首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Solvents, greases, and rinse waters from routine vehicle maintenance contain heavy metals and volatile organic chemicals (VOCs). In Wisconsin, these fluids enter catch basins along with rinsing waters and are discharged to soil infiltration systems drainfields after mixing with domestic wastewaters in a septic tank. The purpose of this study was to monitor heavy metal and VOC removal and treatment in catch basins and septic tanks at four publicly-owned motor vehicle service stations (MVSS). Cadmium, chromium, and lead were found in catch basin wastewater, septic tank effluent, and septic tank sludge at concentrations ranging from 0.002–7.7 mg L?1. Lead was found in the highest concentration. The highest concentrations of metals were in septic tank sludge. Of the >50 VOCs scanned for in catch basin wastewater, septic tank effluent, and septic tank sludge samples, 29 were found in concentrations that exceeded analytical detection limits. Concentrations of detected VOCs ranged from 1.0–15,800 µg L?1 and the highest concentrations of VOCs were found in catch basin wastewater and septic tank sludge. Acetone, ethylbenzene, toluene, and xylenes were the most commonly found VOCs at all sampling locations. Thus, heavy metals and VOCs were not completely removed in catch basins and were discharged to septic tanks where removal occured possibly as these contaminants settled with solids in the sludge. The level of treatment was, however, inadequate and heavy metals and VOCs were discharged to drainfields.  相似文献   

2.
污泥中重金属的环境活性及生态风险评估   总被引:1,自引:0,他引:1  
研究了湖南省长沙市、株洲市和常德市10个污水处理厂剩余污泥中As,Cd,Cu,Ni,Pb,Zn的含量和形态特征,并利用潜在生态危害指数法对污泥农用过程中重金属的生态风险进行了综合评价。结果表明,城市污泥中富含有机质及N,P,K等养分,然而,污泥表现为以Cd为主的多金属污染,不能直接农用。污泥中Cd含量为1.43~260mg/kg,以可还原态为主,占全量比例高于28.9%;As,Pb的可还原态,Ni,Zn的酸可溶态和可还原态,Cu可还原态和氧化态所占比例较高,表明污泥中重金属的潜在环境活性较高。风险指数评价结果表明,污泥中Cd和As是潜在的强生态风险元素;以工业废水处理为主的污水处理厂污泥重金属单因子生态风险相对较高,且综合潜在生态风险严重。  相似文献   

3.
A nine-week sampling and analysis program was completed at a large municipal wastewater treatment plant to characterize the fate of Hg entering the plant. Mercury removal in primary treatment averaged 79%, and the average Hg removal across the entire plant was approximately 96%. Mercury loadings on the secondary (activated sludge) treatment process were elevated to near plant influent levels due to the recycle of spent scrubber water from sewage sludge incinerator emissions control equipment. This internal recycle of spent incinerator scrubber water resulted in elevated Hg loadings to the incinerators, and effectively reduced the Hg control efficiency of the emissions control equipment to near zero. Measurements indicate that approximately 95% of the Hg mass entering the plant is discharged to the atmosphere via sludge incinerator emissions. These results indicate that municipal wastewater treatment facilities can remove Hg from wastewater quite effectively; however, where wastewater sludge is incinerated, almost the entire mass of Hg removed from the wastewater can be discharged to the atmosphere.  相似文献   

4.
In order to enhance the removal of heavy metals such as Ni, Cu, Zn and Cd from wastewater, different cow dung/sewage sludge ratios were tested to assess the effect of these metals on the adaptability of Eisenia fetida earthworms to the treatment process carried out in a typical plant located in Tamaulipas, Mexico. Two experimental water treatment setups were proposed. The first set of experiments was planned to determine the adequate sewage sludge/cow dung ratio(s), whereas the second arrangement was designed to evaluate the growth performance and fecundity of the earthworms under high heavy metal concentrations. To achieve the objectives, the experiments were conducted for 90 days under controlled environmental conditions. Maximum worm biomass and growth rates were attained in samples containing 25 wt.% of sewage sludge. Weight and mortality of worms were significantly affected by the high levels of heavy metals, making difficult the metal accumulation in the worm tissues.  相似文献   

5.
The comparison of immobilisation efficiency of various phosphate stabilisation agents for heavy metals in sewage sludge collected from an urban wastewater treatment plant Domale-Kamnik (Slovenia) is reported. The sewage sludge, containing high total concentrations of Zn (2698 ± 8.1 mg kg-1), Ni (1513 ± 5.7 mg kg-1), Cr (1118 ± 3.0 mg kg-1) and Cu (712 ± 2.2 mg kg-1), was mixed with various types of phosphates: highly soluble Ca(H2PO4)2, synthetic hydroxyapatite, with a solubility between Ca(H2PO4)2 and rock apatite, and bone-meal as an alternative low-cost source of poorly crystalline phosphate, in order to reduce metal mobility. The amounts of stabilising agents added to 1 g of the sludge ranged from 0.05 to 1 g. Water and acetic acid extractions were used for the determinationof water-soluble and potentially bioavailable metal fractions in the sewage sludge and its mixtures with various stabilisation agents.  相似文献   

6.
Influence of sewage sludge and heavy metals on nematodes in an arable soil   总被引:4,自引:0,他引:4  
Summary The abundance of nematodes was investigated in agricultural plots treated in three different ways, the first with no treatment, the second with 300 m3 ha-1 a-1 raw sewage sludge and the third with 300 m3 ha-1 a-1 sewage sludge with the addition of heavy metals. The nematodes were determined down to the genus and were assigned to five feeding groups. Total nematode numbers were highest in the site treated with sewage sludge and heavy metals. The smallest total numbers were found in the control site. The plant-feeding nematode genera showed different patterns of abundance depending on the sludge treatment and heavy metal content. For the mycophagic and bacteriophagic nematodes, numbers increased with the amount of sludge, especially in the sites with a higher heavy metal content. The family Rhabditidae was the most numerous group in the sludge plus heavy metals treatment. In contrast to these findings, the omnivorous nematodes were very rare in the sludgetreated plots and were completely absent in plots treated with sludge plus heavy metals, whereas predatory nematodes were numerous only after the application of sludge alone.  相似文献   

7.
Abstract

Environmental problems associated with sewage sludge disposal have prompted strict legislative actions over the past years. At the same time, the upgrading and expansion of wastewater treatment plants have greatly increased the volume of sludge generated. The major limitation of land application of sewage sludge compost is the potential high heavy metal content in relation to the metal content of the original sludge. Composting of sewage sludge with natural zeolite (Clinoptilolite) can enhance its quality and suitability for agricultural use. Clinoptilolite has the ability to uptake heavy metals in satisfactory levels. Finally, in order to estimate the metal leach ability of the final product of compost, the Generalized Acid Neutralization Capacity (GANC) procedure was used and was found that by increasing the leachate pH, the heavy metal concentration decreases.  相似文献   

8.
A greenhouse experiment was conducted to evaluate the availability of metals from sewage sludge and inorganic salts, and the effect of pH and soil type on yield and metal (Zn, Cu, Cd and Ni) uptake by wheat (Triticum aestivum L. var. ‘holly’). Soils used in this study were Hartsells sandy loam (fine-loamy, siliceous Thermic Typic Hapludult) and Decatur silty clay loam (Clayey, kaolinitic, Thermic Rhodic Paleudult). Two treatments of sewage sludge containing metals were applied at the rate of 20 and 100 mt ha?1. Inorganic Salts of Zn, Cu, Cd, and Ni were applied (as sulfate salts) at concentrations equivalent to those found in the 20 and 100 mt ha?1 sludge. One treatment consisted of inorganic metals plus sewage at the 20 Mg ha?1 rate. Two soil pH levels, one at field pH (below 6.0) and another pH adjusted between 6.5 and 7.0 were used. Wheat plants were harvested four weeks after germination. Two more subsequent harvests were made at four week intervals. For each harvest, dry matter yield increased as the rate of sludge application increased for both soil types. The soil pH also influenced the dry matter yield. High yield was observed when the pH was adjusted between 6.5 to 7.0 for both soils. An increase in yield was also observed at each subsequent harvest for most of the treatments. Inorganic salt treatments produced lower dry matter yields when compared with the sludge. Both sludge application and metal salts increased plant tissue concentration of Zn, Cu, Cd, and Ni at field pH for both soils. However, increasing the pH of the soil for both sludge and inorganic salt treatments generally decreased the tissue concentration of the above metals.  相似文献   

9.
Three diverse field-moist soil samples were treated with five sewage sludges (applied at five loading rates) containing high concentrations of heavy metals. Urease activity was assayed after 0, 3, 7, 14 and 30 days of incubation. Results showed that when soils were treated with the sewage sludges, urease activity was often inhibited at the lower loading rates (2.2 and 8.9mg sludge g?1 soil), but was enhanced substantially with the higher application rates (22.2, 44.4 and 100 mg sludge g?1 soil). Inhibition of urease activity in the sewage sludge amended-soils ranged from 4 to 37% (Domino soil), 8–27% (Hesperia soil), and 3–49% (Ramona soil) at various times of incubation. Inhibition of the enzyme activity was attributed to the presence of heavy metals in the sludges. The increased activity of urease in the sludge-amended soils at the highest application rate (100 mg sludge g?1 soil) ranged from 1.13 to 5.00-fold (Domino soil), 1.20–4.04-fold (Hesperia soil), and 1.13–5.40-fold (Ramona soil). Enhanced urease activity was believed to be due to the additional source of organic matter and nutrients supplied by the sludge which stimulated microbial activity and subsequent urease synthesis.  相似文献   

10.
粪大肠菌群(FecalColiform,FC)是判定污泥土地安全利用的重要指标之一。通过实地调查取样,收集了长江三角洲地区的南京、苏州、上海、杭州等15个城市的污水处理厂的48份污泥样品,测定了其粪大肠菌群数,旨在了解污泥中FC的数量与潜在污染风险;并在污泥自然风干过程的第7、14、21、28天分别取样测定了FC的数量和水分含量,以观察风干过程中FC和水分的动态变化及其与风干时间的关系。研究结果表明,污泥中FC的最大可能数(MPN)的范围在0~3.41×106(MPNg-1,DW),平均为3.79×105(MPNg-1,DW),检出率达89.6%。不同类型污泥中FC的数量差别较大,“河流”污水处理厂污泥和污泥制品的FC数量最低,以生活污水为主的污泥和混流污水污泥中FC数量较高。污泥风干过程中FC数量和水分含量均随风干时间的延长而减少,但FC数量有回升现象。总之,污泥样品的FC数量差异较大,部分污泥样品的数量超过了污泥农用的病原物标准,为了保护生态环境和人类健康,防止二次污染,污泥土地利用时需考虑FC数量,采取相应控制措施。  相似文献   

11.
A virological analyses of a sewage treatment plant which provided chlorinated, activated sludge treated sewage effluent to irrigate a complete two-year crop of sugarcane was made. The raw, the activated sludge treated and the chlorinated sewage effluent, as well as streams and a harbor receiving sewage effluents were concentrated by either the polymer two-phase, PE-60, Al(OH)3, protamine sulfate, or cellulose membrane method and assayed for human enteric viruses. Viruses were recovered from 100% (11/11) of the raw sewages tested at concentrations ranging from 27 to 19 000 PFU l?1 while 76% (13/17) of the activated sludge treated effluent was positive at concentrations ranging from 7 to 5222 PFU l?1. After chlorination, 58% (31/53) of the samples was positive for virus at concentrations ranging from 2 to 750 PFU l?1. Human enteroviruses were also isolated from shallow flowing streams at distances up to 3 mi (5 km) from the closest known sewage effluent discharge point and from a harbor approximately 0.5 mi (0.8 km) from the point of sewage discharge entering the harbor. The viruses most often isolated were echovirus 7, coxsackievirus B-4, B-5 and poliovirus 1, 2, and 3. These results indicate that although activated sludge treatment plus chlorination remove approximately 90% of the virus from the raw sewage, the final treated sewage effluent, which is normally discharged into a stream and in this experimental study to irrigate sugarcane, still contains a significant concentration of infectious viruses. Furthermore, the recovery of enteroviruses from waterways at points distant from the sewage treatment plants indicates that sewage-borne viruses persist in natural water environment. The significance of enteric viruses in waters accessible to the public and used for irrigation purposes remains to be determined.  相似文献   

12.
In this work ultrafiltration (UF) was coupled with suitable minerals and dried activated sludge for the pre-treatment of several industrial wastewater streams. The aim was to decrease heavy metal concentrations to low levels so that wastewater can be safely discharged into municipal sewers or biological wastewater treatment can take place without biomass inhibition problems. Industrial wastewater originating from metal plating, chemical and textile industries was employed. The experiments were conducted in a reactor where the UF membrane module was immersed. UF reduced the amount of heavy metals, but the performance was variable with removal efficiencies ranging from 20 to 99.7?%, depending on the metal type and on the wastewater initial characteristics. The prevailing wastewater characteristics were the pH, the presence of certain anions, the suspended solids concentration and the presence of competing cations. The addition of activated sludge and/or minerals could further increase heavy metal removal through the process of sorption. UF assisted by minerals could achieve variable colour and COD removal ranging from 22 to 94?% and 58 to > 99.9?% respectively. Minerals resulted in membrane fouling mitigation, while sludge adversely impacted on fouling.  相似文献   

13.
To investigate the distribution and dynamics of phosphorus (P) in soils for environmental protection and agronomical usage, 31P nuclear magnetic resonance spectroscopy (31P NMR) was used to characterize the contents and chemical properties of P in sewage sludge from 13 wastewater treatment plants in Shanghai. The samples were extracted with 0.25 M sodium hydroxide (NaOH) / 0.05 M sodium ethylenediamietetraacetic acid (Na2EDTA) in ratio of 1:20 (w/v). Total P recovery in the extract ranged from 91 to 116% when compared to traditional chemical methods. The dominant forms of P in all samples were inorganic orthophosphates and orthophosphates monoesters. Orthophosphate diesters and pyrophosphates were present in only two and four samples, respectively. This study provides detailed information on the distribution, contents, and chemical properties of P in sewage sludge that may be of value in the utilization of sewage sludge for agronomic purposes.  相似文献   

14.
The assessment of heavy metals in spinach (Spinacia oleracea) grown in sewage sludge–amended soil was investigated. The results revealed that sewage sludge significantly (P < 0.01) increased the nutrients and heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn) in the soil. The contents of metals were found to be below the maximum levels permitted for soils in India. The most agronomic performance and biochemical components of S. oleracea were found at 50% concentrations of sewage sludge in both seasons. The contents of Cd, Cr, Cu, Mn, and Zn in S. oleracea were increased from 5% to 100% concentrations of sewage sludge in both seasons. The order of contamination factor (Cf) of different heavy metals was Mn > Cd > Cr > Zn > Cu for soil and Cr > Cd > Mn > Zn > Cu for S. oleracea plants after application of sewage sludge. Therefore, use of sewage sludge increased concentrations of heavy metals in soil and S. oleracea.  相似文献   

15.
A pot experiment was conducted to compare the behaviour and bioavailability of Cd and Pb from two soils mixed with sewage sludge at three rates (0, 50 and 150 t ha?1) and maintained at two contrasting ambient temperatures (15°C and 25°C) over a period of one year following the treatments. Ryegrass (Lolium perenne) accumulated Cd and Pb in the sewage sludge treated soils, although accumulation was significantly lower in the soils treated at the high rate (150 t ha?1) compared to the low rate (50 t ha?1). Ryegrass grown in the warm environment (25°C) accumulated significantly higher levels of Cd and Pb than that grown in cooler conditions (15°C). Samples of the soils spiked with nitrate salts of Cd and Pb at equivalent rates of metal loading resulted in the ryegrass accumulating much higher levels of both the metals than on the sludge treated soils. Metal uptake by the ryegrass from the sludge treatments increased over successive harvests while that from metal salt treatments decreased. The observed trend of increasing plant metal uptake over time coincided with a trend of decreasing pH in the sludge treatments. However, the concentrations of Cd and Pb extracted by DTPA failed to predict the changes in plant metal uptake. The importance of sewage sludge as both a source and a sink of pollutant metals and the trend of increasing bioavailability over time shown by this experiment are discussed.  相似文献   

16.
Abstract

City sewage sludge was applied to the surface layer (0–10 cm) of two sandy soils, slightly calcareous with 8.9% CaCO3 and moderately calcareous with 26.7% CaCO3, at the rates of 0, 25, 50, 75, and 100 Mg ha‐1. The effects of sewage sludge and its rates on total soluble salts, pH of soils and concentration and movement of some heavy metals within soils were investigated. Soil samples were packed at bulk density of 1.5 g cm‐3 in PVC columns and incubated for 19 weeks. The results indicated that total soluble salts (EC) of the treated layer increased with increasing sewage sludge rates. Soluble salts also increased with an increase in soil depth for both soils. The pH values of treated layers in two soils decreased with increasing sewage sludge rates. With increasing sewage sludge rates, concentrations of heavy metals [cobalt (Co), nickel (Ni), cadmium (Cd), and leaf (Pb)] increased in the treated layers compared to the untreated layers and their mobility was restricted mostly to the upper 30‐cm depth. Movement of Co and Pb in both the soils was predominately limited up to a depth of 40 cm for Co and 5 cm for Pb below the treated soil layer. Nickel and Cd movement was mostly limited to a depth of 10 cm in slightly calcareous soil and 5 cm in moderately calcareous soil. Metal movement in the respective soils is ranked as Co>Ni=Cd>Pb and Co>Ni=Cd>Pb. The low concentrations of heavy metals and the restricted mobility with soil depth, suggest that this material may be used for agricultural crop production without any toxic effect on plants.  相似文献   

17.

Bioleaching has been demonstrated to be a feasible technology for removing heavy metals from sewage sludge, but the leaching medium needs to be pre-acidified to less than 4. The objective of the research presented in this paper was to investigate the pH requirement for isolated indigenous Thiobacillus ferrooxidans for bioleaching heavy metals from wastewater sludge in Hong Kong. Isolated sludge-indigenous iron-oxidizing bacteria were used for the bioleaching experiments to investigate the dissolution behaviour of heavy metals (Zn, Cu, Ni and Cr) from sludge set at an initial pH ranging from 3–7 with the purpose to reduce the acid consumption. The results showed that the inoculation of 15% of isolated indigenous iron-oxidizing bacteria and addition of 4.0 g L-1 Fe2+ (in the form of FeSO4?7H2O) resulted in a sharp decrease in sludge pH from an initial pH 3–7 to 2.1–2.4 and an increase in ORP (oxidation-reduction potential) from –200–38 mV to > 500 mV within the first 6 days. After 16 days of bioleaching, 50.2–78.4% of Cr, 63.7–74.1% of Cu, 74.9–88.2% of Zn and 15.5–38.6% of Ni can be leached out from the sludge at an initial pH range of 3–7. In contrast, only 1.5% of Cr, 1.7% of Cu, 15.3% of Zn and 15.5% of Ni was solubilized in the control run at pH 7.0. At the end of bioleaching, the dissolution of nutrients N and P from the organic matrix at pH 6 was significantly less than that at pH 3–5. Hence, the bioleaching efficiency could still be maintained at an initial pH of > 4 using the isolated indigenous T. ferrooxidans which would reduce the cost of operation.

  相似文献   

18.
The concentration of medically used radionuclides has been studied in sludge from the sewage treatment plant serving the borough of Malmo. In this area all nuclear medicine procedures are carried out in one hospital and almost all patients live in the borough. Therefore, the input of medically used radionuclides into the sewage system can be estimated with good accuracy. Samples of digested sludge have been taken once or twice a week during half a year. Iodine-131 (physical half life (T) = R.05 d) was detected in all samples. The 131I-activity concentration due to medical use varied between (0.03±0.01) and (0.12±0.02) nCi kg?1. The ratio between the total output of 131I via the sludge and an adherent input of the radionuclide into the sewage system was determined to (2.6 ± 0.6) × 10?3, which is equivalent to a ratio of (2 ± 1) × 10?2 for stable I. Occasionally measurable activities of 198Au (T=2.7 d) and 201T1(T=3.l d) have been found. The radioactivity concentration of medically used radionuclides in the sludge is low and constitutes no health problems for the persons involved. The sludge however has proved to be a very sensitive and suitable integrator of radioactive material released from a large urban area.  相似文献   

19.
Sandy loamy agrosoddy-podzolic soils and plants growing on them were studied. The soils had been treated with sewage sludge from the Lyubertsy aeration station applied as organic fertilizer for 5–10 years before 1990. Initially, these soils were used for cultivating vegetables and fodder crops. The content and mobility of heavy metal compounds increased in the plow horizons of studied soils under the influence of sewage sludge. The concentrations of Cd and Zn exceeded the tentative permissible concentrations (TPC) for these elements by 8–16 and 2–4 times, respectively. The contaminated layer was found at the depths within 30–50 cm, which attests to a low migration rate of heavy metals added to the studied soils with sewage sludge (SS) 25 years ago. The concentration of Cd exceeded the maximum permissible concentration (MPC) of this element in all vegetable and fodder crops cultivated on the studied soils. The content of heavy metals in plants differed by three–five times in dependence on the capacity of particular plants to accumulate them. The period of soil self-purification from heavy metals was found to depend on the soil contamination level and element mobility, as well as on the element removal with harvested crops and with soil water flows. The maximal time of achieving the normal level of Cd concentration was estimated as 288 years for maximally contaminated soils; the corresponding values for Cu and Zn were estimated as 74 and 64 years, respectively.  相似文献   

20.
Phosphorus(P) is a limited resource that could be depleted. Consequently, recycling the P contained in sewage sludge, including sewage sludge incineration ash(SIA), from wastewater treatment plants is a possibility to be explored. A greenhouse experiment using annual ryegrass(Lolium multiflorum L.) was performed with an experimental design of three completely randomized blocks of two soils and 29 treatments: one control without P and two levels of 9 and 26 kg total P ha~(-1) from 14 different sources: twelve SIAs(not contaminated by trace metals) from the US and Canada, one commercial synthetic fertilizer(triple superphosphate(TSP)), and one commercial rock phosphate(RP). Higher ryegrass biomass levels were achieved at the higher fertilization rate(26 kg total P ha~(-1))and when using the SIAs with the highest P solubility percentage(PSP)(≥ 54% of total P). The biomass increases following SIA application were as high as 29% and 59% more than the control for the sandy loam and clayey soil, respectively, but 40% less than in TSP for both soils. A similar behavior was observed for P uptake, with a maximum increase of 26% for the clayey soil, and 165% for the sandy loam soil. The ryegrass biomass and P uptake increases due to SIA application were larger than those due to RP application in the clayey soil, but similar to those in the sandy loam soil. The SIAs with a PSP of ≥ 54% significantly increased soil available P stocks and saturation. According to our findings, we conclude that the SIAs from municipal and agrifood industries have a potential for P agricultural recycling, but their efficiencies vary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号