuously grazed in one year were used to make silage in the next year. For treatments N0 and N150, white clover stolon densities (s.e.m.) were 7670 (205·4) and 2296 (99·8) cm m?2, growing point densities were 4459 (148·9) and 1584 (76·0) m?2 and growing point densities per unit length of stolon were 0·71 (0·015) and 0·67 (0·026) cm?1 respectively, while grass tiller densities were 13 765 (209·1) and 18 825 (269·9) m?2 for treatments N0 and N150 respectively. White clover stolon density increased over the first year from 780 (91·7) cm m?2 and was maintained thereafter until year 5, reaching 8234 (814·3) and 2787 (570·8) cm m?2 for treatments N0 and N150 respectively. Growing point density of white clover increased on treatment N0 from 705 (123·1) m?2 to 2734 (260·7) m?2 in year 5 and it returned to the initial level on treatment N150 having peaked in the intermediate years. Stolon density of white clover was maintained when the management involved the annual interchange of continuously grazed and ensiled areas. The non‐grazing period during ensiling reduced grass tiller density during the late spring and summer, when white clover has the most competitive advantage in relation to grass. The increase in stolon length of white clover in this period appears to compensate for the loss of stolon during periods when the sward is grazed and over winter when white clover is at a competitive disadvantage in relation to grass. The implications for the management of sheep systems and the sustainability of white clover are discussed.  相似文献   

11.
Four management systems involving different dates for first harvest (simulated grazing, early silage, late silage and hay) and two fertilizer N rates in spring (0 and 80 kg ha-1) were imposed on a perennial ryegrass cv. Talbot/white clover cv. Blanca sward during 1981-82. In each year, annual total herbage DM was increased by spring application of N but white clover production and content in the total herbage were reduced; however, white clover, which was depressed in the harvests immediately after N application, recovered during the season to amounts and contents in the total herbage similar to those given no spring N.
Annual total herbage DM production increased as the date of primary harvest was delayed (935 to 1197 t ha-1 over two years) but mean organic matter digestibility values for the same period decreased (0-769 to 0700). First-harvest production made up substantial proportions of the annual production in the conservation systems. White clover, as shown by its production and the amount of stolon present, was tolerant of conservation systems, especially with no applied N.
It is concluded that grass/white clover swards are suitable for management systems which involve cutting for conservation. The use of strategic spring N seems a viable option, but more knowledge of rates would be valuable since this experiment only compared 80 kg ha-1 with no applied N.  相似文献   

12.
Results for years 4–8 of a long-term grazing experiment on swards of a diploid perennial ryegrass (Lolium perenne), var. Contender (D swards), a tetraploid ryegrass, var. Condesa (T swards) and Condesa with S184 white clover (Trifolium repens) (TC swards), direct sown in May 1987, are presented. The swards were continuously stocked with sheep from 1988 to 1990, as previously reported, and for a further 5 years, 1991–95, at a target sward surface height (SSH) of 4–6 cm. Control of sward height was successfully achieved by variable stocking, except in 1993 when paddocks were set stocked and the resulting mean SSH was 9·3 cm. Grass swards received on average 160 kg N ha?1 year?1; grass/clover swards were mainly not fertilized with N with the exception that they were given 30 kg N ha?1 as a remedial mid-summer application during a period of low herbage mass on offer in 1994 and 1995. Mean white clover content of the swards fell from 18·2% of herbage dry-matter (DM) in 1992 to 8·5% in 1993, whereas stolon lengths fell from 120 to 58 m m?2. A return to lower sward heights in 1994–95 resulted in an increase in white clover content to 12·8% by the final sampling in August 1995. Perennial ryegrass content of the grass swards remained high throughout (mean 96·7% in 1995). Perennial ryegrass tiller densities recorded in August 1991, 1993 and 1994 showed consistently significant (P < 0·001) sward differences (3-year mean 16 600, 13 700 and 10 100 perennial ryegrass tillers m?2 for the D, T and TC swards). In 1994, the year after lax grazing, a low perennial ryegrass tiller density (9100 m?2) and low white clover content (mean 4·3%) in the TC swards resulted in a much lower herbage bulk density than in the grass swards (April–July means 72, 94 and 44 kg OM ha?1 cm?1 for the D, T and TC swards). There was a consistent 40 g d?1 increase in lamb liveweight gain on the TC swards over the T swards, except in 1994. In that year there was a reduction in lamb liveweight gain of 33 g d?1 on the TC swards and a significant increase in ewe liveweight loss (117 g d?1) associated with low herbage bulk density despite optimal sward height. Lamb output (kg liveweight ha?1) on TC swards reflected white clover content, falling from a similar output to that produced from grass given 160 kg N ha?1, at 18% white clover DM content, down to 60% of grass + N swards with around 5% clover. A 6% greater output from the T than the D swards was achieved mainly through higher stocking rate. The experiment demonstrated a rapid, loss in white clover under lax grazing, and showed that the relationship between performance and sward height is also dependent on herbage density. High lamb output from a grass/clover sward was only achieved when the clover content was maintained at 15–20% of the herbage DM.  相似文献   

13.
A 2-year experiment was designed to compare the output from a permanent grass sward, either containing clover (GC) or receiving 200kg N ha-1 (GN), when continuously grazed by sheep stocked at 12 and 15 ewes ha-1 on GC and 15 and 18 ewes ha-1 on GN. Sward surface height (SSH) was controlled within designated guidelines by adjusting the size of the grazing area with an electrified ‘buffer’ fence; the herbage surplus to grazing requirement was cut and conserved. A dried grass supplement was offered to the sheep during periods of low herbage availability. The experiment was carried out during 1989 and 1990. No silage was made on GC15 in either year compared with 28 and 90kg DM ewe-1 on GN15 in 1989 and 1990 respectively; supplementation was consistently and significantly greater on GC15 than on GN15. Clover proportion was generally higher on GC12 than GC15 (significant (P <0·01) in September 1989) and reached a maximum level of 14%on GC12 in August 1990. Herbage organic matter digestibility was little affected by the inclusion of clover in the sward. Differences in lamb growth rate were not significant and, at the common stocking rate, there was no difference in lamb output between GC and GN. In 1990, GC12 and GN15 treatments proved to be successful after weaning in balancing the increasing nutritional requirements of the ewes during the period prior to mating, the requirements of a declining lamb population as the lambs satisfied the criteria for slaughter and were sold, and a continuing need to conserve surplus herbage. The metabolizable energy requirements of the ewes and lambs over 2 years were 75·8 and 74· 7 GJ ha-1 for GC15 and GN15 respectively, and the differences in total utilized metabolizable energy output of the two systems were due to the amounts of herbage conserved and supplement consumed. The 2-year mean total UME output on GC15 was 80% of that on GN 15 (67·8 and 84·4 GJ ha-1 for GC15 and GN15 respectively) and the experiment provided further evidence that grass/white clover swards with no fertilizer N applied are capable of producing about 80% of the total output of grass swards receiving 200 kg N ha-1.  相似文献   

14.
Hungaropoly tetraploid broad red clover was sown at seed rates of 6, 12 or 18 kg ha-1 on six dates from April to September 1971. Three crops were harvested in 1972 and one in June 1973. In 1972, total herbage dry matter yields ranged from 5.22 to 12.22 t ha-1 and red clover dry matter yields from 3.61 to 11.92 t ha-1 when meaned over all seed rates. April to July sowing dates gave significantly higher yields than later sowings. In general, August and September sowings gave the lowest red clover contents in a range from 63.2 to 96.5%, the highest digestibilities within a range 61.9 to 65.0% and the lowest crude protein contents in a range 15.5 to 17.3%. The influence of seed rate was less marked than sowing date. Mean annual yields of total herbage dry matter increased from 9.88 to 10.85 t ha?1 as seed rate was increased from 6 to 18 kg ha?1. Red clover dry matter yields and contents of red clover and crude protein in the total herbage also followed this trend. The sowing date effects on total herbage yield and content of red clover did not persist into the second harvest year but the seed rate effects were still noticeable. Plant numbers in spring the first harvest year and hence percentage survival from sowing were depressed by late sowing; plant numbers rose but percentage survival declined as seed rate was increased. The seed rate effects on plant population persisted until spring of the second harvest year but sowing date effects did not. Better stands of red clover were obtained from sowings made between April and June, when a seed rate of 12 kg ha?1 was adequate. The adverse effects of late sowing cannot be fully compensated by raising seed rates of clover. There was a significant interaction between seed rate and date of sowing. For April-May sowings, seed rate was not critical. Thereafter, a linear effect of seed rate on yield was discernible.  相似文献   

15.
Established swards of two diploid and two tetraploid red clover varieties sown pure received 0, 75, 150, 225 or 300 kg ha?1 N fertilizer and were cut three times in June, August and October 1971. The total yields of herbage DM for red clover varieties ranged from 8.01 to 11.32 t ha?1; swards sown with tetraploids Hungaropoly and Hera Pajbjerg were superior by 25% in DM yield and 23% in CP yield. The red clover contribution to these total yields of DM ranged from 6.05 to 10.69 t ha?1; tetraploid clovers outyielded diploids by 42% in DM yield and 39% in CP yield. The mean effect of N level on yield and on compositional attributes was slight. Total yields of herbage DM, averaged over all varieties, ranged from 9.50 to 10.22 t ha?1 and of total herbage CP from 1.76 to 1.91 t ha?1. The influence of N level on the red clover contribution was negligible. DM yields ranged from 8.54 to 8.72 t ha?1 and CP yields from 1.60 to 1.64 t ha?1. Superiority of tetraploid clovers over diploids was again confirmed. Red clover swards sown pure can give high yields without the application of fertilizer N.  相似文献   

16.
In grass–legume swards, biologically fixed nitrogen (N) from the legume can support the N requirements of the grass, but legume N fixation is suppressed by additional fertilizer N application. This study sought to identify a fertilizer N application rate that maximizes herbage and N yields, N fixation and apparent N transfer from white clover to companion grasses under intensive grazing at a site with high soil‐N status. During a 3‐year period (2011–2013), swards of perennial ryegrass and of perennial ryegrass–white clover, receiving up to 240 kg N ha?1 year?1, were compared using isotope dilution and N‐difference methods. The presence of white clover increased herbage and N yields by 12–44% and 26–72%, respectively. Applications of N fertilizer reduced sward white clover content, but the effect was less at below 120 kg N ha?1. The proportion of N derived from the atmospheric N fixation was 25–70%. Nitrogen fixation ranged from 25 to 142 kg N ha?1 measured using the isotope dilution method in 2012 and from 52 to 291 kg N ha?1 using the N‐difference method across all years. Fertilizer N application reduced the percentage and yield of fixed N. Transfer of N from white clover to grass was not confirmed, but there was an increased N content in grass and soil‐N levels. Under intensive grazing, the maximum applied N rate that optimized herbage and N yields with minimal effect on white clover content and fixation rates was 60–120 kg N ha?1.  相似文献   

17.
Two small-plot experiments were carried out to assess the influence on herbage dry matter (DM) production, chemical composition and soil fertility status of applying undiluted silage effluent at a range of application rates and intervals after a silage cut. In the first experiment, in 1990, silage effluent was applied at 25, 50, 100, 150 and 200 m3 ha?1 1, 8, 15 and 22 d after a silage cut in August. In the second experiment, in 1991, silage effluent was applied at 7, 14, 21, 28, 35, 42, 49, 75, 100, 125 and 150 m3 ha?1 1, 4, 8, 15, 22 and 29 d after silage cuts were taken from different sites in May, July and August. An untreated control and an Inorganic fertilizer treatment were incorporated in both experiments. The immediate effects of the treatments on herbage yield, chemical composition and soil nutrient status were assessed 6–8 weeks after the initial application; residual effects on herbage and soil fertility were measured at a subsequent harvest. Compared with the untreated control, herbage yield increases were obtained with increasing rates of effluent application. Although there was evidence that higher yields could be obtained from earlier applications, up to 50 m3 ha?1 of effluent could be applied up to 15 d after taking a silage cut with little damage to the sward. Delaying the timing of application, and increasing the application rate, increased the proportion of the sward which was damaged; this reached a maximum of 0·84 when the highest application rates were applied 29 d after a silage cut. The increase in the proportion of dead herbage in the sward, associated with increasing rate of effluent application, reduced the quality of the herbage harvested in Experiment I. In Experiment 2 the N, P and, in particular, the K content of the herbage increased with increasing rate of effluent application, whereas the effect on Mg content was variable with contents generally being less than 2·0 g kg?1 DM. Apparent recovery of nutrients applied in the effluent was both low and variable ranging from 0·58 to ?0·03 for N, 0·10 to ?0·005 for P, 0·34 to ?0·02 for K and 0·21 to ?0·002 for Mg over both experiments. Effluent had little effect on soil pH, whereas P and, in particular, K contents increased with increasing rate of effluent application. There was evidence that effluent had a beneficial effect on both herbage yield and chemical composition at the residual cut, the extent depending upon rate and time of effluent application.  相似文献   

18.
Five binary perennial grass/white clover (Trifolium repens, cv. Menna) mixtures were evaluated over a 3-year period under continuous sheep stocking together with the imposition of a rest period for either an early or a late conservation cut; the experiment with plot sizes of 0·16 ha was replicated three times. The grass species and cultivars used were Merlinda tetraploid and Magella diploid perennial ryegrass (Lolium perenne), Prairial cocksfoot (Dactylis glomerata), Rossa meadow fescue (Festuca pratensis) and Goliath timothy (Phleum pratense). The greatest total lengths of white clover stolon developed in the meadow fescue (171·6 m m?2) and timothy (151·9 m m?2) associations compared with those in tetraploid perennial ryegrass (98·6 m m?2), diploid perennial ryegrass (91·9 m m?2) and cocksfoot (74·6 m m?2) (s.e.d. 16·4, P < 0·001). On average, the proportion of white clover stolon that was buried was between 0·86 and 0·89 and this was more abundant in late than early season. Whereas timothy persisted, the persistence of meadow fescue was low under any of the managements tested and this was markedly reduced by the third grazing season. In the diploid perennial ryegrass sward, a late June to early August rest period for conservation enhanced white clover stolon length. An early April to late May rest period greatly reduced total white clover stolon length in both diploid perennial ryegrass and tetraploid perennial ryegrass associations (diploid perennial ryegrass-unrested 89 m m?2, early rest 56·1 m m?2, late rest 130·7 m m?2; tetraploid perennial ryegrass - unrested 125·1 m m?2, early rest 71 m m?2, late rest 99·7 m m?2; s.e.d. 19·19, P < 0·001). The numbers of white clover stolon growing points per unit stolon length were greatest when the sward was rested during late June to early August ?55·9 m?1 stolon length compared with 45·7 m?1 for an April to late May rest and 46 m?1 in the absence of a rest (s.e.d. 2·59, P < 0·001). Likewise, the percentage of stolon above ground was greatest with the late June to early August rest ?15·78% compared with 10·61% for the April to late May rest and 7·69% for no rest (s.e.d. 1·569, P < 0·001). The complementary percentages of buried stolon indicate the important role this fraction has and the need to study stolon behaviour in grazing studies generally. It is concluded that, in relation to perennial ryegrass as a companion grass, meadow fescue and timothy allow better white clover development and cocksfoot less. However, other attributes have to be considered, for example the poor persistence of meadow fescue and the slower regrowth of timothy, both of which allow the invasion of weed grasses, or the lower acceptability of cocksfoot to livestock. The timing of the rest period before the conservation cut can influence white clover development considerably, but the effects differed with different companion grasses.  相似文献   

19.
The high nutritive value and persistence under a wide range of climatic and soil fertility conditions make Caucasian clover a potentially useful forage legume but there is little information about the performance of livestock grazing Caucasian clover/grass swards. This study compared liveweight gains of lambs grazing Caucasian clover/perennial ryegrass and white clover/perennial ryegrass swards on high fertility (Olsen P 20 mg L?1, SO4‐S 12 mg kg?1) and low fertility (Olsen P 11 mg L?1, SO4‐S 7 mg kg?1) soils from 1998 to 2001 in the South Island of New Zealand. Mean annual liveweight gains were 1178 kg ha?1 for Caucasian clover/perennial ryegrass and 1069 kg ha?1 for white clover/perennial ryegrass swards at high fertility compared with 1094 kg ha?1 and 1015 kg ha?1, respectively, at low fertility. There was a higher mean proportion of clover in Caucasian clover/perennial ryegrass (0·19) than white clover/perennial ryegrass (0·11) swards, but there were no differences in total herbage production between the two clover/perennial ryegrass swards. The mean concentration of crude protein in the herbage of Caucasian clover (302 g kg DM?1) was higher than that in white clover (287 g kg DM?1) and grass herbage (227 g kg DM?1). Estimated mean metabolizable energy concentrations in the herbage were 12·5 MJ kg DM?1 for the two clovers and 11·6 MJ kg DM?1 for grass herbage. The difference in liveweight gain between swards on soils of high and low fertility was associated with an increase in total herbage production of similar composition and nutritive value, giving a greater number of grazing days for the swards on soils of high than low fertility.  相似文献   

20.
An Italian ryegrass (cv. RvP), a tetraploid hybrid ryegrass (Sabrina), and an early heading timothy (Scots), were compared under 3-cut silage plus aftermath, 5-cut early bite-hay-aftermath and 6-cut simulated grazing managements over 2 harvest years 1974–75. Annual nitrogen applications totalled 375 kg ha?1 N for the silage and grazing systems and 325 kg ha?1 for the early bite-hay-aftermath treatment. In 1974, the first harvest year, RvP and Sabrina outyielded Scots timothy. In the dry summer of 1975 the drought tolerance and persistency of Sabrina was superior to RvP, but both grasses gave low yields (approx. 10·0 ha?1 DM under the conservation managements) and showed a marked fall in production compared with the first year, by RvP of 35% and by Sabrina of 25%. Scots timothy in the second year equalled the ryegrass in total DM yield under the hay management system. Over the 2 years RvP and Sabrina gave similar yields, which were 10% better than Scots timothy, under all managements. RvP and Sabrina are equally suitable for silage production, but second and third silage cuts of RvP require shorter regrowth periods than Sabrina for good quality herbage. Sabrina will also provide leafier grazing than RvP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号