首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
基于分水岭和改进MRF的马铃薯丁粘连图像在线分割   总被引:2,自引:0,他引:2  
针对马铃薯丁粘连图像分割问题,提出一种融合分水岭和改进马尔科夫随机场(MRF)的分割方法。分水岭方法可以将粘连图像分割为若干一致性较好的区域,恰好有利于MRF进行标记,同时,针对实际应用中区域势团势能不一致的情况,通过改进势函数确定MRF的条件概率,使其在全局上具有一致性,从而解决粘连分割问题。用分水岭方法对图像进行初始分割,将图像转化为块状表示。综合考虑初始分割区域的相对高度和面积,用改进的MRF标记正确分割区域和过分割区域。计算过分割区域与邻域的紧密度,选择紧密度最大的邻域并与之合并。试验结果表明,该方法在继承了分水岭方法优点的前提下,解决了过分割的问题,正确率为95%。  相似文献   

2.
本文在根据实际交通场景确定图像的检测区域后,将检测区域划分为直行区域和左转区域,进而利用动态邻域确定了不同区域的车辆排队长度,并且转换成实际的长度,然后利用一组图像求得排队长度的变化速度.通过在计算机上的实验,证实该法适应能力强、计算量小,计算速度快,准确度高.  相似文献   

3.
基于二维直方图的杂草图像分割算法   总被引:6,自引:3,他引:6  
通过引入像素灰度级和邻域灰度级构成的二维直方图,提出了一种杂草彩色图像分割算法。试验结果表明,基于二维直方图的分割算法由于增加了各个像素点相邻区域的信息,从而减少了自然条件下镜面反射和叶片小面积污损的影响。由于分割结果更好地保留了叶片的连通性,新的分割算法能在自然条件下更好地区分单子叶植物和双子叶植物及识别作物和杂草,从而有助于杂草识别率的提高。  相似文献   

4.
李亚硕  赵博 《农业工程》2022,12(3):43-46
受地块不规则影响,农机作业轨迹多样,作业面积计算的难度也随之增加。有效准确地计算农机作业面积,是农机作业监管和效率评估的主要依据。通过对地块和轨迹分析,提出了利用三次样条插值算法生成农机作业轨迹线,穿过所有轨迹点的同时,保证轨迹线平滑。将所有作业轨迹线累加,结合作业幅宽可计算作业面积。该方法不仅减少了折线方法在拐角处计算不合理产生的误差,也解决了其他方法在弧形地块行驶过程中小弧度转向轨迹线不平滑的问题。该方法计算作业面积在弧形轨迹中准确率高于传统折线计算等方法。   相似文献   

5.
近红外光谱分析中定标集样品挑选方法研究   总被引:21,自引:2,他引:21  
介绍了目前常见的几种定标集样品挑选方法:含量梯度法、Duplex法和Kennard-Stone法,并提出了新的挑选方法:GN距离法.该方法以全局距离来界定定标集样品范围,以邻域距离来剔除相似样品,根据不同的全局和邻域距离组合挑选出定标集样品建模,根据计算所得最小交叉验证误差SECV来确定最合理的定标集样品.通过实例,讨论比较了上述4种方法优缺点.结果表明:GN距离法能够在保持原始样品集覆盖范围的基础上,适量剔除异常样品,GN距离法挑选出的定标集所建模型具有较低的模型复杂度、较高的相关系数和较好的模型预测能力.  相似文献   

6.
针对R-cut(Ratio cut)边缘检测分割模型对高分辨率遥感影像分割时存在过分割和模糊边缘敏感性问题,提出了一种多尺度R-cut(Multi-scale ratio cut, MSR-cut)的遥感影像边缘检测分割方法。首先,采用形态重建的分水岭分割算法对影像过分割,形成多个超像素区域;然后计算并提取影像各个区域的纹理特征信息熵值、光谱特征与邻域均值差分归一化值,分别进行同质性和异质性的有效衡量;并构建评价函数获取最优分割尺度,对这些超像素区域进行初步合并,得到影像的粗分割结果;最后结合各地物的边界权重信息,从全局角度用R-cut的方法对粗分割结果进一步合并,完成对影像的精细分割,生成最终的分割结果。实验选取5个不同场景的高分辨率遥感影像,采用定性和定量两种方法对比分析本文方法与传统R-cut边缘检测分割、Spectral-Rcut边缘检测分割和Textured-Rcut边缘检测分割方法。实验结果表明,MSR-cut边缘检测分割方法能够有效提高分割精度,增强噪声鲁棒性,可取得较好的分割视觉效果。  相似文献   

7.
采用模拟退火算法用于泵站优化调度计算,建立了泵站优化调度的数学模型,设计了用于泵站优化的编码,译码方法和包含约束条件能量函数表达式,最后给出了实例,计算结果表明,模拟退火算法对泵站既有离散量又有连续量的非线性模型很有效,算法简单,计算量小,能得到近似全局最优解。  相似文献   

8.
水果簇生区域的数量判别是图像处理技术的难点.提出了一种改进的Freeman链码,即在Freeman 8邻域链码的基础上插入了3个新的链码元素“S”、“8”和“9”.识别过程中,首先获得水果簇生区域二值图像的改进Freeman 8邻域链码,然后计数链码中“8”出现的次数,再根据研究对象的轮廓特性,计算出簇生区域的数量.利用该方法对柑橘树数字图像中簇生区域的柑橘数量进行了判别,实验结果表明,该方法对2~5簇生判别效果良好,效率高,其中2、3簇生识别正确率为100%.  相似文献   

9.
针对田间颠簸环境影响农业机器人采集实时稳定图像问题,提出了基于Harris和卡尔曼滤波的农业机器人田间稳像算法。首先,利用摄像头获取田间抖动视频图像序列,进行图像子区域划分并计算各区域灰度均方差,进而确定各区域Harris角点阈值;通过自适应角点阈值设置,增加角点距离约束,完成图像角点检测。然后,对检测出的角点进行光流跟踪,计算出帧间运动估计参数。最后,利用自适应卡尔曼滤波算法对运动估计参数进行平滑操作并动态调整滤波平滑性能,获得精确运动估计矢量。测试结果表明,改进后的Harris角点检测算法区域平均分布标准差减小;自适应卡尔曼滤波算法在保证平滑随机运动前提下,跟踪主动运动性能平均提升30.75个百分点;稳像后的图像峰间信噪比提升15.93%,单帧处理时间为25.66 ms,满足农业机器人30 f/s高速图像采集时同步稳像对实时性要求。  相似文献   

10.
基于邻域正交交叉算子的人工鱼群算法   总被引:3,自引:0,他引:3  
将邻域正交交叉算子引入到基本人工鱼群算法中,提出了一种基于邻域正交交叉算子的人工鱼群算法.该算法采用动态调整人工鱼视野和步长的方法,较好地平衡了全局搜索能力和局部搜索能力.将人工鱼的邻域极值与该人工鱼进行正交交叉运算,产生少量的具有代表性的较优个体,而新产生的个体不仅利用了本身的有用信息,同时利用了邻域极值的最优信息,加快了算法的收敛速度.增强了算法的寻优能力.仿真结果表明,该算法具有较高的优化性能.  相似文献   

11.
自主式移动机器人导航研究现状及其相关技术   总被引:8,自引:2,他引:8  
对国内外移动机器人智能导航研究中采用的几种导航方式进行了对比,对近几年发展起来的并已在移动机器人导航研究领域中得到应用的相关技术进行了论述,对自主式移动机器人导航技术的发展进行了展望,提出导航系统的智能结构与多传感器相结合的视觉组合导航、网络控制和虚拟现实技术的应用是该领域的主要发展方向。  相似文献   

12.
基于强化学习的农业移动机器人视觉导航   总被引:3,自引:0,他引:3  
以强化学习为基础,结合模糊逻辑理论研究了农业移动机器人通过自主学习获取导航控制策略的方法。首先使用机器视觉检测环境障碍并获取障碍物相对于移动机器人的方向和距离信息。然后应用强化学习设计了机器人自主获取导航控制策略方法,使机器人能够不断适应动态变化的导航环境。最后基于模糊逻辑离散化连续的障碍物方向和距离信息,构建了离散化的环境状态,并据此制定了自主导航学习Q值表。在自制的轮式移动机器人平台上开展了试验,结果表明机器人可以在实际导航环境中自动获取更优的导航策略,完成预期的导航任务。  相似文献   

13.
随着我国信息化技术的逐渐提高,机械自动化、集成电路、智能控制系统和测试计量等行业得到了快速发展,使得移动机器人达到了一个全新的高度,农业机器人也因此被广泛应用。在机器人众多研究问题中,全方位视觉的目标识别与跟踪一直是比较复杂并较难解决的问题。为此,基于全方位的自主导航技术,根据农业机器人工作特点和运动特性,建立了机器人工作空间的环境模型,提出了一种陆标导航和运动目标跟踪系统的视觉伺服方案,开发了以DSP控制器为核心的全方位视觉图像处理系统。试验结果表明:所设计的农业机器人全方位视觉目标识别与跟踪系统精准度高,可靠性和实时性强,各项性能指标优。  相似文献   

14.
运动学参数误差是影响工业机器人绝对定位精度的主要因素,通过误差标定能够有效地提高工业机器人的精度。运动学模型的完整性、连续性与冗余性对运动学参数的辨识精度影响较大。为尽可能地提高机器人的标定精度,并易于实现机器人误差补偿,本文提出一种基于ZRM-MDH模型转换的机器人运动学参数标定方法。首先,基于零参考模型(ZRM)建立TX60型串联工业机器人的位姿误差模型,结合测量位姿误差辨识ZRM的参数;其次,基于圆点分析法将ZRM转换成MDH模型。在TX60型机器人前侧工作区域内任意选择50个测量点,实施运动学参数误差标定。实验表明,基于MDH模型标定后的机器人平均综合定位误差为0.081 mm,而经过ZRMMDH模型转换后的机器人平均综合定位误差为0.062 mm。为验证标定方法的稳定性,在TX60型机器人前侧工作区域内,选择5个区域实施运动学参数误差标定,结果表明,基于ZRM-MDH模型转换获得的标定精度稳定性相对较好。  相似文献   

15.
为同时实现果园智能植保机自主导航及自动对靶喷雾,研制了一种果园自主导航兼自动对靶喷雾机器人。首先采用单个3D LiDAR(Light Detection and Ranging)采集果树信息确定兴趣区(Region of Interest,ROI),对ROI内点云进行2D化处理得到果树质心坐标,通过随机一致性(Random Sample Consensus,RANSAC)算法得到果树行线,并确定果树行中间线(导航线),进而控制机器人沿导航线行驶。通过编码器及惯性测量单元(Inertial Measurement Unit,IMU)确定机体速度及位置,IMU矫正采集到的果树分区冠层信息,最后通过程序判断分区冠层的有无控制喷头是否喷雾。结果表明,机器人自主导航时最大横向定位偏差为21.8 cm,最大航向偏角为4.02°,相比于传统连续喷雾机施药液量、空中漂移量及地面流失量分别减少20.06%、38.68%及51.40%。本研究通过单个3D LiDAR、编码器及IMU在保证喷雾效果的前提下,实现了喷雾机器人自主导航及自动对靶喷雾,降低了农药使用量及飘失量。  相似文献   

16.
为实现温室草莓采摘机械化和自动化,设计并制作一种应用于日光温室的草莓采摘机器人。该机器人能实现自主路径规划,行走过程中识别成熟草莓并完成采摘。设计以ROS分布式计算系为主控制网络,以激光雷达进行移动机器人的地图构建与定位,双目深度相机实现对成熟草莓的识别和定位,搭载柔性仿生夹爪6自由度机械臂实现目标草莓抓取和放置。设计机器人软件平台,使用改进A*算法实现自主路径规划和导航避障;利用R-FCN目标检测网络和双目视觉技术实现成熟草莓检测及定位。结果表明:该草莓采摘机器人可实现目标检测及定位,检测到的草莓坐标与机器人手爪坐标的误差在4 mm以下,成熟草莓识别率为95%,满足采摘要求。  相似文献   

17.
温室机器人道路识别与路径导航研究——基于红外测距   总被引:1,自引:0,他引:1  
针对温室内移动机器人的应用需求,提出了一种基于红外线测距的温室机器人自主导航算法,并使用模糊算法对导航误差进行控制,实现了温室机器人的精确自主移动功能。温室机器人导航过程中,当红外线接收管接受到红外线信号时,会产生一个光强电流,电流放大后可以输出一个模拟电压;根据电压值,通过编程计算,利用电压和距离的对应关系,可以得到机器人和标志物的距离误差;距离信息通过串口传输到PC机上,PC机利用模糊控制原理对距离误差进行判断,发出控制指令。实验测试发现:机器人导航的距离偏差平均值为-1.28cm,均方差为2.68,超调较小,可以实现较为精确的导航。  相似文献   

18.
对导航定位中的曲线导航问题进行研究,采用单目视觉导航定位的方法采集多幅导航线图像,首先进行了远距离标定,建立实际行走的距离与偏航角度以及目标物偏离中心位置的距离与像素大小的数据库,再用得到的数据库,根据几何的方法计算出导航精度,在本实验中,基本依靠单目视觉技术完成了曲线导航的任务。  相似文献   

19.
探索在环境多变的田垄中进行视觉导航的方法,针对传统田垄视觉导航方法计算量大且导航效果较一般的问题,为林果作业机器人自主作业能力提供基础,本文提出一种基于机器视觉的田垄导航方法:使用改进的Floodfill算法分割路径信息,通过十字法进行路况分类,进而采用与路况相对应的算法进行导航计算。使用多张路径图片和模拟环境对算法的分割性能和导航能力进行测试,在试验测试中,道路偏移值保持在6 cm内。试验表明,改进Floodfill算法与分类导航法结合的视觉导航方法具有可行性,可为低算力田垄视觉导航方法的探索提供新的方法和思路。  相似文献   

20.
为提高林果园移动机器人导航系统的精确性与鲁棒性,提出一种基于激光雷达三维点云的果园行间高低频双源信息融合实时导航方法。首先,喷雾机器人搭载三维激光雷达采集两侧果树点云信息,对原始点云数据进行直通滤波、降采样和统计滤波等预处理,保留感兴趣区域内果树冠层点云;然后,将分别基于高频更新的牛顿插值算法和低频更新的非线性支持向量机(Non-linear support vector machine, NSVM)算法拟合的行间导航线进行互补融合;最后,在导航线切换时,对融合后导航线的稳定性进行优化,并使用三次B样条算法使导航线平滑。实验结果表明:融合优化后的导航线最大曲率为0.048 m-1,平均曲率为0.018 m-1;分别以0.5 m/s和1.0 m/s的行驶速度对融合优化后的导航线进行跟踪,绝对横向偏差最大值分别为0.104 m和0.130 m,平均值分别为0.053 m和0.049 m,说明该导航方法能够满足作业装备在果园行间自主导航作业的需求,为喷雾机器人在果园环境中的自主导航提供技术参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号