首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was focus on the influence of filament and roving location on yarn properties during embeddable and locatable spinning (ELS). ELS composite yarns were produced with various filament and roving locations on an experimental ring spinning frame. Besides yarn formation zone configurations, ELS yarn properties were compared including yarn hairiness, unevenness and tensile properties. Results showed that spinning triangles became larger; however, the reinforced composite spinning strand length kept constant. With a constant filament-roving spacing on each side of ELS, Filament spacing variations caused no significant changes of spun yarn hairiness, tenacities, imperfections and unevenness CV. For roving location variations with constant filament spacing, the reinforced strand length became longer as the roving spacing increased. Hairs exceeding 3 mm were lower for ELS yarn spun with 4 mm and 10 mm roving spacings than that spun with 6 mm, 8 mm and 12 mm roving spacings. Roving spacing variations had a trivial influence on ELS yarn unevenness; whereas, yarn tensile index variation coefficients fluctuated dramatically due to hairiness variations for different roving spacings.  相似文献   

2.
In this work, the effect of optimum drafting condition on the drafting behavior and yarn quality of the bamboo charcoal-modified fiber blended spun yarns were studied. We measured the drafting force and drafting force variance, CV% of the bamboo charcoal-modified Polyester/Cotton (BCP/C) blended roving and bamboo charcoal-modified Rayon/Cotton (BCR/C) blended roving to examine the influence of the roller gauge and drafting ratio on drafting behavior and yarn quality. We understand that the drafting force of the bamboo charcoal-modified fiber blended roving follow the same trend as that for the regular P/C and R/C blend roving. However, the drafting force presents some difference in characteristics between these bamboo charcoal-modified fiber blended rovings. To correlate the drafting force variation, CV% and the bamboo charcoal-modified fiber blended spun yarn properties, we evaluated the yarn quality and investigate the yarn quality index in conjunction with the break drafting ratio. Therefore, in this work, we can obtain the best optimum drafting conditions for bamboo charcoal-modified fiber blended spun yarns; for the 19.7 tex of BCP70/C30 blend spun yarn was under the roller gauge of 54 mm at the draft ratio of 1.3, whereas, for the 19.7 tex of BCR40/C60 blend spun yarn was under the roller gauge of 54 mm at the draft ratio of 1.2.  相似文献   

3.
In this study, spinning with a contact surface was introduced as a simple and energy-saving method to reduce spun yarn hairiness. Theoretical analysis indicated that yarn hairiness could be reduced via a sufficient long contact surface applied in other part of yarn formation zone in addition to spinning triangle. Then, a simple contact apparatus was installed on ring frame to validate the theoretical analysis. Results proved that yarn hairiness was reduced via a contact surface in the yarn formation zone. However, unevenness was deteriorated for most yarns spun with contact apparatus during the spinning, which might be due to fiber mass concentration. Most of yarns spun with contact apparatus had a lower strength than the conventional yarns. This might be because evenness deterioration to decrease yarn strength overpowered hairiness reduction to increase yarn strength for most yarns spun with a contact surface.  相似文献   

4.
Spinning triangle is a critical region in the spinning process of staple yarn. Its geometry influences the distribution of fiber tension in the spinning triangle and affects the properties of spun yarns. Taking appropriate measures to influence the spinning triangle geometry and improve the quality of yarn has attracted great interesting recently. Solospun technology is one of the most important representatives, which is implemented by dividing ring spinning triangle into several small primary triangles and one final triangle using a Solospun roller. Therefore, theoretical study of fiber tension distributions at Solospun spinning triangles is presented in this paper. First, a theoretical model of the fiber tension distributions in Solospun spinning triangles is given by using the principle of minimum potential energy. Second, the relationships between fiber distributions and spinning triangle parameters are analyzed theoretically. Especially, the effects of horizontal offset of the twisting point to triangle symmetric axis of nip line d on fiber tension distributions are discussed and numerical simulations are given. Finally, the properties of spun yarns are evaluated and analyzed by using the simulation results.  相似文献   

5.
Reduction of yarn hairiness by nozzles in ring spinning and winding is a new approach. Simulation of the airflow pattern inside the nozzles provides useful information about actual mechanism of hairiness reduction. The swirling air current inside the nozzles is capable of wrapping the protruding hairs around the yarn body, thereby reducing yarn hairiness. Since production rate of winding is very high and the process itself increases yarn hairiness any method to reduce the hairiness of yarns at this stage is a novel approach. A CFD (computational fluid dynamics) model has been developed to simulate the airflow pattern inside the nozzles using Fluent 6.1 software. In this study, both S- and Z-type nozzles having an axial angle of 50° and diameter of 2.2 mm were used for simulation studies. To create a swirling effect, four air holes of 0.4 mm diameter are made tangential to the inner walls of the nozzles. S- and Z-twisted yarns of 30 tex were spun with and without nozzles and were tested for hairiness, tensile and evenness properties. The total number of hairs equal to or exceeding 3 mm (i.e. the S3 values) for yarn spun with nozzle is nearly 49–51 % less than that of ring yarns in case of nozzle-ring spinning, and 15 % less in case of nozzle-winding, while both the yarn types show little difference in evenness and tensile properties. Upward airflow gives best results in terms of hairiness reduction for nozzle-ring and nozzle wound yarns compared to ring yarns. Yarn passing through the centre of the nozzle shows maximum reduction in S3 values.  相似文献   

6.
This paper investigates the influence of raw material and process parameters in spinning that affect the inter fiber cohesion in yarns. An instrument has been developed for measuring the minimum twist of cohesion. With regard to the raw material parameters, the influence of different cotton fiber mixings for a given count of yarn is investigated. Also the effect of spinning to varying counts for a given cotton variety is studied. With regard to the process parameters, studies have been carried out to investigate the influence of noil extraction in comber, number of draw frame passages, draft pressure in ring frame and direction of twist. Cohesion improved with increase in the noil extraction percentage in the comber. Increase in the number of draw frame passages also improved the cohesion. Draft pressure in ring frame improved the fiber cohesion in yarn up to a pressure of 2.1 kg/cm2. Direction of twist had no effect on the cohesion.  相似文献   

7.
The effect of spinning parameters on core-spun yarns properties manufactured using three-strand modified method (TSMM) was analyzed. Of the various spinning parameters, strand spacing, yarn linear density and yarn twist have a crucial effect on core-spun yarn properties. To achieve the objectives of this research, general physical properties of core-spun yarns together with existing standards were thoroughly studied. First of all, the strand spacing and yarn linear density were optimized. Afterwards, the effects of variation of yarn twist and sheath roving linear density on core-spun yarns properties were investigated. Finally, the physical and mechanical properties of TSMM yarns were compared with those of siro and conventional ring core-spun yarns counterparts. It was found that, the best strand spacing and yarn linear density to produce core-spun yarns are 8 mm and 45 tex, respectively. Results showed that, tenacity of TSMM yarns increases up to a certain twist level beyond which it reduces. The result confirmed that 45 tex yarns produced by three rovings of the same count are superior with regards to tenacity and hairiness. The optimized yarns produced by three-strand modified method enjoy superior physical and mechanical properties in comparison to the ring and siro core-spun yarns.  相似文献   

8.
Spandex has been successfully applied on modified worsted spinning system to produce spandex core spun yarn. However it’s difficult to produce wool/spandex core-spun yarn on woolen spinning system with the same modified device because the drafting device of the two systems is quite different. A new method is introduced to apply spandex on woolen spinning system in this paper. Core-spun yarn produced in this way has good appearance and quality by comparing with normal yarn. A series of experiments were carried out to study the influence of spandex drafting ratio and yarn twist factor on tensile properties and elasticity of core-spun yarns. The results indicate that core-spun yarn with spandex drawing ratio of 2.5 and twist factor of 13.63 has highest value of tenacity and breaking elongation.  相似文献   

9.
This study evaluates the unevenness (CV%) of the stretch-broken tow in the break draft zone of a two drafting-three pairs of rollers with double apron draft system using oxidized filament tow. A new method is presented for determining a suitable break draft condition in tow-to-yarn direct spinning to obtain the best oxidized yarn quality using the technique of stretch-broken tow unevenness. We adopt a two drafting-three pairs of rollers with double apron draft system replaces the traditional one drafting-two pairs of rollers draft system to precede the 37 tex oxidized direct yarn spinning. The fundamental relationships between break drafting conditions (such as draft ratio and roller gauge) and CV% of stretch-broken tow are on the same trend of the drafting force. The results revealed, based on the correlation of stretch-broken tow unevenness and yarn quality, the draft condition corresponding to the lower CV% can be chosen as the suitable break draft in tow-to-yarn direct spinning to obtain the best oxidized direct yarn quality. In fact, the work had successfully improved the direct yarn quality.  相似文献   

10.
The intrinsic torque of freshly spun wool yarns is affected by ageing of wool roving prior to spinning as well as the storage time of the yarn after spinning. The effect of physical ageing of roving on yarn torque properties has not been observed before and this study shows that the yarn intrinsic torque increases with ageing of the roving and decreases or relaxes with the yarn storage time. The dependency of the intrinsic torque on the roving ageing time and the yarn storage time after spinning show a simple double-logarithmic shift factor of 0.42 compared with the value of 1 found generally for amorphous polymeric materials. The self-plying twist of the yarns used in this study shows a close link to the intrinsic torque and both are affected by the history of the roving prior to spinning. Significant reductions in the self-plying twist were obtained when deaged rovings were used in spinning. When self-plying twist is used as a predictor of fabric spirality the roving and yarn history needs to be considered. This study shows that low intrinsic torque yarns can be produced by deageing of the roving prior to spinning.  相似文献   

11.
In this study artificial neural network (ANN) models have been designed to predict the ring cotton yarn properties from the fiber properties measured on HVI (high volume instrument) system and the performance of ANN models have been compared with our previous statistical models based on regression analysis. Yarn count, twist and roving properties were selected as input variables as they give significant influence on yarn properties. In experimental part, a total of 180 cotton ring spun yarns were produced using 15 different blends. The four yarn counts and three twist multipliers were chosen within the range of Ne 20–35 and α e 3.8–4.6 respectively. After measuring yarn tenacity and breaking elongation, evaluations of data were performed by using ANN. Afterwards, sensitivity analysis results and coefficient of multiple determination (R2) values of ANN and regression models were compared. Our results show that ANN is more powerful tool than the regression models.  相似文献   

12.
Biodegradable products are parts of a natural cycle. The biopolymers and the fibers that can be produced from them are very attractive on the market because of the positive human perception. Therefore, PLA being a well known biodegradable fiber and some conventional fibers were selected for the current study to examine the differences between them and to emphasize the importance of biodegradability beside fabric performance. 14.8 tex (Ne 40/1) combed ring spun yarns produced from biodegradable fiber PLA, new generation regenerated fibers Modal and Tencel, synthetic and blends 50/ 50 % cotton/polyester and 50/50 % viscose/polyester, polyester were selected as yarn types and by using these yarns, six knitted fabrics were produced and some important yarn and fabric properties were compared. In this context, moisture and the tensile behavior of yarns and pilling, bursting strength, air permeability and moisture management properties of the test fabrics are discussed.  相似文献   

13.
Nowadays, there is ever increasing interests regarding with the nozzle usage in spinning systems and also winding process. In this study, an air nozzle was attached on to the sirospun spinning system and the system was called as siro-jet. Sirospun is a spinning system combining spinning and doubling in one operation and a yarn like a two fold is produced. The principle of the siro-jet system is based on the placement of the nozzle at the exit of drafting unit on sirospun spinning system and pressurized air was fed into the nozzle by the compressor during the spinning. In literature, air nozzle application in this manner is not common and hence the system is very less known. For that reason, siro-jet and siropun yarns were produced with different fibre types, material qualities and yarn counts, and the properties of the yarns were compared. At the end of the study, it was determined that siro-jet spinning system truly improves the yarn hairiness in comparison to sirospun spinning system. Even, the siro-jet yarns are less hairy after winding process. Interestingly, hairiness results of siro-jet and sirospun yarns produced with short, non-uniform fibres showed that siro-jet spinning system allows working with low cost raw materials while maintaining yarn quality. Therefore, siro-jet can be considered as an innovative spinning system regarding with less hairy yarn production opportunity.  相似文献   

14.
Yarn structure plays an important role in determining the properties of spun yarns. Recently, a modified spinning technique has been developed for producing a low torque and soft handle singles yarn by modifying the fiber arrangement in a yarn. Comparative studies revealed that the finer modified yarns possess significantly higher strength and lower hairiness over the conventional yarns of the same twist level, implying a different structure of finer modified yarn. Thus this paper aims to quantitatively study the structures of the finer conventional and modified cotton yarn (80 Ne) produced at the same twist level. Various measuring techniques, namely the Scanning Electron Microscope (SEM), cross section technique and tracer fiber technique, are adopted to analyze their structural characteristics, including fiber configuration, fiber spatial orientation angle, fiber packing density, yarn surface appearance, and fiber migration behavior. Results showed that finer modified yarns exhibit a smoother surface and much more compact structure with less hairiness. The fibers in the finer modified yarn have a complicated fiber path with relatively lower fiber radial position, larger migration frequency and magnitudes. In addition, it was noted that 73% of fibers in the finer conventional yarn follow concentric conical helix, which is contrary to those in the coarser conventional yarn. The analyses conducted in this paper provide deep insights into the mechanism of modified spinning technique and evidential explanations on the difference of properties between the finer conventional and modified yarns.  相似文献   

15.
The quality of ring spun yarns is largely determined by its level of hairiness. The existence of hairiness inevitably affects the quality of ring spun yarns. This paper presents an innovative method on lowering the level of hairiness of ring spun yarns. This can be achieved by shooting compressed air to the yarn, through a swirl nozzle comprising a yarn duct and an airjet nozzle attached to a traditional ring spin frame. When compressed air is applied from the air-jet nozzle to the yarn duct, the swirling air flow tucks surface fibers of the ring spun yarns into its body. Four controllable variable parameters for the process, supplied pressure, nozzle position, twist factor and spindle speed, and their effects on the lowering of yarn hairiness will be clarified. Their impact on the quality of the yarn is statistically analyzed, and the optimum outcome of the combination of parameters for the process, will thus be determined.  相似文献   

16.
Yarn tension is a key factor that affects the efficiency of a ring spinning system. In this paper, a specially constructed rig, which can rotate a yarn at a high speed without inserting any real twist into the yarn, was used to simulate a ring spinning process. Yarn tension was measured at the guide-eye during the simulated spinning of different yarns at various balloon heights and with varying yarn length in the balloon. The effect of balloon shape, yarn hairiness and thickness, and yarn rotating speed, on the measured yarn tension, was examined. The results indicate that the collapse of balloon shape from single loop to double loop, or from double loop to triple etc, lead to sudden reduction in yarn tension. Under otherwise identical conditions, a longer length of yarn in the balloon gives a lower yarn tension at the guide-eye. In addition, thicker yarns and/or more hairy yarns generate a higher tension in the yarn, due to the increased air drag acting on the thicker or more hairy yarns.  相似文献   

17.
Core spun yarns are applied for various purposes that especially require the multi-functional performance. This research reports on the core spinning effect on the yarn strength. We prepared various core yarns by combining different kinds of high tenacity filaments in core with cotton staples in sheath with various twist levels in the ring spin system. And the tensile strength was tested to investigate the contribution of the core-sheath structure to the core yarn strength. The influence of the twist level was also checked up on the relationship between the core-sheath structure and the yarn strength. Results turned out that the core-sheath weight ratio had influence on the tensile properties of the ring core-spun yarns in different ways according to the core filaments used for the yarn. Increasing the twists yielded a monotone decreasing strength for the aramid and the basalt core yarns, while the PET core yarns showed almost unchanged strength, which could be ascribed to the extensional property of the filaments.  相似文献   

18.
The ring spinning process has been used to produce fine and high quality staple fibre yarns. The stability of the rotating yarn loop (i.e. balloon) between the yarn-guide and the traveller-ring is crucial to the success and economics of this process. Balloon control rings are used to contain the yarn-loop, by reducing the yarn tension and decreasing the balloon flutter instability. Flutter instability here refers to the uncontrolled changes in a ballooning yarn under dynamic forces, including the air drag. Due to the significant variation in the length and radius of the balloon during the bobbin filling process, the optimal location for the balloon control ring is not easily determined. In order to address this difficulty, this study investigates the variation in the radius of a free balloon and examines the effect of balloon control rings of various diameters at different locations on yarn tension and balloon flutter stability. The results indicate that the maximum radius of a free balloon and its corresponding position depend not only on the yarn-length to balloon-height ratio, but also on yarn type and count. A control ring of suitable radius and position can significantly reduce yarn tension and decrease flutter instability of free single-loop balloons. While the balloon control rings are usually fixed to, and move in sinc with, the ring frame, results reported in this study suggest that theoretically, a balloon control ring that always remains approximately half way between the yarn-guide and the ring rail during spinning can lead to significant reduction in yarn tension.  相似文献   

19.
Study on the characteristics of blended ring and rotor spun yarns is a topic of major interest to the researchers. The overall properties of these blended yarns are affected by the relative proportion, properties of the components and their interactions. The main focus of this work is on comparing and analyzing effects of blend ratio on tensile properties of the yarns produced in different spinning systems using concept of hybrid effects that has not received enough attention from researchers. Various blends of cotton-polyester ring and rotor spun yarns were prepared. Tensile properties of the samples were examined as well. Interactions between cotton and polyester fibers was evaluated through predicting strength and elongation at break of the yarns using simple rule of mixtures (ROM) and hybrid model. Experimental results showed that, the effect of different blend ratios on tensile properties of the samples is different. In comparison with 100 % cotton yarn, promotion in braking strength of the ring and rotor spun samples occurred after increasing fraction of the polyester fiber to 50 and 66.5 % respectively. The prominent finding of the present work is that the trend of change in tensile properties of different yarns versus blend ratio is predictable via hybrid model and migration behavior of the constituent fibers. Coefficients representing the intensity of the interaction and migration index of the fibers were calculated and all results were discussed based on these calculated factors.  相似文献   

20.
Cellulase is useful for bio-polishing cotton fabrics which enhances their aesthetic performance instead of stonewashing process. Torque-free ring spun process is a widely used technique to produce newly low-twist and balanced torque yarns with soft hand. In this paper, denim fabrics woven with torque-free ring spun yarn and conventional ring spun yarn respectively were treated with cellulase under the same condition and their fabric handle, expressed as low stress mechanical properties, such as tensile strength, bending, shearing, compression and surface performance were investigated by Kawabata Evaluation System for Fabric (KES-F). After cellulase treatment, both denim fabrics revealed better flexibility, elasticity recovery, raised shearing stiffness, fluffier and improved smoothness. While torque-free ring spun yarn made denim fabric showed a better fabric handle than conventional ring spun yarn made denim fabric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号