首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
N. Watanabe  I. Imamura 《Euphytica》2002,128(2):211-217
The Chinese wheat landrace, Xinjiang rice wheat (T. petropavlovskyi Udacz. et Migusch., 2n = 42), known as ‘Daosuimai’ or rice-head wheat is characterized by long glumes, and was found in the agricultural areas in the west part of Talimu basin, Xinjiang, China in 1948. The gene for long glume from T. petropavlovskyi was introduced into a line of spring durum wheat, LD222. The gene for long glume is located approximately46.8 cm from the cn-A1 locus, which controls the chlorinatrait. Significant deviation from a 3:1 in the F2 of LDN7D(7A)/ANW5C confirmed that the long glume of T. petropavlovskyi can be controlled by a gene located on chromosome 7A. The gene locates approximately 12.4 ± 0.5 cM from the centromere on the long arm of 7A. It is considered that the gene for long glume from T. petropavlovskyi is an allele on the P 1 locus, and it should be designated as P 1a. It is suggested that T. petropavlovskyi originated from either the natural hybrid between T. aestivum that has an awn-like appendage on the glume and T. polonicum or a natural point mutation of T. aestivum. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Triticum turgidum ssp. polonicum and T. ispahanicum were characterized by the long glume phenotype. P 1 gene determines the long glume phenotype of T. polonicum, and locates on chromosome 7A. T. ispahanicum has shorter glume than T. polonicum and the long glumephenotype is determined by P 2 gene located on chromosome 7B. In the present study, aneuploid stocks of `Langdon' durum wheat were used to map the genes, P 1 and P 2. P 1 located on the long arms of chromosome 7A and its map distances from the centromere was 14.5 cM. On chromosome 7B, four loci located as cc (chocolate black chaff) – Pc (purple culm) – centromere – P 2cn-BI (chlorina). P 2 located on the long arms of chromosome 7B and its map distances from the centromere was 11.7 cM. It was suggested that a paralogous gene set conditions long glume phenotype in the homoeologous group 7 chromosomes. The P 1 and P 2 genes may be useful as genetic markers in tetraploid wheat.  相似文献   

3.
Wheat grain size and shape are associated not only with yield but also with product and milling quality. A subspecies of cultivated tetraploid wheat, Triticum turgidum ssp. polonicum, is characterized by elongated glumes. To elucidate morphological effects of the subspecies differentiation-related gene, we conducted QTL analysis for grain and spikelet shape using a mapping population between two tetraploid wheat subspecies, polonicum and durum. P1, the gene controlling the elongated glumes, was located on chromosome 7A, and the polonicum-type allele acted in an incomplete dominance manner to express the elongated glume phenotype. The polonicum allele of the P1 locus significantly affected not only glume length but also grain shape, spike shape, awn length and seed fertility in tetraploid wheat. The elongated glume phenotype was correlated with an increase in spike length, grain length and grain weight, and with a decrease in fertility, grain number and awn length. Thus, the subspecies differentiation-related gene in subspecies polonicum dramatically affects grain shape accompanied by alteration of spikelet shape in tetraploid wheat.  相似文献   

4.
This paper reports the waxy proteins and apparent amylose contents of the tetraploid species Triticum dicoccum, Triticum polonicum and Triticum durum. Three waxy proteins were found in the three species; two showed the same electrophoretic mobility as the alleles Wx-A1a and Wx-B1a of the hexaploid variety ‘Chinese Spring’, while the third showed the same mobility as the allele Wx-B1e belonging to the hexaploid wheat variety ‘Bai Huo’. In apparent amylose content no significant differences between the alleles Wx-B1a and the Wx-B1e were found for each species. However, the mean amylose contents of T. durum and T. polonicum were significantly greater than that of T. dicoccum, regardless of which allele was present. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Gliadin electrophoregrams, protein content and SDS-sedimentation values from the modified SDS-sedimentation test were obtained from six Greek cultivars of Triticum durum and 98 biotypes (78 with white glumes, 20 with red glumes). Our results provide wheat breeders with the tool TO predict the cooking quality of durum wheat from early generation breeding lines, since we were able to correlate the colour of the glume with the presence or absence of gliadin bands 42/45. All red glume biotypes lacked gliadin band 45 and possessed gliadin band 42. Furthermore, their SDS sedimentation values were around 27 (weak gluten), indicating poor cooking quality. Yet, the electrophoregrams of the gliadin proteins allowed an identification of the wheat cultivars examined, since for each cultivars the pattern was different. No correlation was found between the colour of the glume and the amount of total gram protein.  相似文献   

6.
Summary Several near-isogenic lines of durum wheat cv. LD222 have been developed. These include a near-isogenic line carrying gene P and designated P-LD222. The P gene from Triticum polonicum determines a long empty outer glume. The objective of this study was to determine the inheritance and chromosomal location of the P gene. To determine the inheritance, P-LD222 was crossed to two chlorina mutants and to a near-isogenic line for the purple culm trait, Pc-LD222. Linkage of the P gene with the mutated gene in chlorina mutant CDd6 indicated that the P gene was located on chromosome 7A. P-LD222 was also crossed with durum cultivar Langdon (LDN) and the LDN D genome substitution lines, LDN 7D(7A) and LDN 7D(7B). Segregation for the long glume trait in the F2 of LDN/P-LD222 and LDN 7D(7B)/P-LD222 was normal (3:1) and indicated P gene was not on chromosome 7B. Significant deviation from a 3:1 in the F2 of LDN 7D(7A)/P-LD222 confirmed the location of P on chromosome 7A, as indicated by the linkage analysis.  相似文献   

7.
A novel gene, designated Pg (purple glume), controlling anthocyanin pigmentation of the glume was identified and mapped in an F2 population from the durum wheat (Triticum durum) cross TRI 15744/TRI 2719. This gene was close to one of the two complementary dominant genes, controlling anthocyanin pigmentation of the pericarp (gene Pp3) in the centromere region of chromosome 2A; the other Pp gene (Pp1) was mapped on the short arm of chromosome 7B, near gene Pc controlling anthocyanin pigmentation of the culm and co-segregating with Pls (purple leaf sheath) and Plb (purple leaf blade). On the basis of the mapping results, the Pp3, Pc, Pls and Plb genes of T. durum were regarded as allelic to the T. aestivum Pp3, Pc-B1, Pls-B1 and Plb-B1 loci. The likely allelism of Pp1 in T. durum and T. aestivum remains in dispute, the present durum Pp gene mapped to the short arm of chromosome 7B, whereas in common wheat it was reportedly located on the long arm.  相似文献   

8.
A. A. Levy  M. Feldman 《Euphytica》1989,41(1-2):113-122
Summary The genetic control of grain protein percentage (GPP) in the wild tetraploid wheat, Triticum turgidum var. dicoccoides, was determined by crossing four accessions of this taxonomic variety with durum cultivar Inbar, and analyzing the parents, F1 and F2 populations. Reciprocal crosses indicated no cytoplasmic effect on GPP. The F2 variation was continuous in all crosses, showing no transgressive segregation. However, crosses between different accessions of var. dicoccoides showed transgressive segregation indicating the presence of different genes for high GPP in these accessions. Grain protein percentage was mostly codominant with high GPP, showing either no dominance, or a weak dominance. Heritability coefficients (broad sense) ranged from 0.30 to 0.53. Correlation coefficients between GPP and yield components were usually significantly negative, with the exception of the number of spikelets per spike, and in some crosses, grain weight.The number and chromosomal location of genes coding for high GPP were determined by the association between GPP and 27 markers (23 morphological and 4 biochemical markers). For this purpose, the genetic control of these markers, their linkage groups and chromosomal location were studied. At least four loci for high GPP that segregated in the F2 populations are suggested: one on chromosome arm 1AS, marked by the black glume gene (Bg); one on 1BS, marked by the HMW gliadin locus Gli-B1; one on group 5, marked by the genes for beaked glume (Bkg) and toothed palea (Tp); and one on group 7, marked by the kinky neck gene (Kn). The relationship between GPP and several yield components was studied in a similar manner. In general, loci of markers that correlated positively with high GPP were not correlated with a decrease in yield components. Moreover, several loci of var. dicoccoides were associated with an increase in yield components.The utilization of markers for chromosomal location of genes coding for quantitative traits is compared to the technique of aneuploid analysis, commonly used in wheat. The significance of the above findings for breeding is discussed.  相似文献   

9.
N. Watanabe 《Euphytica》1999,106(1):39-43
The Ispahan emmer wheat, Triticum ispahanicum Heslot, was discovered in Iran 1957 by the French expedition of Vinnot- Bourgen. T. ispahanicum has a long glume and a more slender spike than T. turgidum var. polonicum. The objectives of this study were (1) to determine the inheritance and chromosomal location of the gene for long glume, P2, from T. ispahanicum using the near- isogenic line P2-LD222, and (2) to compare the effects of the genes for long glume. The gene for long glume, P2, was located approximately 36.5 cM from the cn-B1 locus, which controls the chlorina trait and approximately 40 cM from the centromere on the long arm of 7B. The location of P2 approximately 29.6 cM from the Pc locus produced additional evidence that the order of loci was cn-B1, P2, and Pc. This raises the possibility of a paralogous gene set conditioning long glumes. A significant deviation from a 3:1 ratio in the F2 of LDN 7D(7B)/P2-LD222 confirmed the location of P2 on chromosome 7B. It is proposed that T. ispahanicum originated as a mutation of a gene affecting glume length on chromosome 7B of T. dicoccum, a spelt type of cultivated tetraploid wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Liguleless phenotypes of wheat lack ligule and auricle structures on all leaves of the plant. Two recessive genes principally control the liguleless character in tetraploid wheat. The F2 progenies of k17769 (liguleless mutant)/Triticum dicoccoides and k17769/T. dicoccum segregated in a 15:1 ratio, whereas the F2 progenies of k17769/T. durum and k17769/T. turgidum segregated in a 3:1 ratio. A new gene, lg3, was found on chromosome 2A. Segregation of F2 progenies between k17769 and chromosome substitution lines for homoeologous group 2 chromosomes suggested that the liguleless genotype had occurred by mutation at the lg3 locus on chromosome 2A, and then by mutation at the lg1 locus on chromosome 2B, in the process of domestication of tetraploid wheat. The gene (lg1) was linked to Tc2 (11.9 cM), which determines phenol colour reaction of kernels, on the long arm of chromosome 2B. The distance of lg1 to the centromere was found to be 60.4 cM, and microsatellite mapping established the gene order, centromere – Xgwm382Xgwm619Tc2lg1 on the long arm of chromosome 2B.  相似文献   

11.
Summary Septoria glume blotch, caused by Stagonospora nodorum, is an important disease of wheat (Triticum aestivum). Separate genetic mechanisms were found to control flag leaf and spike resistance. Genes for resistance to S. nodorum were located on different chromosomes in the few wheat cultivars studied. These studies only partially agree on the chromosome locations of gene in wheat for resistance to S. nodorum, and chromosomal arm locations of such genes are not known. The objectives of this study were to determine the chromosome and chromosomal arm locations of genes that significantly influence resistance to S. nodorum in wheat cultivar Cotipora. Monosomic analysis showed that flag leaf resistance was controlled by genes on chromosomes 3A, 4A, and 3B whereas the spike resistance was controlled by genes on chromosomes 3A, 4A, 7A, and 3B (P=0.01). Additionally, genes on chromosomes 6B and 5A influenced the susceptibility of the flag leaf and spike reactions, respectively (P=0.01). Telocentric analysis showed that genes on both arms of chromosome 3A, and the long arms of chromosomes 4A and 3B were involved in the flag leaf resistance whereas genes on both arms of chromosome 4A, the short arm of chromosome 3A, and the long arm of chromosome 3B conferred spike resistance.  相似文献   

12.
Summary Intergeneric crosses between Triticum durum-Dasypyrum villosum (2n=42, AABBVV), and Psathyrostachys huashanica (2n=14, N h N h ) were made, the seed set was 1.67%. Intergeneric hybrid were successfully obtained by means of embryo culture for first time. The average chromosome pairing in the hybrid (ABVN h ) was 26.61% univalents, and 0.69 bivalents. The chiasmata per cell was 0.69. The chiasmata was higher than that in Triticum durum dihaploid (AB), and lower than that in T. durum-Dasypyrum villosum trihaploid (ABV). The result indicated that the N h genome of Psathyrostachys huashanica has no homology with the V genome of Dasypyrum villosum, and the A and B genomes of Triticum durum. The coenocytism, micronuclei cell and variation in chromosome numbers were also observed. The F1 hybrid was crossed with Triticum aestivum (AABBDD), and resulted in seed set. The hybrid of T. durum-D. villosum amphidiploid x P. huashanica showed partial fertility. It made the possibility for chromosome manipulation among Triticum aestivum, Dasypyrum villosum and Psathyrostachys huashanica.  相似文献   

13.
Summary Wheat has traditionally been grown by the Beduin population in the semi-arid (150 to 200 mm, mean total annual rainfall) northern Negev region of Israel.A collection was made in this area (the size of which is 150 km2) from small (0.1 to 0.5ha) fields of mixed wheat, resulting in 1553 collected spikes. Each spike was planted in a 1 m row at Bet Dagan, and grown under favorable conditions. Qualitative and quantitative data were collected from each row. Qualitative data were submitted to hierarchial clustering and the results were compared with published information on the identification, classification and distribution of the land-races of wheat in the Middle East. Triticum durum was represented in 84% of the collection. It was clustered into 22 populations, identified as 11 known varietas of T. durum. They were aggregated into five groups, similar to groups of old varieties recognized by Jacubziner (1932). While 38.5% of the collection consisted of T. durum groups villosa and sinaica, aboriginal to the northern Negev, it included also forms similar to several land-races found in the past in other parts of the Middle East. Each of the populations, and the durum collection as a whole, was very diverse for the quantitatively measured plant attributes. Triticum aestivum was represented in 15.6% of the collection, clustered into six populations. Most of the common wheat accessions were analogous to the old locally grown variety Hirbawi. Triticum compactum was represented in only eight accessions.The collection is now being evaluated as a potential genetic resource for durum wheat breeding.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel No. 374-E, 1982 series.  相似文献   

14.
Triticum monococcum L. (2n = 2x = 14, AmAm genome) is one of the most ancient of the domesticated crops in the Middle East, but it is not the ancestor of the A genome of durum wheat (T. durum Desf. 2n = 4x = 28, genomes BBAA) and bread wheat (T. aestivum L., 2n = 6x = 42, genomes BBAADD). It has been suggested that some differentiation has occurred between the Am and A genomes. The chlorina mutants at the cn-A1 locus located on chromosome 7AL have been described in T. aestivum L. and T. durum, and a chlorina mutant has been found in T. monococcum. The aims of our study were to establish linkage maps for chlorina mutant genes on chromosome 7A of T. aestivum and T. durum and chromosome 7Am of T. monococcum and to discuss the differentiation that has occurred between the A and Am genomes. The chlorina mutant gene was found to be linked with Xhbg234 (8.0 cM) and Xgwm282 (4.3 cM) in F2 plants of T. aestivum ANK-32A/T. petropavlovskyi k54716, and with Xbarc192 (19.5 cM) and Xgwm282 (12.0 cM) in F2 plants of T. durum ANW5A-7A/T. carthlicum #521. Both the hexaploid and tetraploid wheats contained a common marker, Xgwm282. In F2 lines of T. monococcum KT 3-21/T. sinskajae, the cn-A1 locus was bracketed by Xgwm748 (25.7 cM) and Xhbg412 (30.8 cM) on chromosome 7AmL. The distal markers, Xhbg412, Xgwm282, and Xgwm332, were tightly linked in T. aestivum and T. durum. The common marker Xhbg412 indicated that the chlorina mutant genes are located on chromosome 7AL and that they are homoeologous mutations.  相似文献   

15.
K. Tsunewaki  T. Koba 《Euphytica》1979,28(3):579-592
Summary Co-isogenic lines of a common wheat, Triticum aestivum, cv. S-615 with each of the following ten major genes were produced by repeated backcrosses; The gene C on 2D chromosome for the compactum character, s on 3D for the sphaerococcum character, Hd on 4B, B1 on 5A, and B2 on 6B for awn suppression, Hg on 1A for glume hairiness, Hp on 4A for peduncle hairiness, Ne1 on 5B and Ne2 on 2B for hybrid necrosis, and v1 on 3B for virescence. Seven of them showed the typical mendelian fashion of inheritance, while three others (C, s and v1) were transmitted at lower frequencies than their corresponding normal alleles.The effects of those major genes on 24 characters of cv. S-615 were investigated, which are summarized as follows: C: Increased node diameter, number of spikelets per ear and spike density, but decreased lengths of all ear rachis, awn, anther, empty and outer glumes, and grain, and grain index. s: Increased culm diameter and thickness, and spike density, reduced lengths of all 1st and 2nd internodes, culm, flag leaf, rachis, awn, anther, empty and outer glumes, and grain, and grain index, and accelerated heading. Hd: Increased number of spikelets per ear and anther length, while decreased length of awn, and empty and outer glumes. B1: Increased 1st internode, rachis, and anther lengths, and grain index, but decreased spike density, awn length and grain thickness. B2: Increased rachis length, number of spikelets per ear, empty and outer glume lengths and grain index, but reduced awn length and grain thickness. Hg: No effects. Hp: Increased number of spikelets per ear. Ne1: Accelerated heading, and increased empty glume length. Ne2: Increased node and culm diameters. v1: No effects.Two species-specific genes, C and s, affected a large number of characters expressed in various developmental stages. These genes were found to have pleiotropic effects, namely, they influenced, at least, two groups of interdependent characters. Three awn suppressors influenced a limited number of characters, but no evidence of their pleiotropic effects was obtained.Contribution from the Laboratory of Genetics, Faculty of Agriculture, Kyoto University, Japan, No. 422. The work was supported in part by a Grant-in-Aid (No. 148,004) from the Ministry of Education, Japan.  相似文献   

16.
H. Ma  G. R. Hughes 《Euphytica》1993,70(1-2):151-157
Summary Resistance to septoria nodorum blotch in Triticum monococcum, T. tauschii, T. timopheevii, T. dicoccum and T. durum was evaluated on plants at the three-leaf stage in greenhouse tests. A high frequency of resistant genotypes was found in T. monococcum, T. tauschii and T. timopheevii, but not in T. dicoccum and T. durum. The resistance of F1 plants of crosses of resistant T. monococcum (PI 289599) and T. timopheevii (PI 290518) accessions with susceptible common wheat cv. Park and durum wheat cv. Wakooma, respectively, was evaluated on the basis of percentage leaf necrosis, lesion number, lesion size and incubation period. No dominance was found for long incubation period, but various dominance relationships occurred for low percentage leaf necrosis, low lesion number and small lesion size, depending on the cross. Multiple regression analysis showed that lesion number contributed more to percentage leaf necrosis than lesion size or incubation period. Resistance to septoria nodorum blotch was transferred successfully from T. timopheevii to cultivated durum wheat. Resistant BC1F7 lines, recovered from the T. timopheevii (PI 290518) × Wakooma cross, showed normal chromosome behaviour at meiosis (14 bivalents) and were self-fertile. However, an effective level of resistance was not recovered in lines derived from the other interspecific crosses.  相似文献   

17.
Summary Wild relatives of common wheat, Triticum aestivum, and related species are an important source of disease and pest resistance and several useful traits have been transferred from these species to wheat. C-banding and in situ hybridization analyses are powerful cytological techniques allowing the detection of alien chromatin in wheat. C-banding permits identification of the wheat and alien chromosomes involved in wheat-alien translocations, whereas genomic in situ hybridization analysis allows determination of their size and breakpoint positions. The present review summarizes the available data on wheat-alien transfers conferring resistance to diseases and pests. Ten of the 57 spontaneous and induced wheat-alien translocations were identified as whole arm translocations with the breakpoints within the centromeric regions. The majority of transfers (45) were identified as terminal translocations with distal alien segments translocated to wheat chromosome arms. Only two intercalary wheat-alien transloctions were identified, one induced by radiation treatment with a small segment of rye chromosome 6RL (H25) inserted into the long arm of wheat chromosome 4A, and the other probably induced by homoeologous recombination with a segment derived from the long arm of a group 7 Agropyron elongatum chromosome with Lr19 inserted into the long arm of 7D. The presented information should be useful for further directed chromosome engineering aimed at producing superior germplasm.Contribution No. 96-55-J from the Kansas Experimental Station, Kansas State University, Manhattan, KS 66506-5502, USA.  相似文献   

18.
Summary Expression of 17 rye traits in 24 bread wheat x rye and 8 durum wheat x rye crosses was studied, using a self-compatible, homozygous, dwarf rye. Rye showed epistasis for hairiness on the peduncle in all the crosses of Triticum aestivum and T. durum wheats with rye. Dark greenness of leaves of rye was expressed in all the durum wheat x rye and in some of the bread wheat x rye crosses. Similarly, absence of auricle pubescence, a rye trait, was expressed in most of the durum wheat x rye crosses but not in the bread wheat x rye crosses, indicating the presence of inhibitors for these traits frequently on the D genome and rarely on the A and/or B genome of wheat. Most of the wide hybrids resembled rye fully or partially for intense waxy bloom on the leaf-sheath and for the absence of basal underdeveloped spikelets. Similarly, most of the amphihaploids resembled rye for the anthocyanin in the coleoptile, stem and node. The presence of some inhibitors on A and/or B genome of wheat was indicated in some of the wheat genotypes for the expression of rye traits viz. intense waxy bloom, anthocyanin in node and absence of basal underdeveloped spikelets. Enhancement in the level of expression of the intensity and length of bristles on the mid-rib of the glume of the hybrids might be due to wheat-rye interaction. Less number of florets/spikelet as in rye showed variable expression in different wheat backgrounds. Some other rye traits like absence of auricles, terminal spikelet and glume-awn were not expressed in the wheat background. The expression of some of the rye genes might have been influenced by their interaction with Triticum cytoplasm and/or the environment.  相似文献   

19.
Two major genes controlling leaf pubescence were mapped on chromosomes 4BL (Hl1) and 7BS (Hl2 Aesp ) in wheat (Saratovskaya 29) and a wheat/Aegilops introgression line (102/00I), respectively, together with quantitative trait loci (QTLs) determining hairiness of the leaf margin (QHl.ipk-4B, QHl.ipk-4D) and auricle (QPa.ipk-4B, QPa.ipk-4D) on the long arms of chromosomes 4B and 4D, respectively. The QTLs on chromosome 4D were contributed by a synthetic wheat and, therefore, originated from Aegilops tauschii. The homoeologous group 4 wheat/A. tauschii genes/QTLs detected in the present study were aligned with the barley pubescence genes Hln/Hsh and Hs b and the hairy peduncle rye gene Hp1. The locus seems to be pleiotropically responsible for the pubescence of different plant organs in different species of the Triticeae. Another homoeologous series may be present on the short arms of the homoeologous group 7 chromosomes, based on the results of an allelic test cross between the Chinese local cultivar Hong-mang-mai carrying Hl2 and the wheat/Aegilops speltoides introgression line 102/00I.  相似文献   

20.
Gitta Oettler 《Euphytica》1984,33(1):233-239
Summary One hexaploid wheat cultivar (Triticum aestivem) and two tetraploid wheat lines (T. durum) were crossed with seventeen inbred lines of rye (Secale cereale). Seed set, degree of hybrid embryo differentiation at the time of excision for in vitro culture and recovery of amphihaploid plantlets from various embryo categories were studied. Degree of embryo differentiation was predominantly determined by maternal wheats, paternal rye genotypes appearing to be of minor importance. T. aestivum x rye hybrid embryos were superior to those produced from T. durum for degree of differentiation. The proportion of plantlets developing from differentiated embryos was high for all wheat parents, whereas undifferentiated embryos were mostly unsuitable for plantlet production. The results revealed that cross-incompatibility in hexaploid wheat x rye crosses was due to failure of fertilization, while in tetraploid wheat x rye crosses it was caused by lack of embryo differentiation. Correlation analyses showed that seed set provided a criterion to predict the amphihaploid plantlets to be expected from a particular wheat x rye combination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号