首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 223 毫秒
1.
Gas exchange was measured in potatoes (cv. Folva) grown in lysimeters (4.32 m2) in coarse sand, loamy sand, and sandy loam and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI and started after tuber bulking and lasted for six weeks until final harvest. Midday photosynthesis rate (An) and stomatal conductance (gs) of fully irrigated (FI) plants were lowest in coarse sand and mean An of diurnal measurements in FI, PRD and DI tended to be lower in this soil as compared with the loamy sand and sandy loam. The results revealed that diurnal values of An and gs in PRD and DI were consistently lower than FI without reaching significant differences in accordance with findings that xylem [ABA] in PRD was significantly higher than FI, and tended to be higher than in DI. Diurnal measurements showed that An reached peak values during mid-morning and midday, while gs were highest during the morning. Intrinsic water use efficiency (An/gs) correlated linearly well with the leaf to air vapor pressure deficit (VPD) and the slope of the line revealed the rate of An/gs increase per each kPa increase in VPD, i.e. approximately 10 μmol mol−1. Transpiration efficiency (An/T) of PRD was higher than DI, which shows slightly better efficient water use than DI. The slope of the linear relationship between transpiration efficiency and VPD decreased from −2.03 to −1.04 during the time course of the growing season, indicating the negative effect of leaf ageing on photosynthesis and thus on plant water use efficiency. This fact shows the possibility to save water during last growth stages through applying water-saving irrigations without much effect on transpiration efficiency.  相似文献   

2.
Yield and water productivity of potatoes grown in 4.32 m2 lysimeters were measured in coarse sand, loamy sand, and sandy loam and imposed to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI after tuber bulking and lasted for 6 weeks until final harvest. Analysis across the soil textures showed that fresh yields were not significant between the irrigation treatments. However, the same analysis across the irrigation treatments revealed that the effect of soil texture was significant on the fresh yield and loamy sand produced significantly higher fresh yield than the other two soils, probably because of higher leaf area index, higher photosynthesis rates, and “stay-green” effect late in the growing season. More analysis showed that there was a significant interaction between the irrigation treatments and soil textures that the highest fresh yield was obtained under FI in loamy sand. Furthermore, analysis across the soil textures showed that water productivities, WP (kg ha−1 fresh tuber yield mm−1 ET) were not significantly different between the irrigation treatments. However, across the irrigation treatments, the soil textures were significantly different. This showed that the interaction between irrigation treatments and soil textures was significant that the highest significant WP was obtained under DI in sandy loam. While PRD and DI treatments increased WP by, respectively, 11 and 5% in coarse sand and 28 and 36% in sandy loam relative to FI, they decreased WP in loamy sand by 15 and 13%. The reduced WP in loamy sand was due to nearly 28% fresh tuber yield loss in PRD and DI relative to FI even though ET was reduced by 9 and 11% in these irrigation treatments. This study showed that different soils will affect water-saving irrigation strategies that are worth knowing for suitable agricultural water management. So, under non-limited water resources conditions, loamy sand produces the highest yield under full irrigation but water-saving irrigations (PRD and DI) are not recommended due to considerable loss (28%) in yield. However, under restricted water resources, it is recommended to apply water-saving irrigations in sandy loam and coarse sand to achieve the highest water productivity.  相似文献   

3.
Root distribution of field grown potatoes (cv. Folva) was studied in 4.32 m2 lysimeters and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. Drip irrigation was applied for all irrigations. Irrigations were run in three different soils: coarse sand, loamy sand, and sandy loam. Irrigation treatments started after tuber bulking and lasted until final harvest with PRD and DI receiving 65% of FI. Potatoes irrigated with water-saving irrigation techniques (PRD and DI) did not show statistically different dry root mass and root length density (RLD, cm root per cm3 soil) compared with root development in fully irrigated (FI) potatoes. Highest RLD existed in the top 30-40 cm of the ridge below which it decreased sharply. The RLD was distributed homogenously along the ridge and furrow but heterogeneously across the ridge and furrow with highest root density in the furrow. Most roots accumulated in the surface layers of coarse sand as compared to the other soil types. In the deep soil profile (30-70 cm) a higher root density was found in loamy sand compared with the sandy loam and coarse sand. Approximately twice the amounts of roots were found below the furrows compared with the corresponding layers below the ridges. The RLD values in the soil profile of the ridges and the furrows followed the Gerwitz and Page model: RLD = α × exp(−β × z). The highest value of surface root density (α) and rate of change in density (β) was found in coarse sand while the lowest values of α and β were found in the sandy loam and loamy sand. The model estimated the effective rooting depth in coarse sand and sandy loam quite well but did slightly overestimate it in the loamy sand. Statistical analysis showed that one α and β value can be used for each soil irrespective of the irrigation treatment. Thus, the effective rooting depths corresponding to root length densities of 0.1 and 0.25 cm cm−3 for sandy loam, loamy sand, and coarse sand soils were 99, 141, and 94 cm, and 80, 115, and 78 cm, respectively, calculated from top of the ridge. The findings of this study can be used in practice for efficient use of water and nutrients in the field.  相似文献   

4.
The aim of this study was to quantify and compare the effects of two different deficit irrigation (DI) strategies (regulated deficit irrigation, or RDI, and partial rootzone drying, PRD) on almond (Prunus dulcis (Mill.) D.A. Webb) fruit growth and quality. Five irrigation treatments, ranging from moderate to severe water restriction, were applied: (i) full irrigation (FI), irrigated to satisfy the maximum crop water requirements (ETc); (ii) regulated deficit irrigation (RDI), receiving 50% of ETc during the kernel-filling stage and at 100% ETc throughout the remaining periods; and three PRD treatments – PRD70, PRD50 and PRD30 – irrigated at 70%, 50% and 30% ETc, respectively, during the whole growth season. The DI treatments did not affect the overall fruit growth pattern compared to the FI treatment, but they had a negative impact on the final kernel dry weight for the most stressed treatments. The allocation of water to the different components of the fruit, characterized by the fresh weight ratio of kernel to fruit, appeared to be the process most clearly affected by DI. Attributes of the kernel chemical composition (lipid, protein, sugar and organic acid contents) were not negatively affected by the intensity of water deprivation. Overall, our results indicated that PRD did not present a clear advantage (or disadvantage) over RDI with regard to almond fruit growth and quality.  相似文献   

5.
Carbon (C) sequestration through irrigation management is a potential strategy to reduce C emissions from agriculture. Two experiments (Exps. I and II) were conducted to investigate the effects of different irrigation strategies on C retention in the soil-plant system in order to evaluate their environmental impacts. Tomato plants (Lycopersicon esculentum L., var. Cedrico) were grown in split-root pots in a climate-controlled glasshouse and were subjected to full irrigation (FI), deficit irrigation (DI) and alternate partial root-zone irrigation (PRI) at early fruiting stage. In Exp. I, each plant received 2.0 g chemical nitrogen (N), while in Exp. II, 1.6 g chemical N and maize residue containing 0.4 g organic N were applied into the pot. The results showed that, in both experiments, the concentration and the amount of total C in the soil were lower in FI and PRI as compared to DI, presumably due to a greater microbial activity in the two treatments; particularly the PRI induced drying and wetting cycles of the soils may cause an increase of microbial activities and respiration rate, which could lead to more C losses from the soil. However, in both experiments the total C concentration in the PRI plants was the highest as compared with the FI and DI plants, and this was seemingly due to improved plant N nutrition under the PRI treatment. Consequently, the total amount of C retained in the soil-plant system was highest in the FI and was similar, but lower, for the PRI and DI. The different N input in the two experiments might have affected the C retention in the soil and in the plant biomass. Nevertheless, with a same degree of water saving, PRI was superior to DI in terms of enhancing C concentration in the plant biomass, which might have contributed to a better fruit quality in tomatoes as reported by [Zegbe et al., 2004] and [Zegbe et al., 2006].  相似文献   

6.
A great challenge for the agricultural sector is to produce more food from less water, particularly in arid and semi-arid regions which suffer from water scarcity. A study was conducted to evaluate the effect of three irrigation methods, using effluent versus fresh water, on water savings, yields and irrigation water use efficiency (IWUE). The irrigation scheduling was based on soil moisture and rooting depth monitoring. The experimental design was a split plot with three main treatments, namely subsurface drip (SSD), surface drip (SD) and furrow irrigation (FI) and two sub-treatments effluent and fresh water, which were applied with three replications. The experiment was conducted at the Marvdasht city (Southern Iran) wastewater treatment plant during 2005 and 2006. The experimental results indicated that the average water applied in the irrigation treatments with monitoring was much less than that using the conventional irrigation method (using furrows but based on a constant irrigation interval, without moisture monitoring). The maximum water saving was obtained using SSD with 5907 m3 ha−1 water applied, and the minimum water saving was obtained using FI with 6822 m3 ha−1. The predicted irrigation water requirements using the Penman-Monteith equation (considering 85% irrigation efficiency for the FI method) was 10,743 m3 ha−1. The pressure irrigation systems (SSD and SD) led to a greater yield compared to the surface method (FI). The highest yield (12.11 × 103 kg ha−1) was obtained with SSD and the lowest was obtained with the FI method (9.75 × 103 kg ha−1). The irrigation methods indicated a highly significant difference in irrigation water use efficiency. The maximum IWUE was obtained with the SSD (2.12 kg m−3) and the minimum was obtained with the FI method (1.43 kg m−3). Irrigation with effluent led to a greater IWUE compared to fresh water, but the difference was not statistically significant.  相似文献   

7.
Florida is the largest producer of fresh-market tomatoes in the United States. Production areas are typically intensively managed with high inputs of fertilizer and irrigation. The objectives of this 3-year field study were to evaluate the interaction between N-fertilizer rates and irrigation scheduling on yield, irrigation water use efficiency (iWUE) and root distribution of tomato cultivated in a plastic mulched/drip irrigated production systems. Experimental treatments included three irrigation scheduling regimes and three N-rates (176, 220 and 230 kg ha−1). Irrigation treatments included were: (1) SUR (surface drip irrigation) both irrigation and fertigation line placed right underneath the plastic mulch; (2) SDI (subsurface drip irrigation) where the irrigation line was placed 0.15 m below the fertigation line which was located on top of the bed; and (3) TIME (conventional control) with irrigation and fertigation lines placed as in SUR and irrigation being applied once a day. Except for the “TIME” treatment all irrigation treatments were controlled by soil moisture sensor (SMS)-based irrigation set at 10% volumetric water content which was allotted five irrigation windows daily and bypassed events if the soil water content exceeded the established threshold. Average marketable fruit yields were 28, 56 and 79 Mg ha−1 for years 1-3, respectively. The SUR treatment required 15-51% less irrigation water when compared to TIME treatments, while the reductions in irrigation water use for SDI were 7-29%. Tomato yield was 11-80% higher for the SUR and SDI treatments than TIME where as N-rate did not affect yield. Root concentration was greatest in the vicinity of the irrigation and fertigation drip lines for all irrigation treatments. At the beginning of reproductive phase about 70-75% of the total root length density (RLD) was concentrated in the 0-15 cm soil layer while 15-20% of the roots were found in the 15-30 cm layer. Corresponding RLD distribution values during the reproductive phase were 68% and 22%, respectively. Root distribution in the soil profile thus appears to be mainly driven by development stage, soil moisture and nutrient availability. It is concluded that use of SDI and SMS-based systems consistently increased tomato yields while greatly improving irrigation water use efficiency and thereby reduced both irrigation water use and potential N leaching.  相似文献   

8.
Wheat (Triticum durum L.) yields in the semi-arid regions are limited by inadequate water supply late in the cropping season. Planning suitable irrigation strategy and nitrogen fertilization with the appropriate crop phenology will produce optimum grain yields. A 3-year experiment was conducted on deep, fairly drained clay soil, at Tal Amara Research Station in the central Bekaa Valley of Lebanon to investigate the response of durum wheat to supplemental irrigation (IRR) and nitrogen rate (NR). Three water supply levels (rainfed and two treatments irrigated at half and full soil water deficit) were coupled with three N fertilization rates (100, 150 and 200 kg N ha−1) and two cultivars (Waha and Haurani) under the same cropping practices (sowing date, seeding rate, row space and seeding depth). Averaged across N treatments and years, rainfed treatment yielded 3.49 Mg ha−1 and it was 25% and 28% less than half and full irrigation treatments, respectively, for Waha, while for Haurani the rainfed treatment yielded 3.21 Mg ha−1, and it was 18% and 22% less than half and full irrigation, respectively. On the other hand, N fertilization of 150 and 200 kg N ha−1 increased grain yield in Waha by 12% and 16%, respectively, in comparison with N fertilization of 100 kg N ha−1, while for cultivar Haurani the increases were 24% and 38%, respectively. Regardless of cultivar, results showed that supplemental irrigation significantly increased grain number per square meter and grain weight with respect to the rainfed treatment, while nitrogen fertilization was observed to have significant effects only on grain number per square meter. Moreover, results showed that grain yield for cultivar Haurani was less affected by supplemental irrigation and more affected by nitrogen fertilization than cultivar Waha in all years. However, cultivar effects were of lower magnitude compared with those of irrigation and nitrogen. We conclude that optimum yield was produced for both cultivars at 50% of soil water deficit as supplemental irrigation and N rate of 150 kg N ha−1. However, Harvest index (HI) and water use efficiency (WUE) in both cultivars were not significantly affected neither by supplemental irrigation nor by nitrogen rate. Evapotranspiration (ET) of rainfed wheat ranged from 300 to 400 mm, while irrigated wheat had seasonal ET ranging from 450 to 650 mm. On the other hand, irrigation treatments significantly affected ET after normalizing for vapor pressure deficit (ET/VPD) during the growing season. Supplemental irrigation at 50% and 100% of soil water deficit had approximately 26 and 52 mm mbar−1 more ET/VPD, respectively, than those grown under rainfed conditions.  相似文献   

9.
We investigated the long-term effects of different deficit irrigation (DI) options on tree growth, shoot and leaf attributes, yield determinants and water productivity of almond trees (Prunus dulcis, cv. Marta) grown in a semiarid climate in SE Spain. Three partial root-zone drying (PRD) irrigation treatments encompassing a wide range of water restriction (30%, 50% and 70% of full crop requirements, ETc) and a regulated deficit irrigation treatment (RDI, at 50% ETc during kernel-filling) were compared over three consecutive growth seasons (2004–2006) to full irrigation (FI). The results showed that all deficit irrigation treatments have a negative impact on trunk growth parameters. The magnitude of the reduction in trunk growth rate was strongly correlated through a linear relationship with the annual volume of water applied (WA) per tree. Similarly, a significant relationship was found between WA and the increase in crown volume. In contrast, leaf-related attributes and some yield-related parameters (e.g., kernel fraction) were not significantly affected by the irrigation treatments. Except in PRD70, individual kernel weight was significantly reduced in the deficit irrigated treatments. Kernel yield, expressed in percent of the maximum yield observed in the FI treatment, showed a linear decrease with decreasing WA and a slope of 0.43, which implies that a 1% decrease in water application would lead to a reduction of 0.43% in yield. Water productivity increased drastically with the reduction of water application, reaching 123% in the case of PRD30. Overall, our results demonstrate the prevalence of direct and strong links between the intensity of the water restriction under PRD – i.e., the total water supply during the growing season – and the main parameters related to tree growth, yield and water productivity. Noteworthy, the treatments that received similar annual water volumes under contrasted deficit irrigation strategies (i.e., PRD70 and RDI) presented a similar tree performance.  相似文献   

10.
Tieguanyin Oolong tea (Camellia sinensis (L.) O. Kuntze) is a name brand important commodity for Anxi county, Fujian province in China. Four-year-old tea plants at a tea plantation in Anxi were subjected to six different irrigation treatments (i.e. 5, 10, 15, 20, and 25 d irrigation intervals for T1 to T5 with a rate of 3.5 kg water per plant, plus a non-irrigated control). After 50 d of irrigation treatments, leaf water potential was −1.70, −2.34, −2.48, −2.89, −3.55, and −4.92 MPa for treatment T1, T2, T3, T4, T5, and control, respectively. Leaf biomass yield increased by 32.8%, 21.9%, and 21.3% for T1, T2, and T3, respectively, compared to control. The net photosynthesis (Pn), stomatal conductance (gs) and transpiration (E) decreased with irrigation interval increasing. Tea polyphenol (TP) and free amino acid (AA) decreased when the irrigation intervals were increased, but caffeine (CA) content apparently increased as the irrigation intervals were increased. To balance irrigation water demand and tea yield and quality, it is recommended that the irrigation interval should be set at 10 d with a rate of 3.5 kg water per plant for the optimal production in Anxi, Fujian province of China.  相似文献   

11.
12.
13.
Precision irrigation in grapevines could be achieved using physiologically based irrigation scheduling methods. This paper describes an investigation on the effects of three midday stem water potential (midday ΨS) thresholds, imposed from post-setting, over water use, vegetative growth, grape quality and yield of grapevines cv. Cabernet Sauvignon. An experiment was carried out on a vineyard located at the Isla de Maipo, Metropolitana Region, Chile, throughout the 2002/03, 2003/04 and 2004/05 growing seasons. Irrigation treatments consisted in reaching the following midday ΨS thresholds: −0.8 to −0.95 MPa (T1); −1.0 to −1.2 MPa (T2) and −1.25 to −1.4 MPa (T3) from post-setting to harvest. Results showed significant differences in grape quality components among treatments and seasons studied. In average, T3 produced smallest berry diameter (6% reduction compared to T1), high skin to pulp ratio (13% increment compared to T1) and significant increments in soluble solids and anthocyanins. Improvements in grape quality attributes were attributed to mild grapevine water stress due to significant reductions in water application (46% for T2 and 89% for T3 less in average, both compared to T1). This study found significant correlations between midday ΨS and berry quality components, no detrimental effects on yield by treatments were found in this study. This research proposes a suitable physiological index and thresholds to manage RDI and irrigation scheduling on grapevines to achieve high quality grapes on mild water stress conditions.  相似文献   

14.
Field studies were done in 2003 and 2006 to evaluate the performance of water pillow (WP) irrigation as an alternative to furrow irrigation (FI) for soybean growth in semi-arid climatic conditions. There were four irrigation treatments: two of which (FI and WP1.0) were full irrigation, in that the water deficit in the soil profile (0.9 m) was brought to field capacity in 10-day intervals. The other two treatments (WP0.75 and WP0.50) were deficit irrigation treatments, and received 75% and 50% of WP1.0 irrigation amount. The highest seed yield was achieved with the WP1.0 treatment. Irrigation water use efficiency (IWUE) and water use efficiency (WUE) were influenced significantly by the irrigation methods and levels (P ≤ 0.05). The highest values of WUE and IWUE were obtained by the WP0.75 and WP0.50 treatment, respectively, in both study years. However, the smallest irrigation amount resulted in lower total yield for the WP0.50 treatment, and is not recommended. In conclusion, the WP0.75 treatment is recommended for soybean production in order to attain higher values of IWUE and WUE, and to conserve water and maximize yield with the same volume of water.  相似文献   

15.
Improving irrigation water management is becoming important to produce a profitable crop in South Texas as the water supplies shrink. This study was conducted to investigate grain yield responses of corn (Zea mays) under irrigation management based on crop evapotranspiration (ETC) as well as a possibility to monitor plant water deficiencies using some of physiological and environmental factors. Three commercial corn cultivars were grown in a center-pivot-irrigated field with low energy precision application (LEPA) at Texas AgriLife Research Center in Uvalde, TX from 2002 to 2004. The field was treated with conventional and reduced tillage practices and irrigation regimes of 100%, 75%, and 50% ETC. Grain yield was increased as irrigation increased. There were significant differences between 100% and 50% ETC in volumetric water content (θ), leaf relative water content (RWC), and canopy temperature (TC). It is considered that irrigation management of corn at 75% ETC is feasible with 10% reduction of grain yield and with increased water use efficiency (WUE). The greatest WUE (1.6 g m−2 mm−1) achieved at 456 mm of water input while grain yield plateaued at less than 600 mm. The result demonstrates that ETC-based irrigation can be one of the efficient water delivery schemes. The results also demonstrate that grain yield reduction of corn is qualitatively describable using the variables of RWC and TC. Therefore, it appears that water status can be monitored with measurement of the variables, promising future development of real-time irrigation scheduling.  相似文献   

16.
Agricultural production in irrigated areas is becoming more water-constrained. Scheduling the timing of the last irrigation on cereals is one effective method of reducing seasonal water use while maintaining crop yield and quality. The last irrigation application time and its impact on two-row malting barley (Hordeum distichum cv. Moravian 37) yield, quality, and economic benefits were studied in the 2000, 2001, and 2002 cropping seasons. Irrigation was stopped for the season at Milk, pre-Soft Dough, Soft Dough, and post-Soft Dough grain formation stages. The Soft Dough water cutoff treatment produced the highest grain yield of two-row spring malting barley. Water cutoff before or after Soft Dough stage reduced the grain yield significantly at P < 0.05, but the quality of grain for malt production was not significantly different when water was cut off at pre-Soft Dough or post-Soft Dough stages. Irrigation cutoff at Milk stage produced the lowest grain yield with the lowest quality. Decreases in grain yield and quality with the last irrigation at post-Soft Dough reduced grain value by $174 ha−1 relative to Soft Dough, while irrigation costs were higher (Fig. 6). The economic benefit due to labor and power cost reduction from earlier irrigation cutoff does not offset the resulting loss of grain value/ha for any treatment except post-SD under current southern Idaho energy and labor cost conditions.  相似文献   

17.
A groundwater crisis is going on in the North China Plain (NCP), due to the excessive water consumption of the traditional winter wheat (WW)/summer maize (SM) double cropping system (two harvests in one year). In order to improve the water use efficiency in this particular cropping system and to evaluate the sustainability of water usage in Chinese agroecosystems, two field experiments were conducted from October 2004 to September 2006 at two sites of the North China Plain. The field experiments included four treatments: (1) farmers’ practice (FP) with two harvests in one year (WW/SM rotation), (2) FP with reduced input (RI) of water and nitrogen (WW/SM rotation), (3) three harvests in two years (TW, 1st year: WW/SM; 2nd year: spring maize), and (4) continuous spring-maize monoculture (CS) with one harvest per year (spring maize). In the treatments RI, TW and CS, the amount and timing of irrigation and nitrogen fertilization was optimized using TDR based soil moisture measurements and the Nmin-method, respectively. Data showed that the utilization efficiency of irrigation water can be improved by optimizing soil water management compared to the traditional water management (FP). However, the groundwater net consumption required for RI still surpassed 300 mm yr−1. Both FP and RI, still overused groundwater resources. The groundwater consumption in the continuous spring maize (CS) was on average 139 mm yr−1. Therefore, the CS system can show the potential to use groundwater sustainably in the long term. Water usage of the TW treatment was in between the water usage of the other treatments. The grain yields in the double cropping systems (FP and RI) were higher than that in the two other systems (TW and CS). But the CS treatment showed the higher WUE than others.  相似文献   

18.
This paper reports the effects of irrigation amount and partial rootzone drying (PRD) on water relations, growth, yield and wine quality of Vitis vinifera cv. ‘Tempranillo’ during two consecutive years in a commercial vineyard with a deep, light-clay soil located in Requena, Valencia, Spain. Partial rootzone drying applied at two amounts (100% and 50% of the estimated crop evapotranspiration), was compared to conventional drip irrigation, and also to rainfed vines. Results showed that the effects of irrigation amount on yield and wine quality were different between years. In 2003 with low yield values (around 6.3 t ha−1) irrigation did neither affect grape production nor wine quality. However, in the following year, with much higher general yield (17 t ha−1), the high irrigation dose increased yield by 30% compared to rainfed vines and it also increased must total soluble solids and wine alcohol content. In both seasons, PRD did not significantly affect physiological parameters, nor growth, yield or fruit and wine quality, when compared to the same amount of water applied by conventional drip irrigation. Overall these results suggest that, under our experimental conditions, it was the irrigation amount rather than the system of application what affected vine performance, indicating the difficulties of successfully employing the PRD type of irrigation with a drip system in heavy and deep soils.  相似文献   

19.
Determination of temporal and spatial distribution of water use (WU) within agricultural land is critical for irrigation management and could be achieved by remotely sensed data. The aim of this study was to estimate WU of dwarf green beans under excessive and limited irrigation water application conditions through indicators based on remotely sensed data. For this purpose, field experiments were conducted comprising of six different irrigation water levels. Soil water content, climatic parameters, canopy temperature and spectral reflectance were all monitored. Reference evapotranspiration (ET0), crop coefficient Kc and potential crop evapotraspiration (ETc) were calculated by means of methods described in FAO-56. In addition, WU values were determined by using soil water balance residual and various indexes were calculated. Water use fraction (WUF), which represents both excessive and limited irrigation applications, was defined through WU, ET0 and Kc. Based on the relationships between WUF and remotely sensed indexes, WU of each irrigation treatments were then estimated. According to comparisons between estimated and measured WU, in general crop water stress index (CWSI) can be offered for monitoring of irrigated land. At the same time, under water stress, correlation between measured WU and estimated WU based on CWSI was the highest too. However, canopy-air temperature difference (Tc − Ta) is more reliable than others for excessive water use conditions. Where there is no data related to canopy temperature, some of spectral vegetation indexes could be preferable in the estimation of WU.  相似文献   

20.
Studies on irrigation scheduling for soybean have demonstrated that avoiding irrigation during the vegetative growth stages could result in yields as high as those obtained if the crop was fully irrigated during the entire growing season. This could ultimately also lead to an improvement of the irrigation water use efficiency. The objective of this study was to determine the effect of different irrigation regimes (IRs) on growth and yield of four soybean genotypes and to determine their irrigation water use efficiency. A field experiment consisting of three IR using a lateral move sprinkler system and four soybean genotypes was conducted at the Bledsoe Research Farm of The University of Georgia, USA. The irrigation treatments consisted of full season irrigated (FSI), start irrigation at flowering (SIF), and rainfed (RFD); the soybean genotypes represented maturity groups (MGs) V, VI, VII, and VIII. A completely randomized block design in a split-plot array with four replicates was used with IR as the main treatment and the soybean MGs as the sub-treatment. Weather variables and soil moisture were recorded with an automatic weather station located nearby, while rainfall and irrigation amounts were recorded with rain gauges located in the experimental field. Samplings for growth analysis of the plant and its components as well as leaf area index (LAI) and canopy height were obtained every 12 days. The irrigation water use efficiency (IWUE) or ratio of the difference between irrigated and rainfed yield to the amount of irrigation water applied was estimated. The results showed significant differences (P < 0.05) between IR for dry matter of the plant and its components, canopy height, and maximum leaf area index as well as significant differences (P < 0.05) between MGs due to IR. Differences for the interaction between IR and MG were significant (P < 0.05) only for dry matter of pods and seed yield. In general, seed yield increased at a rate of 7.20 kg for each mm of total water received (rainfall + irrigation) by the crop. Within IR, significant differences (P < 0.05) on IWUE were found between maturity groups with values as low as 0.55 kg m−3 for MG V and as high as 1.14 kg m−3 for MG VI for the FSI treatment and values as low as 0.48 kg m−3 for maturity group V and as high as 1.02 kg m−3 for maturity group VI for the SIF treatment. We also found that there were genotypic differences with respect to their efficiency to use water, stressing the importance of cultivar selection as a key strategy for achieving optimum yields with reduced use of water in supplemental irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号