首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The stability of red grape anthocyanins (Vitis vinifera) was evaluated in a model juice system during normal (25 degrees C) and accelerated storage (35 degrees C) in the presence of ascorbic acid. Rosemary polyphenolic cofactors (0, 0.2, and 0.4% v/v) were evaluated as anthocyanin stabilizing agents. Cofactor addition resulted in concentration-dependent hyperchromic (up to 178%) and bathochromic (up to 23 nm) shifts, indicating a more intense red coloration of the models. Anthocyanin and ascorbic acid degradation followed first-order kinetics during storage. Results showed that copigmented treatments underwent a lower conversion of L-ascorbic acid into dehydroascorbic acid during storage when compared to the control, favorably impacting the vitamin retention of these models. Copigmentation did not affect anthocyanin degradation in the absence of ascorbic acid but in its presence aided to retain a higher anthocyanin content than the control. This study indicated that the addition of anthocyanin cofactors could be used to reduce the pigment and vitamin degradation while masking detrimental color changes in anthocyanin containing products.  相似文献   

2.
Orange fruits of two blood varieties (Tarocco and Moro) were stored at 8 degrees C and 22 degrees C for 85 and 106 days, respectively, and analyzed periodically for standard quality parameters (total soluble solids, total acidity, ascorbic acid, juice yield, and rind color) and sensory influencing parameters (anthocyanins, and total and free hydroxycinnamic acids). A decrease in total acidity (TA) and juice yield during storage was observed for both cultivars; total soluble solids (TSS) increased only in the Tarocco oranges stored at 8 degrees C. The increase in TSS observed for Tarocco and the simultaneous decrease in TA in both varieties resulted in a higher maturity index (TSS/TA) for the two cultivars. No loss of vitamin C was noted in Tarocco orange at either temperature, whereas a sharp reduction in vitamin C occurred in the first 50 days of storage for Moro. A significant increase in anthocyanin content was observed in Tarocco and Moro stored at 8 degrees C. Overlong storage induces extensive hydrolysis of hydroxycinnamic derivatives to free acids in Moro orange and these, in turn, could develop the malodorous vinylphenols.  相似文献   

3.
Recent studies indicate that anthocyanin intake conveys a variety of health benefits, which depend on absorption and metabolic mechanisms that deliver anthocyanins and their bioactive metabolites to responsive tissues. The anthocyanin bioavailability of red cabbage (Brassica oleracea L. var. capitata) was evaluated as reflected by urinary excretion of anthocyanins and anthocyanin metabolites. Twelve volunteers consumed 100, 200, and 300 g of steamed red cabbage (containing 1.38 micromol of anthocyanins/g of cabbage) in a crossover design. Anthocyanin concentration in cabbage extract and urine was measured by HPLC-MS/MS. Six nonacylated and 30 acylated anthocyanins were detected in red cabbage, and 3 nonacylated anthocyanins, 8 acylated anthocyanins, and 4 metabolites were present in urine. Mean 24 h excretion of intact anthocyanins increased linearly from 45 (100 g dose) to 65 nmol (300 g dose) for acylated anthocyanins and from 52 (100 g dose) to 79 nmol (300 g dose) for nonacylated anthocyanins. Urinary recovery of intact anthocyanins (percent of anthocyanin intake) decreased linearly from 0.041% (100 g dose) to 0.020% (300 g dose) for acylated anthocyanins and from 0.18% (100 g dose) to 0.09% (300 g dose) for nonacylated anthocyanins. Anthocyanin metabolites consisted of glucuronidated and methylated anthocyanins. The results show that red cabbage anthocyanins were excreted in both intact and metabolized forms and that recovery of nonacylated anthocyanins in urine was >4-fold that of acylated anthocyanins.  相似文献   

4.
The bioavailability of acylated vs nonacylated anthocyanins and the effect of cooking and dose on the comparative bioavailability were investigated in a clinical feeding study using purple carrots as the anthocyanin source. Treatments were purple carrots as follows: 250 g raw (463 micromol of anthocyanins: 400 micromol acylated, 63 micromol nonacylated), 250 g cooked (357 micromol of anthocyanins: 308.5 micromol acylated, 48.5 micromol nonacylated), and 500 g cooked (714 micromol of anthocyanins: 617 micromol acylated, 97 micromol nonacylated). Four of the five carrot anthocyanins were found intact in plasma by 30 min after carrot consumption and peaked between 1.5 and 2.5 h. Acylation of anthocyanins resulted in an 11-14-fold decrease in anthocyanin recovery in urine and an 8-10-fold decrease in anthocyanin recovery in plasma. Cooking increased the recovery of nonacylated anthocyanins but not acylated anthocyanins. Large dose size significantly reduced recovery of both acylated and nonacylated anthocyanins, suggesting saturation of absorption mechanisms.  相似文献   

5.
Color stability of fruit juice made from strawberries (Fragaria x ananassa, cv. Elsanta) that were subjected to high hydrostatic pressure was studied by measuring the anthocyanin content. High hysrostatic pressure is a method of preservation of food alternative to heat treatment. It is therefore essential to assess the impact of high pressure on color molecules. Samples were pressurized under 200, 400, 600, and 800 MPa for 15 min at a temperature controlled between 18 and 22 degrees C. After application of pressure, the anthocyanin content of the strawberry juice was analyzed by HPLC-UV using a novel isocratic elution system. The high-pressure treated samples were kept at refrigerator temperature (4 degrees C), room temperature (20 degrees C), and 30 degrees C. Two pigments were identified and quantified: pelargonidin 3-glucoside and pelargonidin 3-rutinoside. The highest stability of the anthocyanins was found when strawberries were stored at a temperature of 4 degrees C. High-pressure treatment at 800 MPa led to the lowest losses, at 4 degrees C.  相似文献   

6.
Thermal degradation and color changes of purified strawberry anthocyanins in model solutions were studied upon heating at 85 degrees C by HPLC-DAD analyses and CIELCh measurements, respectively. The anthocyanin half-life values increased significantly due to the addition of rose (Rosa damascena Mill.) petal extracts enriched in natural copigments. Correspondingly, the color stability increased as the total color difference values were smaller for anthocyanins upon copigment addition, especially after extended heating. Furthermore, the stabilizing effect of rose petal polyphenols was compared with that of well-known copigments such as isolated kaempferol, quercetin, and sinapic acid. The purified rose petal extract was found to be a most effective anthocyanin-stabilizing agent at a molar pigment/copigment ratio of 1:2. The results obtained demonstrate that the addition of rose petal polyphenols slows the thermal degradation of strawberry anthocyanins, thus resulting in improved color retention without affecting the gustatory quality of the product.  相似文献   

7.
Blackberries are a rich source of polyphenolics, particularly anthocyanins, that may contribute to the reduced risk of chronic disease; however, as with most berries, the fresh fruit are only seasonally available. With most of the blackberries consumed as frozen or in thermally processed forms after long-term storage, the purpose of this study was to evaluate the effects of processing and 6 months of storage on the anthocyanins and antioxidant capacity of blackberries that were individually quick-frozen (IQF), canned-in-syrup, canned-in-water, pureed, and juiced (clarified and nonclarified). Monomeric anthocyanins, percent polymeric color, and antioxidant capacity by oxygen radical absorbance capacity (ORAC FL) and photochemiluminescence (PCL) were determined postprocessing (1 day) and after 1, 3, and 6 months of storage. Processing resulted in increases in polymeric color values (up to 7%) and losses in monomeric anthocyanins (up to 65%). For most products, processing also resulted in losses in antioxidant capacity (by ORAC FL and PCL). Storage at 25 degrees C of all processed products resulted in dramatic losses in monomeric anthocyanins with as much as 75% losses of anthocyanins throughout storage, which coincided with marked increases of percent polymeric color values of these products over 6 months of storage. There were no changes in ORAC FL or PCL for processed products throughout long-term storage. No significant changes in antioxidant capacity or anthocyanin content were observed in IQF fruit during long-term storage at -20 degrees C.  相似文献   

8.
Absorption of dietary anthocyanins is limited; however, fecal anthocyanin excretion has been rarely studied. We developed a method for extraction and analysis of fecal anthocyanins. Aqueous methanol (60%) maximized extraction efficiency (approximately 88%). Severe anthocyanin degradation (monitored by high-performance liquid chromatography) was observed in feces stored at -18 degrees C; therefore, storage time should be minimized and lower temperatures used. Fecal and cecal content samples were collected from 32 rats receiving either chokeberry, bilberry, grape-enriched (3.85 g monomeric anthocyanin per kg diet), or control diet for 14 weeks. Fecal anthocyanin concentrations were significantly different among groups (0.7/1.8/2.0 g/kg wet feces, chokeberry/bilberry/grape). Anthocyanin profiles of cecal contents and feces were similar. Losses in the intestinal contents were high for anthocyanin glucosides, moderate for galactosides, and negligible for arabinosides or xylosides. Acylation or diglucosylation enhanced anthocyanin stability. High anthocyanin concentration in the fecal content may favor anthocyanin absorption into the colon epithelial cells, resulting in potential health benefits.  相似文献   

9.
Anthocyanin and polyphenolic compounds present in a?ai (Euterpe oleracea Mart.) were determined and their respective contribution to the overall antioxidant capacity established. Color stability of a?ai anthocyanins against hydrogen peroxide (0 and 30 mmol/L) over a range of temperatures (10-30 degrees C) was also determined and compared to common anthocyanin sources. Additionally, stability in a model beverage system was evaluated in the presence of ascorbic acid and naturally occurring polyphenolic cofactors. Cyanidin 3-glucoside (1040 mg/L) was the predominant anthocyanin in a?ai and correlated to antioxidant content, while 16 other polyphenolics were detected from 4 to 212 mg/L. Red grape anthocyanins were most stable in the presence of hydrogen peroxide, while a?ai and pigments rich in acylated anthocyanins displayed lower color stability in a temperature-dependent manner. In the presence of ascorbic acid, acylated anthocyanin sources generally had increased color stability. A?ai was recognized for its functional properties for use in food and nutraceutical products.  相似文献   

10.
Composition and stability of anthocyanins in blue-grained wheat   总被引:6,自引:0,他引:6  
Wheat grain is recognized as a good source of potentially health-enhancing components such as dietary fiber, phenolics, tocopherols, and carotenoids. Anthocyanins, another group of bioactive compounds, are found in blue and purple wheat grains. In the present study, a blue aleurone spring wheat line "Purendo 38" with relatively high content of total anthocyanins was used to investigate the composition and stability of anthocyanins over three crop years. Commercial cultivars of purple (Konini) and red (Katepwa) wheats were included in the study. Separation of anthocyanins by high-performance liquid chromatography (HPLC) showed that each wheat had a distinct anthocyanin profile. Four major anthocyanins were separated from blue wheat extracts as compared to five anthocyanins in purple wheat. Cyanidin 3-glucoside was the predominant anthocyanin in purple wheat, whereas it was the second major anthocyanin in blue wheat. The predominant anthocyanin in blue wheat, making up approximately 41% of the total anthocyanin content, remains to be structurally unidentified. Blue wheat anthocyanins were thermally most stable at pH 1. Their degradation was slightly lower at pH 3 as compared to pH 5. Increasing the temperature from 65 to 95 degrees C increased degradation of blue wheat anthocyanins. Addition of SO(2) during heating of blue wheat had a stabilizing effect on anthocyanin pigments. The optimal SO(2) concentrations were 500-1000 ppm for whole meals and 1000-3000 ppm for isolated anthocyanins. Further studies are underway to identify and verify individual anthocyanins in blue wheat and their potential end uses.  相似文献   

11.
Recent research suggests that blueberries are rich in total polyphenols and total anthocyanins. Phenolic compounds are highly unstable and may be lost during processing, particularly when heat treatment is involved. There is no systematic study available providing information on the fate of phenolic compounds during storage and how that affects their biological activity. We provide a systematic evaluation of the changes observed in total polyphenols (TPP), total anthocyanins (TACY), Trolox equivalent antioxidant capacity (TEAC), phenolic acids, and individual anthocyanins of blueberry extract stored in glass bottles and the ability of blueberry extract to inhibit cell proliferation. The extract was stored at different temperatures (-20 +/- 1, 6 +/- 1, 23 +/- 1, and 35 +/- 1 degrees C). Two cultivars, Tifblue and Powderblue, were chosen for the study. The recoveries of TPP, TACY, and TEAC in blueberry extract after pressing and heating were approximately 25, approximately 29, and approximately 69%, respectively, for both cultivars. The recovery of gallic acid, catechin, and quercetin was approximately 25%. Ferulic acid was not detected in the final extract in both Tifblue and Powderblue cultivars. The recovery of peonidin, malvidin, and cyanidin glycosides was approximately 20% in the final extract in both cultivars. Losses due to storage were less when compared with initial losses due to processing. At -20 degrees C, no statistically significant loss of TPP, TACY, and TEAC was observed up to 30 days (P < 0.05). At 6 degrees C storage, there was a significant loss observed from 15 to 30 days. Similar results were obtained at 23 and 35 degrees C (P < 0.05). There was retention of more than 40% of ellagic and quercetin after 60 days at 35 +/- 1 degrees C. Anthocyanins were not detected after 60 days of storage at 35 +/- 1 degrees C. Significant retention (P < 0.05) was obtained for malvidin (42.8 and 25.8%) and peonidin (74.0 and 79.5%) after 60 days of storage at 23 +/- 1 degrees C in glass bottles for Tifblue and Powderblue, respectively, when compared with other individual anthocyanins. A linear relationship was observed between TEAC values and total polyphenols or total anthocyanins. A cell viability assay was performed using HT-29 cancer cell lines and anthocyanins extracted from 30, 60, and 90 days of stored extract at 6 +/- 1 and 23 +/- 1 degrees C. A significant cell proliferation inhibition percentage was observed in 30 days, although this was reduced significantly after 30-90 days. These results suggest that heating and storage conditions significantly affect the phenolic compounds and their biological activities. Frozen and low temperature storage are suggested for blueberry extract in order to retain the bioactive components.  相似文献   

12.
The formation of vitisin A, an anthocyanin formed naturally in small quantities in maturing port wines, was studied in model wine solutions at several storage temperatures (10, 15, 20, and 32 degrees C). Vitisin A was formed through the interaction between malvidin 3-glucoside and pyruvic acid, Acylated forms of vitisin A, having the 6-position of the sugar acylated with acetic acid (3-acetylvitisin A) and p-coumaric acid (3-p-coumarylvitisin A), were also formed through the interaction between pyruvic acid and malvidin 3-acetylglucoside and malvidin 3-p-coumarylglucoside, respectively. A maximum degradation of the anthocyanins was obtained at higher temperatures, and it followed a first-order kinetics both with and without pyruvic acid in the solution. Whereas at low temperatures (10 and 15 degrees C) the presence of pyruvic acid accelerated the kinetic reaction, at higher temperatures (20 and 32 degrees C) it decreased it. The activation energy values for the degradation of the three anthocyanins in model solutions without and with pyruvic acid were not significantly different from each other. At low temperatures the highest concentrations of vitisin A compounds were obtained. All solutions showed a decrease in L value, indicating that all solutions became darker. This change increased with increasing temperature. All model solutions increased in the hue angle, indicating that the solutions changed from a bluish-red to an orange-red or even brownish-red color. Samples without pyruvic acid remained lighter and became browner than those with pyruvic acid. A good correlation between the amount of vitisin A in the solution and hue angle was found, indicating that vitisin A may contribute the orange-red of solutions, compared to the browner control.  相似文献   

13.
Ten cranberry (Vaccinium macrocarpon Aiton) cultivars were evaluated for oxygen radical absorbance capacity (ORAC), anthocyanins, and total phenolics contents after three months of storage at 0, 5, 10, 15, and 20 degrees C. The antioxidant capacity of cranberry was affected by cultivars and storage temperatures. Among the 10 cranberry cultivars used in this study, Early Black, Crowley, and Franklin had higher antioxidant capacities than the other cultivars. ORAC values, anthocyanins, and total phenolics contents increased during storage. The highest increases in antioxidant activity, anthocyanin, and phenolics contents occurred at 15 degrees C storage. Fruit stored at 20 degrees C had lower ORAC values than those stored at 15 degrees C. A positive relationship existed between ORAC values and anthocyanin or phenolic content in all 10 cranberry cultivars at different storage temperatures.  相似文献   

14.
The phenolic compounds hydroxycinnamates, anthocyanins, flavonols, and flavan-3-ols of sweet cherry cultivars Burlat, Saco, Summit, and Van harvested in 2001 and 2002 were quantified by HPLC-DAD. Phenolics were analyzed at partially ripe and ripe stages and during storage at 15 +/- 5 degrees C (room temperature) and 1-2 degrees C (cool temperature). Neochlorogenic and p-coumaroylquinic acids were the main hydroxycinnamic acid derivatives, but chlorogenic acid was also identified in all cultivars. The 3-glucoside and 3-rutinoside of cyanidin were the major anthocyanins. Peonidin and pelargonidin 3-rutinosides were the minor anthocyanins, and peonidin 3-glucoside was also present in cvs. Burlat and Van. Epicatechin was the main monomeric flavan-3-ol with catechin present in smaller amounts in all cultivars. The flavonol rutin was also detected. Cultivar Saco contained the highest amounts of phenolics [227 mg/100 g of fresh weight (fw)] and cv. Van the lowest (124 mg/100 g of fw). Phenolic acid contents generally decreased with storage at 1-2 degrees C and increased with storage at 15 +/- 5 degrees C. Anthocyanin levels increased at both storage temperatures. In cv. Van the anthocyanins increased up to 5-fold during storage at 15 +/- 5 degrees C (from 47 to 230 mg/100 g of fw). Flavonol and flavan-3-ol contents remained quite constant. For all cultivars the levels of phenolic acids were higher in 2001 and the anthocyanin levels were higher in 2002, which suggest a significant influence of climatic conditions on these compounds.  相似文献   

15.
The influence of high oxygen concentrations on total phenolic, total anthocyanin, individual phenolic compounds, and antioxidant capacity (measured as oxygen radical absorbance capacity, ORAC) in highbush blueberry fruit (Vaccinium corymbosum L. cv. Duke) was investigated. Freshly harvested blueberries were placed in jars ventilated continuously with air or with 40, 60, 80, or 100% O(2) at 5 degrees C for up to 35 days. Samples were taken initially and at 7-day intervals during storage. Whereas the quality parameters of titratable acidity, total soluble solids, and surface color were only slightly affected by the superatmospheric O(2) treatments, the antioxidant levels were markedly increased by 60-100% O(2) treatments as compared with 40% O(2) treatment or air control during 35 days of storage. Elevated O(2) between 60 and 100% also promoted increases of total phenolics and total anthocyanins as well as the individual phenolic compounds analyzed by HPLC. Fruit treated with O(2) concentrations of >/=60% also exhibited significantly less decay. Data obtained in this study suggest that high-oxygen treatments may improve the antioxidant capacity of blueberry fruit. Furthermore, antioxidant capacity may be correlated with total phenolic and anthocyanin contents in blueberries.  相似文献   

16.
Fresh strawberries (Fragaria x ananassa Duch.), raspberries (Rubus idaeus Michx.), highbush blueberries (Vaccinium corymbosum L.), and lowbush blueberries (Vaccinium angustifolium Aiton) were stored at 0, 10, 20, and 30 degrees C for up to 8 days to determine the effects of storage temperature on whole fruit antioxidant capacity (as measured by the oxygen radical absorbing capacity assay, Cao et al., Clin. Chem. 1995, 41, 1738-1744) and total phenolic, anthocyanin, and ascorbate content. The four fruit varied markedly in their total antioxidant capacity, and antioxidant capacity was strongly correlated with the content of total phenolics (0.83) and anthocyanins (0.90). The antioxidant capacity of the two blueberry species was about 3-fold higher than either strawberries or raspberries. However, there was an increase in the antioxidant capacity of strawberries and raspberries during storage at temperatures >0 degrees C, which was accompanied by increases in anthocyanins in strawberries and increases in anthocyanins and total phenolics in raspberries. Ascorbate content differed more than 5-fold among the four fruit species; on average, strawberries and raspberries had almost 4-times more ascorbate than highbush and lowbush blueberries. There were no ascorbate losses in strawberries or highbush blueberries during 8 days of storage at the various temperatures, but there were losses in the other two fruit species. Ascorbate made only a small contribution (0.4-9.4%) to the total antioxidant capacity of the fruit. The increase observed in antioxidant capacity through postharvest phenolic synthesis and metabolism suggested that commercially feasible technologies may be developed to enhance the health functionality of small fruit crops.  相似文献   

17.
Pigment production from anthocyanin-rich purple corncobs generates a deeply colored waste precipitate. Our objectives were to characterize this anthocyanin-rich waste (ARW) and to find a suitable application in a food matrix. Composition and solubility characteristics of ARW were evaluated. Color (CIELAB) and pigment (monomeric anthocyanin and HPLC profiles) stability of ARW in milk (35 mg/100 mL) were evaluated using an accelerated test at 70 degrees C and phosphate buffer as a control. ARW provided milk an attractive purple hue (324-347 degrees ). Monomeric anthocyanin degradation followed zero-order kinetics in skim and whole milk and second-order kinetics in the control, with half-lives of 173, 223, and 44 min at 70 degrees C, respectively. ARW shows potential as a natural colorant for a pH range unusual for anthocyanin applications. A protective effect of matrix constituents on the stability of anthocyanins was evident. Anthocyanins may interact with different compounds in biological systems when the pH values are close to neutral.  相似文献   

18.
The thermal stability of anthocyanin extract isolated from the dry calyces of Hibiscus sabdariffa L. was studied over the temperature range 60-90 degrees C in aqueous solutions in the presence or absence of beta-cyclodextrin (beta-CD). The results indicated that the thermal degradation of anthocyanins followed first-order reaction kinetics. The temperature-dependent degradation was adequately modeled by the Arrhenius equation, and the activation energy for the degradation of H. sabdariffa L. anthocyanins during heating was found to be approximately 54 kJ/mol. In the presence of beta-CD, anthocyanins degraded at a decreased rate, evidently due to their complexation with beta-CD, having the same activation energy. The formation of complexes in solution was confirmed by nuclear magnetic resonance studies of beta-CD solutions in the presence of the extract. Moreover, differential scanning calorimetry revealed that the inclusion complex of H. sabdariffa L. extract with beta-CD in the solid state was more stable against oxidation as compared to the free extract, as the complex remained intact at temperatures 100-250 degrees C where the free extract was oxidized. The results obtained clearly indicated that the presence of beta-CD improved the thermal stability of nutraceutical antioxidants present in H. sabdariffa L. extract, both in solution and in solid state.  相似文献   

19.
The effectiveness of seven phenolic compounds (catechin, epicatechin, procyanidin B2, caffeic acid, p-coumaric acid, myricitrin, and quercitrin) as copigments of malvidin 3-glucoside, the major anthocyanin in red wines from Vitis vinifera, using a copigment/pigment molar ratio of 1:1 was assayed in model wine solutions under the same conditions (pH=3.6, 12% ethanol). The stability of the copigment-pigment complexes formed was studied during a storage period of 60 days at 25 degrees C. Tristimulus colorimetry was applied for color characterization of the copigmentation process, and HPLC-DAD-MS was used to monitor changes in the composition of the samples. Copigmentation has been found to occur in all cases despite the low copigment/pigment molar ratio used, although the effect was different depending on the compound. Flavan-3-ols appeared as the less effective copigments, procyanidin B2 being even worse than monomeric flavanols, whereas flavonols behaved as the best ones. These latter copigments also induced the most statistically significant bathochromic shift in lambdamax. In the colorimetric analysis, it was observed that the lightness L* of the copigmented solutions increased with time, chroma C*ab decreased, and the hue hab increased. The copigments that produced a greater increase in the hue angle were the monomeric flavan-3-ols, which therefore showed to be the least protective cofactors against browning of the anthocyanin solution during the storage. With the time of storage, the formation of new pigments was observed in the solutions containing flavanols (xanthylium structures) and hydroxycinnamic acids (pyranoanthocyanins), which explains some of the color modifications produced in these solutions. Another relevant observation was that the stability of the anthocyanin was not much improved by most of the assayed copigments, since quite similar degradation rates were observed in the presence and absence of those cofactors.  相似文献   

20.
Anthocyanins in wild blueberries of Quebec: extraction and identification   总被引:4,自引:0,他引:4  
Anthocyanins were extracted from a mixture of berries of Vaccinium angustifolium and Vaccinium myrtillo?des at 7.7 degrees C, 26 degrees C, and 79 degrees C using ethanol alone or ethanol acidified with hydrochloric, citric, tartaric, lactic, or phosphoric acids at a solvent to solid ratio of 10. The effect of these parameters on extracted anthocyanins stability was investigated. The pH-differential and HPLC-DAD methods were used to determine anthocyanin contents. Extracted anthocyanins were purified on a C-18 solid-phase extraction cartridge and characterized by HPLC/electrospray ionization/mass spectrometry (HPLC-ESI-MS/MS). Anthocyanins were identified according to their HPLC retention times, elution order, and MS fragmentation pattern and by comparison with standards and published data. Anthocyanin extractions gave different yields depending on the type of added acid and the extraction temperature. High yields of monomeric and total anthocyanins (26.3 and 28.9 mg/g of dry matter) were obtained at 79 degrees C using phosphoric acid. Extraction using tartaric acid at 79 degrees C provided the lowest degradation index (1.05). Anthocyanins were stable and browning by polyphenol oxidase was inhibited under these conditions. Of the six common anthocyanindins, five were identified in the extracts, namely, delpinidin, cyanidin, peonidin, petunidin, and malvidin; pelargonidin was not found. In addition to well-known major anthocyanins, new anthocyanins were identified for the first time in extracts of wild blueberries from Quebec.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号