首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand nutrient cycling in soils, soil processes and microorganisms need be better characterized. To determine whether specific trophic groups of fungi are associated with soil enzyme activity, we used soil imprinting to guide mm-scale sampling from microsites with high and low phosphatase activities in birch/Douglas-fir stands. Study 1 involved sampling one root window per site at 12 sites of different ages (stands); study 2 was conducted at one of the stem-exclusion stands, at which 5 root windows had been installed. Total fungal and ectomycorrhizal (EM) fungal terminal-restriction fragment length polymorphism (TRFLP) fingerprints differed between high-and low-phosphatase activity microsites at 8 of 12 root windows across 12 sites. Where differences were detected, fewer EM fungi were detected in high-than low-phosphatase activity microsites. Using 5 root windows at one site, next-generation sequencing detected similar fungal communities across microsites, but the ratio of saprotrophic to EM fungal reads was higher in high-phosphatase activity microsites in the two windows that had low EM fungal richness. In windows with differences in fungal communities, both studies indicated that EM fungi were less successful than saprotrophic fungi in colonizing fine-scale, organic matter-rich microsites. Fine-scale sampling linked with in situ detection of enzyme activity revealed relationships between soil fungal communities and phosphatase activity that could not be observed at the scales employed by conventional approaches, thereby contributing to the understanding of fine-scale phosphorus cycling in forest soils.  相似文献   

2.
Soil fungi are highly diverse and act as the primary agents of nutrient cycling in forests. These fungal communities are often dominated by mycorrhizal fungi that form mutually beneficial relationships with plant roots and some mycorrhizal fungi produce extracellular and cell-bound enzymes that catalyze the hydrolysis of nitrogen (N)- and phosphorus (P)- containing compounds in soil organic matter. Here we investigated whether the community structure of different types of mycorrhizal fungi (arbuscular and ectomycorrhizal fungi) is correlated with soil chemistry and enzyme activity in a northern hardwood forest and whether these correlations change over the growing season. We quantified these relationships in an experimental paired plot study where white-tailed deer (access or excluded 4.5 yrs) treatment was crossed with garlic mustard (presence or removal 1 yr). We collected soil samples early and late in the growing season and analyzed them for soil chemistry, extracellular enzyme activity and molecular analysis of both arbuscular mycorrhizal (AM) and ectomycorrhizal/saprotrophic fungal communities using terminal restriction fragment length polymorphism (TRFLP). AM fungal communities did not change seasonally but were positively correlated with the activities of urease and leucine aminopeptidase (LAP), enzymes involved in N cycling. The density of garlic mustard was correlated with the presence of specific AM fungal species, while deer exclusion or access had no effect on either fungal community after 4.5 yrs. Ectomycorrhizal/saprotrophic fungal communities changed seasonally and were positively correlated with most soil enzymes, including enzymes involved in carbon (C), N and P cycling, but only during late summer sampling. Our results suggest that fine scale temporal and spatial changes in soil fungal communities may affect soil nutrient and carbon cycling. Although AM fungi are not generally considered capable of producing extracellular enzymes, the correlation between some AM taxa and the activity of N acquisition enzymes suggests that these fungi may play a role in forest understory N cycling.  相似文献   

3.
To measure and manage plant growth in arid and semi-arid sandlands, improved understanding of the spatial patterns of desert soil resources and the role of arbuscular mycorrhizal (AM) fungi is needed. Spatial patterns of AM fungi, glomalin and soil enzyme activities were investigated in five plots located in the Mu Us sandland, northwestern China. Soils to 50 cm depth in the rhizosphere of Astragalus adsurgens Pall. were sampled. The study demonstrated that A. adsurgens Pall. could form strong symbiotic relationships with AM fungi. Arbuscular mycorrhizal fungal status and distributions were significantly different among the five studied plots. Correlation coefficient analysis demonstrated that spore density was significantly and positively correlated with soil organic carbon (SOC), soil acid phosphatase and to two Bradford-reactive soil protein (BRSP) fractions (P < 0.01). Colonization of arbuscules and vesicles were positively correlated with protease activity. The BRSP fractions were also significantly and positively correlated to edaphic factors (e.g. SOC, available nitrogen, and Olsen phosphorus) and soil enzymes (e.g. soil urease and acid phosphatase). The means of total BRSP and easily extractable BRSP were 0.95 mg g−1 and 0.5 mg g−1 in all data, respectively. The levels of BRSP in the desert soil were little lower than those in native and arable soils, but the ratios of BRSP to SOC were much higher than farmland soils. The results of this study support the conclusion that glomalin could be an appropriate index related to the level of soil fertility, especially in desert soil. Moreover, AM fungal colonizations and glomalin might be useful to monitor desertification and soil degradation.  相似文献   

4.
The area occupied by Pinus pinaster in Portugal is rapidly diminishing because of forest fires. Ectomycorrhizal fungi form obligate, mutually beneficial associations with P. pinaster which improve plant growth and resistance to adverse conditions. The aim of this work was to assess whether native ectomycorrhizal fungi could be a useful tool in the reforestation of burned areas. The work was conducted in a forest nursery greenhouse, where P. pinaster seedlings were inoculated with compatible ectomycorrhizal fungal isolates: Suillus bovinus, Pisolithus tinctorius, Rhizopogon roseolus, and a mixture of the three fungi, using burned and unburned forest soil as substrate. Inoculation significantly enhanced the growth of P. pinaster, with R. roseolus proving to be the most effective in burned soil, with an 8-fold increase in plant fresh weight. Overall, inoculation stimulated growth most in burned than in unburned soil.This study suggests that inoculation with selected ectomycorrhizal fungi in containerised nurseries can be an advantageous approach for the successful establishment of P. pinaster in burned soil. The obtained results point out to the interest of extending these studies into fire-impacted areas, using ectomycorrhizal fungi as a biological tool.  相似文献   

5.
To understand the ecological significance of arbuscular mycorrhizal (AM) associations in semi-arid and arid lands, the temporal and spatial dynamics of AM fungi and glomalin were surveyed in Mu Us sandland, northwest China. Soil samples in the rhizosphere of Artemisia ordosica Krasch. were collected in May, July and October 2007, respectively. Arbuscular, hyphal and total root infection and spore density of AM fungi peaked in summer. The mean contents of total Bradford-reactive soil proteins (T-BRSPs, TG) and easily extractable Bradford-reactive soil proteins (EE-BRSPs, EEG) reached maximal values in spring. Spore density and two BRSPs fractions were the highest in the 0-10 cm soil layer, but the ratios of two BRSPs fractions to soil organic carbon (SOC) were the highest in the 30-50 cm soil layer. Hyphal infection was negatively correlated with soil enzymatic activity (soil urease and acid phosphatase) (P < 0.05). Arbuscular infection was negatively correlated with soil acid phosphatase (P < 0.01). Spore density was positively correlated with edaphic factors (soil available N, Olsen P, and SOC) and soil enzymatic activity (soil acid and alkaline phosphatase) (P < 0.01). Two BRSPs fractions were positively correlated with edaphic factors (soil available N and SOC) and soil enzymatic activity (soil urease, acid and alkaline phosphatase) (P < 0.01). TG was positively correlated with soil Olsen P (P < 0.05). We concluded that the dynamics of AM fungi and glomalin have highly temporal and depth patterns, and influenced by nutrient availability and enzymatic activity in Mu Us sandland, and suggest that glomalin are useful indicators for evaluating soil quality and function of desert ecosystem on the basis of its relationship to AM fungal community, soil nutrient dynamics and carbon cycle.  相似文献   

6.
We assessed the degree to which ectomycorrhizal fungi exploit organic nitrogen in situ. In an Alaskan boreal forest, we identified pairs of sporocarps from five taxa of ectomycorrhizal fungi. We added 13C-labeled alanine to the soil surrounding one sporocarp within each pair; the second served as an unlabeled control. Peak rates of 13C-respiration from alanine were higher in the labeled sporocarp plots than the controls, indicating that the 13C-alanine was detectably respired from the soil. “Reference” plots adjacent to the sporocarps served as an indication of background 13C-respiration rates released by the soil community as a whole. Ectomycorrhizal sporocarps displayed higher 13C-respiration rates than their reference plots. Thus, the sporocarps and associated mycorrhizal mycelium appeared to contribute significantly to the release of alanine-derived 13CO2, confirming the hypothesis that ectomycorrhizal fungi may access soil amino acid pools under natural conditions.  相似文献   

7.
Linking community composition to ecosystem function is a challenge in complex microbial communities. We tested the hypothesis that key biological features of fungi - evolutionary history, functional guild, and abundance of functional genes – can predict the biogeochemical activity of fungal species during decay. We measured the activity of 10 different enzymes produced by 48 model fungal species on leaf litter in laboratory microcosms. Taxa included closely related species with different ecologies (i.e. species in different “functional guilds”) and species with publicly available genomes. Decomposition capabilities differed less among phylogenetic lineages of fungi than among different functional guilds. Activity of carbohydrases and acid phosphatase was significantly higher in litter colonized by saprotrophs compared to ectomycorrhizal species. By contrast, oxidoreductase activities per unit fungal biomass were statistically similar across functional guilds, with white rot fungi having highest polyphenol oxidase activity and ectomycorrhizal fungi having highest peroxidase activity. On the ecosystem level, polyphenol oxidase activity in soil correlated with the abundance of white rot fungi, while soil peroxidase activity correlated with the abundance of ectomycorrhizal fungi in soil. Copy numbers of genes coding for different enzymes explained the activity of some carbohydrases and polyphenol oxidase produced by fungi in culture, but were not significantly better predictors of activity than specific functional guild. Collectively, our data suggest that quantifying the specific functional guilds of fungi in soil, potentially through environmental sequencing approaches, allows us to predict activity of enzymes that drive soil biogeochemical cycles.  相似文献   

8.
Dense hyphal mats formed by ectomycorrhizal (EcM) fungi are prominent features in Douglas-fir forest ecosystems, and have been estimated to cover up to 40% of the soil surface in some forest stands. Two morphotypes of EcM mats have been previously described: rhizomorphic mats, which have thick hyphal rhizomorphs and are found primarily in the organic horizon, and hydrophobic mats, which occur in the mineral horizon and have an ashy appearance. This study surveyed EcM mat and non-mat soils from eight early and late seral conifer forest stands at the H.J. Andrews Experimental Forest in western Oregon. EcM mats were classified by morphology and taxonomic identities were determined by DNA sequencing. A variety of chemical and biochemical properties, including enzymes involved in C, N, and P cycling were measured. Analysis was confined to a comparison of rhizomorphic mats colonizing the organic horizon with non-mat organic soils, and hydrophobic mats with non-mat mineral soils. Both the organic and mineral horizons showed differences between mat and non-mat enzyme profiles when compared on a dry weight basis. In the organic horizon, rhizomorphic mats had greater chitinase activity than non-mat soils; and in the mineral horizon, hydrophobic mats had increased chitinase, phosphatase, and phenoloxidase activity compared to the non-mat soil. The rhizomorphic mats had 2.7 times more oxalate than the non-mats and significantly lower pH. In the mineral horizon, hydrophobic mats had 40 times more oxalate and significantly lower pH than non-mat mineral soils. Microbial biomass C was not significantly different between the rhizomorphic mat and non-mat organic soils. In the mineral horizon, however, the hydrophobic mats had greater microbial biomass C than the non-mat soils. These data demonstrate that soils densely colonized by EcM fungi create a unique soil environment with distinct microbial activities when compared to non-mat forest soils.  相似文献   

9.
Mechanized forest operations have a large impact on soil systems, and may cause disruption of aggregates and exposure of previously protected soil organic matter to microbial attack. In this study, we investigated how C storage, soil structure and unprotected, physically protected and resistant C pools recover 0, 7 and 20 years after mechanical harvesting and site preparation in second rotation Pinus radiata D.Don plantations. We detected differences in dry mean weight diameter (DMWD) of aggregates, with higher DMWD in 0- and 7-year-old pine stands (8.7 and 7.5 mm, respectively) than in 20-year-old stands (4.1 mm). This was attributed to the compaction induced by heavy machinery, as reflected by the positive relationship between DMWD and bulk density (r = 0.85, P < 0.05). Organic C contents in the top 5 cm were similar 0 and 7 years after disturbance, but were twice as high after 20 years, with mean values of 25, 28 and 52 Mg C ha−1, respectively. In addition, the resistant C pool was also reduced by up to 7% after clearance. In contrast, unprotected C and physically-protected C were greatest in the youngest stands, indicating that stand establishment and harvesting with heavy machinery may have broken soil aggregates and exposed the previously protected SOM to microbial decomposition and that forest operations may create new mega-aggregates able to protect organic residues. However, the lowest physically-protected C values in 20-year-old pine stands may also be attributed to differences in SOM quality. The alkyl C/O-alkyl C ratios were highest in the oldest stands, indicating that SOM in these stands was more resistant to further decomposition. Mechanized forest operations in radiata pine stands released at least 30 t C ha−1 from the first 5 cm of the soil profile immediately after clearance, caused significant alterations in the soil structure, which lasted for a minimum of seven years, and also reduced the resistant C pool. As the Kyoto Protocol encourages forest management practices that potentially increase carbon sequestration, mechanical harvesting and site preparation in these steep slopes should be reconsidered.  相似文献   

10.
Organic P can serve as an important source of P for plants and microbes when mineralized by extracellular phosphatases. Substrate induction, end-product repression and/or resource limitation regulate activities of phosphatase in bulk soils. Yet, factors controlling enzyme activities in fine-scale microsites may differ from those observed at larger scales. Understanding such differences is needed to improve estimates of global models of biogeochemical cycling. Imprinting of soil profiles using cellulose sheets infused with chromogenic substrates allows study of extracellular enzymes at mm scales under naturally occurring soil temperatures, with minimal disturbance to soil microbial communities. In this study, we used a soil imprinting approach to investigate soil chemical characteristics associated with mm-scale regions of high in situ phosphatase activities in a mixed paper birch – Douglas-fir forest in the southern interior of British Columbia. In addition, we tested whether the addition of simple (ammonium chloride plus sodium acetate) and complex (cellulose, collagen, chitin) forms of carbon (C) and/or nitrogen (N) to 1 cm2 microplots on soil profiles influenced in situ phosphatase activity. In unamended microplots, percent C was 30% higher on average (P = 0.05) and percent N was about 15% higher (P = 0.05) in high-phosphatase microsites. Extractable P did not differ between high and low-phosphatase microsites, regardless of the form of P measured. Within the first 24 h, no difference in imprintable phosphatase was observed between C and N addition treatments, but after 72 h, microplots receiving any substrate containing N had higher phosphatase activities than those receiving only water (P < 0.001). The results from both of our studies support a role for resource limitation in regulating phosphatase activities at this site because either (i) P became limiting in microsites with higher amounts of C and N, and/or (ii) microsites with higher C and N were the ones where these nutrients were in sufficient supply to allow microbes to excrete extracellular enzymes. We conclude that phosphatase excretion occurs in C + N-enriched soil microsites, but that any such phosphatase-active microsites located beyond the rhizosphere are unlikely to supply P to roots because of the low diffusion rates of orthophosphate.  相似文献   

11.
The interactive impact of earthworms (Eisenia fetida) and arbuscular mycorrhizal fungi (Rhizophagus intraradices, AM fungi) on the degradation of oxytetracycline (OTC) in soils was studied under greenhouse conditions. Treatments included maize plants inoculated vs. not inoculated with AM fungi and treated with or without earthworms at low (1 mg kg−1 soil DM) or high (100 mg kg−1 soil DM) OTC rates. The root colonization rate, the hyphal density of mycorrhizae, the residual OTC concentration in soils, catalase, dehydrogenase, urease, soil microbial biomass C, Shannon–Wiener index (H) for microbial communities from T-RFLP profiles were measured at harvest. The results indicated that earthworms and AM fungi would individually or interactively enhance OTC decomposition and significantly decreased the residual OTC concentration at both high and low OTC rates. Both earthworms and AM fungi could promote the degradation of OTC by increasing soil microbial biomass C at both high and low OTC rates. The effect of soil enzyme activity and soil microbial diversity on OTC decomposition was different between high and low OTC rates. Hyphomicrobium and Bacillus cereus were dominant bacteria, and Thielavia and Chaetomium were dominant phyla of fungi at all occasions. Earthworm activity stimulated the growth of Hyphomicrobium and Thielavia, while AM fungi may stimulate Bcereus, Thielavia and Chaetomium, resulting in greater OTC decomposition. The interaction between earthworms and AM fungi in affecting the degradation of OTC may be attributed to different mechanisms, depending on soil microbial biomass, function (enzyme activity) and communities (the abundance of Hyphomicrobium, B. cereus, Thielavia and Chaetomium) in the soil.  相似文献   

12.
Plant secondary compounds, including terpenes, potentially play an important role in controlling the decomposition process in boreal forest soil. However, the role of terpenes is not well understood, and their direct influence on enzyme activity is not well-known. The aim of this study was to examine the possible effects of common monoterpenes and higher terpenes on the activity of enzymes crucial in C, N, P, S cycling, i.e. β-glucosidase, chitinase, protease, acid phosphatase and arylsulfatase. Monoterpenes (α-pinene, carene, myrcene), diterpenes (abietic acid and colophony), and triterpene (β-sitosterol) were used. Studies were done in two environments, in vitro (studies without soil) and in vivo (studies with soil). Soil experiments were conducted using humus layers of two different birch stands, the first N-poor with high organic matter content and the second N-rich with a lower organic matter content. In general, all the terpenes studied showed inhibitory potential against enzymes in in vitro studies. In the soil incubation studies, both of the measured enzymes, chitinase and β-glucosidase, showed some decrease in activity when exposed to different terpenes. Our study suggests that terpenes modify the enzyme machinery in boreal forest soil.  相似文献   

13.
Several ectomycorrhizal fungi, including Hebeloma cylindrosporum, actively release large quantities of phosphatase enzymes into their growth medium. We fractionated the phosphatase activity of the ectomycorrhizal association between H. cylindrosporum and its host plant, Pinus pinaster, with the aim to quantify its spatial and temporal variation in response to contrasting soil phosphorus conditions. Seedlings were grown in mini-rhizoboxes and the phosphomonoesterase activity of rhizosphere soil, released by roots, surface-bound to roots or mycelium was determined spectrophotometrically with the p-nitrophenyl phosphate method or microscopically with the ELF-method as a function of culture time. We showed that acid phosphatase activity of the soil and the root increased with mycorrhizal association. We also observed that the phosphatase activity associated with ectomycorrhizal plants was related to soil type. All phosphatase fractions decreased over culture time, except the proportion of hyphae exhibiting phosphatase activity in the extramatrical mycelium, which increased over time. The specific fractions of phosphatase activity associated with the mycorrhizal plants were clearly related to the soil phosphorus type and content. Soils showed an increase in acid phosphomonoesterase activity with mycorrhizal association, supporting a role for this enzyme in the degradation of soil bound phosphorus. The gradually increasing proportion of hyphae in the extramatrical mycelium exhibiting alkaline phosphatase activity, particularly under low phosphorus conditions, indicates an induction of alkaline phosphatase activity by phosphorus limitation.  相似文献   

14.
Plants and soil microbes produce extracellular enzymes (EE) that catalyze the hydrolysis of nitrogen (N) and phosphorus (P) containing compounds in soil and other enzymes involved in degradation of lignin and cellulose. We explored whether soil enzyme activity involved in carbon (C), N and P cycling were correlated with plant distribution, soil chemical conditions and the identity of fungi colonizing tree roots in an old growth forest remnant. Terminal restriction fragment length polymorphism (TRFLP) was used to determine the presence of root fungi and standard fluorometric analysis was used to determine soil enzyme activities. Soil enzymes were consistently positively correlated with soil C and N, but not CN ratio. Soil P was also correlated with enzyme activity during both June and September sampling. We saw no significant relationships between herbaceous plant cover and enzyme activity in June, but there were significant positive correlations between α-glucosidase and herbaceous plant coverage in September. We also found that some enzymes were significantly correlated with the identity of fungi colonizing tree roots separated from the soil cores. Chitinase and β-glucosidase were positively correlated with the genera Russula and Piloderma while chitinase was negatively correlated with Amanita and Entoloma. In addition, phosphatase was positively correlated with Russula, Meliniomyces and Solenopezia. Our results suggest that enzyme activity in old growth forest soils are affected by a variety of environmental factors, and that herbaceous plants and some root fungi may be associated with sites of elevated or decreased decomposition potential and nutrient cycling.  相似文献   

15.
Glomalin is a metal-sorbing glycoprotein excreted by arbuscular mycorrhizal fungi (AMF). One method of estimating glomalin in soils is as glomalin-related soil protein (GRSP). In this study the role of GRSP in sequestering Pb and Cd was investigated in an in situ field experiment. The effect of metal sequestration on the subsequent decomposition of GRSP was also investigated. GRSP was determined using the Bradford method as total glomalin-related soil protein (T-GRSP) and as easily extractable glomalin-related soil protein (EE-GRSP). After 140 days, GRSP bound Pb accounted for 0.21–1.78% of the total Pb, and GRSP bound Cd accounted for 0.38–0.98% of the total Cd content in the soil. However when compared on a soil organic matter (SOM) basis, only 4% of the Pb or Cd was bound to the GRSP fraction of the SOM compared with 40–54% of the Pb or Cd bound to the humin and fulvic acids in the SOM fraction. In soils contaminated with the highest levels of Pb and Cd, the T-GRSP (EE-GRSP) decomposition after 140 days was reduced by 8.0 (6.6)% and 7.0 (7.5)%, respectively, when compared with the controls. In the high Pb or Cd treatment groups we found that the fraction of metal bound to GRSP increased even though the total GRSP content declined over time. The mass ratio between Pb and GRSP-carbon changed from 2.3 to 271.4 mg (100 g)−1 in all Pb levels soil, while with the high-Cd treatment group the mass ratio between Cd and GRSP-carbon (0.36 mg (100 g)−1) was higher than the mass ratio seen with Cd-bound humic acid fractions. Our in situ field study shows that while GRSP does bind Pb and Cd, in the soils we investigated, the levels are insignificant compared to soil organic matter such as humic and fulvic acids.  相似文献   

16.
This study investigated the effects of inoculation with three individual ectomycorrhizal (ECM) fungal species on soil microbial biomass carbon and indigenous bacterial community functional diversity in the rhizosphere of Chinese pine (Pinus tabulaeformis Carr.) seedlings under field experimental conditions. The results showed that ECM fungal inoculation significantly increased the ectomycorrhizal colonization compared with non-inoculated seedlings. ECM fungal inoculations have higher soil microbial biomass carbon than that of control, ranging from 49.6 μg C g?1 dry soil in control to 134.02 μg C g?1 dry soil in treatment inoculated with Boletus luridus Schaeff ex Fr. Multivariate analyses (PCA) of BIOLOG data revealed that the application of ECM fungi significantly influenced bacterial functional diversity in the rhizosphere of P. tabulaeformis seedlings. The highest average well-color development (AWCD) and functional diversity indices were also observed in treatment inoculated with B. luridus. A wider range of sole carbon sources were utilized by the bacterial community in the rhizosphere of inoculated seedlings. The data gathered from this study provides important information for utilization of ECM fungi in forest restoration project in the Northwestern China. The present study will also significantly broaden our understanding of practical importance in the application of ECM fungal inoculum to promote soil microbial community diversity of soil.  相似文献   

17.
The fungal symbionts forming ectomycorrhizas, as well as their associated bacteria, benefit forest trees in a number of ways although the most important is enhancing soil nutrient mobilization and uptake. This is reciprocated by the allocation of carbohydrates by the tree to the fungus through the root interface, making the relationship a mutualistic association. Many field observations suggest that ectomycorrhizal fungi contribute to a number of key ecosystem functions such as carbon cycling, nutrient mobilization from soil organic matter, nutrient mobilization from soil minerals, and linking trees through common mycorrhizal networks. Until now, it has been very difficult to study trees and their fungal associates in forest ecosystems and most of the work on ECM functioning has been done in laboratory or nursery conditions. In this review with discuss the possibility of working at another scale, in forest settings. Numerous new techniques are emerging that makes possible the in situ study of the functional diversity of ectomycorrhizal communities. This approach should help to integrate developing research on the functional ecology of ectomycorrhizas and their associated bacteria with the potential implications of such research for managing the effects of climate change on forests.  相似文献   

18.
The relative roles of ectomycorrhizal (ECM) and saprotrophic communities in controlling the decomposition of soil organic matter remain unclear. We tested the hypothesis that ECM community structure and activity influences the breakdown of nutrient-rich biopolymers in soils, while saprotrophic communities primarily regulate the breakdown of carbon-rich biopolymers. To test this hypothesis, we used high-throughput techniques to measure ECM and saprotrophic community structure, soil resource availability, and extracellular enzyme activity in whole soils and on ECM root tips in a coastal pine forest. We found that ECM and saprotroph richness did not show spatial structure and did not co-vary with any soil resource. However, species richness of ECM fungi explained variation in the activity of enzymes targeting recalcitrant N sources (protease and peroxidase) in bulk soil. Activity of carbohydrate- and organic P- targeting enzymes (e.g. cellobiohydrolase, β-glucosidase, α-glucosidase, hemicellulases, N-acetyl-glucosaminidase, and acid phosphatase) was correlated with saprotroph community structure and soil resource abundance (total soil C, N, and moisture), both of which varied along the soil profile. These observations suggest independent roles of ECM fungi and saprotrophic fungi in the cycling of N-rich, C-rich, and P-rich molecules through soil organic matter. Enzymatic activity on ECM root tips taken from the same soil cores used for bulk enzyme analysis did not correlate with the activity of any enzyme measured in the bulk soil, suggesting that ECM contributions to larger-scale soil C and nutrient cycling may occur primarily via extramatrical hyphae outside the rhizosphere.  相似文献   

19.
Fungal and bacterial numbers and their enzymes activities in terms of enzymes, namely cellulase, amylase and invertase were estimated in two forest stands of alder (open and closed forest). The fungal and bacterial population numbers were higher in the closed forest than in the open ones. Consequently, the different enzyme activities were also greater in the closed forest. A correlation coefficient was calculated between fungal population numbers, bacterial population numbers, moisture content, pH, total nitrogen, weight loss, cellulose and total sugars and the enzymes activities. Invertase activity showed a positive correlation (P < 0.05) with litter soluble sugars and total nitrogen but negatively with weight loss. Amylase and cellulase activities were correlated significantly with fungi and bacteria and moisture content of litter. Cellulase also correlated significantly but negatively with the cellulose  (P < 0.01). The results of the investigation indicated that changes in forest canopy has an effect on fungal and bacterial population numbers and microbial enzymes activities.  相似文献   

20.
《Applied soil ecology》2006,31(3):215-225
The effect of forest fire on soil enzyme activity of spruce (Picea balfouriana) forest in the eastern Qinghai-Tibetan Plateau was assessed. Six specific enzymes were chosen for investigation: invertase, acid phosphatase, proteinase, catalase, peroxidase and polyphenoloxidase. It was found that the activities of invertase and proteinase were reduced by burning, but the activities of acid phosphatase, polyphenoloxidase and peroxidase increased. Meanwhile, burning significantly (P < 0.05) resulted in the decrease of concentrations of available N and K of 0–20 cm depth layer soil, and significantly (P < 0.05) decreased concentrations of organic matter content, total N and P, as well as available N, P and K in soil at both 20–40 and 40–60 cm depths except for available P at 20–40 cm soil depth. These results illustrated that burning could influence the enzyme activities and chemical properties of soil not only of upper but also lower soil layers. Correlation analysis indicated that invertase activities in 0–20 cm depth layer soil were significantly positively correlated with organic matter, total N and P, as well as available N and P. Furthermore, all six enzymes studied were sensitive to fire disturbance, and thus could be used as indicators of soil quality. Our study also showed that soil enzyme activities were associated with soil depth, decreasing from top to bottom in both burned and unburned spruce forests. The distribution pattern of soil enzyme activities suggested that the rate of organic matter decomposition and nutrient cycling depended on soil depth, which had important structural and functional characteristics in nutrient cycling dynamics and implications in plantation nutrient management. The finding that burning effects on enzyme activities and soil properties between different soil layers were homogenized was attributed to the 8-years’ regeneration of forest after burning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号