首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
The objective of this study was to determine the extent of variation in, and relationships among, biochemical and palatability traits within and among 11 major beef muscles. Longissimus thoracis et lumborum (LD), psoas major (PM), gluteus medius (GM), semimembranosus (SM), adductor (AD), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), triceps brachii (TB), infraspinatus (IS), and supraspinatus (SS) from one side of 31 Charolais x MARC III steer carcasses were vacuum-packaged, stored at 2 degrees C until 14 d postmortem, and then frozen at -30 degrees C. The 2.54-cm-thick steaks were obtained from two or three locations within muscles in order to assess biochemical traits and Warner-Bratzler shear force, and from near the center for sensory trait evaluation. The PM was most tender and was followed by IS in both shear force and tenderness rating (P < 0.05). The other muscles were not ranked the same by shear force and tenderness rating. The BF had the lowest (P < 0.05) tenderness rating. The PM, GM, and LD had lower (P < 0.05) collagen concentration (2.7 to 4.5 mg/g muscle) than muscles from the chuck and round (5.9 to 9.0 mg/g), except for the AD (4.9 mg/g). Desmin proteolysis was highest (P < 0.05) for BF and LD (60.7 and 60.1% degraded), and was lowest (P < 0.05) for PM (20.2%). The PM, TB, IS, RF, and ST had relatively long sarcomere lengths (> 2.1 microm), whereas the GM had the shortest (P < 0.05) sarcomere length (1.7 microm). Cooking loss was lowest (P < 0.05) for BF (18.7%) and was followed by LD and IS (20.7%); it was highest (P < 0.05) for ST (27.4%). Across all muscles, tenderness rating was highly correlated (r > 0.60) with shear force, connective tissue rating, sarcomere length, and collagen content. Within a muscle, correlations among all traits were generally highest in LD and lowest in AD. Within muscle, location effects were detected (P < 0.05) for shear force (PM, ST, BF, SM, and RF), sarcomere length (PM, ST, BF, LD, SS, IS, SM, and RF), collagen concentration (PM, BF, SS, IS, SM. AD, TB, and RF), desmin degradation (PM, GM, BF, SM, AD, and, RF), and cooking loss (all muscles except SS and AD). There is a large amount of variation within and among muscles for tenderness traits and tenderness-related biochemical traits. These results increase our understanding of the sources of variation in tenderness in different muscles and provide a basis for the development of muscle-specific strategies for improving the quality and value of muscles.  相似文献   

2.
The i.m. tenderness variation was examined within four beef chuck muscles, the infraspinatus (IF), supraspinatus (SS), triceps brachii (TB), and serratus ventralis (SV). The IF, SS, TB, and SV muscles were cut into 2.5 cm thick steaks perpendicular to the long axis of the muscle. An identification tag was placed on each steak, consisting of a muscle identification number, steak number, and orientation of the steak. Steaks were vacuum-packaged and stored at -22 degrees C until subsequent analysis. Steaks were thawed at 1 degrees C and cooked on electric broilers to an internal temperature of 71 degrees C. One core was removed from each 2.5-cm x 2.5-cm section parallel to the muscle fiber and sheared once to determine Warner-Bratzler shear force (WBSF). The SS had an overall WBSF mean of 5.43 kg (SD = 2.20 kg) with no tenderness difference (P = 0.43) among steak locations. The IF had an overall WBSF mean of 3.16 kg (SD = 1.01 kg) with no tenderness difference (P = 0.51) among steak locations. The SV had a mean WBSF value of 4.37 kg (SD = 1.27 kg) with tenderness variation (P < 0.05) among steak locations; however, tenderness variations were not dispersed in a discernible pattern. The TB had a mean WBSF value of 4.12 kg (SD = 1.26 kg) with lower (P < 0.05) shear force in the middle region of the TB, and the distal and proximal ends were tougher (P < 0.05). Results of this study provided a reasonably detailed mapping of the tenderness regions within the IF, SS, TB, and SV muscles, and this information could be used to add value to the beef chuck by cutting and marketing consistently tender regions.  相似文献   

3.
In order to define the quality characteristics of different anatomical locations of Yunling cattle,the pressing loss rate,cooking loss rate,shear force,pH, L* value,a* value,b* value,crude protein content,crude fat content and moisture of supraspinatus (SU),infraspinatus (IF),triceps brachii (TB),rhomboideus (RH),serratus ventraliscervicis (SVC),splenius (SP),psoas major (PM),longissimus dorsi (LD),latissimus dorsi (LA),semimembranosus (SM),semitendinosus (ST),biceps femoris (BF),gluteus medius (GM),rectusfemoris (RF),vastus lateralis (VL), tensor fasciae latae (TFL) from Yunling cattle carcass were determined.The quality traits of Yunling cattle meat among different anatomical locations were analyzed using variance,correlation and standardization analysis. The result showed that there were significant differences in quality traits among various anatomical locations (P<0.05). The SU,IF,PM,SVC and TFL had higher tenderness comparing to other muscles with shear force values less than 4 kg,while the water holding capacity of SP,ST and VL was poorer than other muscles. The ST had the highest L* value among all muscles. There was significantly positive correlation between shear force and pressing loss, cooking loss rate. The LD and ST had similar quality characteristic,while BF,GM and VL had similar quality characteristic. It was showed that different parts of muscle had significant effect on Yunling cattle meat quality.The quality of forequarter meat was better, which could be used to develop high-end products.  相似文献   

4.
为了明确云岭牛不同解剖部位肉的品质特性,本试验测定了云岭牛冈上肌(SU)、冈下肌(IF)、臀三头肌(TB)、菱形肌(RH)、颈腹侧锯肌(SVC)、夹肌(SP),中部胴体的腰大肌(PM)、背最长肌(LD)、背阔肌(LA),后部胴体的半膜肌(SM)、半腱肌(ST)、股二头肌(BF)、臀中肌(GM)、股直肌(RF)、股外侧肌(VL)和阔筋膜张肌(TFL)共16个解剖部位肉的压力失水率、蒸煮损失、剪切力、pH、亮度(L*)、红度(a*)、黄度(b*)、粗蛋白质、脂肪、水分10项品质指标,并通过方差分析、相关性分析和标准化分析研究其品质特性。结果显示,云岭牛不同解剖部位肉之间的10项品质指标均存在显著差异(P<0.05)。冈上肌、冈下肌、腰大肌、颈腹侧锯肌和阔筋膜张肌的嫩度较好,其剪切力均低于4 kg。夹肌、半腱肌和股外侧肌的保水性较差,半腱肌的L*值最高。相关性分析结果表明,剪切力和压力失水率、蒸煮损失呈显著正相关。标准化分析发现,背最长肌和半腱肌具有相似的品质特征;股二头肌、臀中肌和股外侧肌具有相似的品质特征。结果表明,部位因素对云岭牛肉品质具有显著影响,云岭牛胴体前部肉品质较好,可以作为开发高档产品的原料来源。  相似文献   

5.
Beef carcasses (n = 150) of A-maturity were selected randomly to determine baseline shear force and sensory panel ratings, assess variation in tenderness, and evaluate mean value differences between Certified Angus Beef (CAB), commodity Choice, and Select steaks. Three steaks were removed from the triceps brachii (TB), longissimus lumborum (LL), gluteus medius (GM), semimembranosus (SM), biceps femoris (BF), and quadriceps femoris complex (QF), and assigned to Warner-Bratzler shear (WBSF) and sensory panel analyses. As anticipated, marbling score and measured percentage of i.m. fat were greatest (P < 0.05) for CAB, intermediate (P < 0.05) for Choice, and least (P < 0.05) for Select carcasses. A muscle x quality level interaction (P < 0.05) was observed for WBSF values and sensory panel tenderness ratings. The TB, LL, GM, and BF steaks from CAB carcasses had lower (P < 0.05) WBSF than Select steaks from the same muscles. Even though WBSF values did not differ (P > 0.05) between CAB and Choice QF and TB steaks, the LL and GM steaks from CAB carcasses were more tender (P < 0.05) than Choice-grade LL and GM steaks. The TB from Select carcasses had higher (P < 0.05) WBSF values than TB steaks from CAB or Choice carcasses, but sensory panel ratings indicated that quality level showed little consistency among the GM, SM, BF, and QF. Trained sensory panelists rated CAB LL steaks more tender (P < 0.05) than LL steaks from Choice and Select carcasses, and Choice LL steaks were evaluated as more (P < 0.05) tender than those from Select carcasses. These results demonstrate that the influence of marbling on tenderness was more evident in muscles of middle meats than in end cuts, particularly in muscles of the round.  相似文献   

6.
This study determined whether there is a logical point of value change, related to either tenderness or consumer acceptance, at which to separate the beef carcass within the rib/chuck region. Rib/chuck rolls (RCR); (n = 30) consisting of the ribeye roll and chuck eye roll subprimals (2nd through 12th rib locations) were cut into 22 steaks each (two steaks per rib location), and Warner-Bratzler shear force and consumer purchase preference were evaluated for steaks at each rib location. Steaks from different locations of the RCR were composed of differing proportions of several muscles: longissimus muscle (LM), spinalis dorsi and multifidus dorsi (SM), and complexus (CO). The LM (4th to 12th rib) contained three tenderness regions: 7th through 12th rib, 5th and 6th ribs, and 4th rib regions (lowest, intermediate, and highest shear force values, respectively; P < 0.01). Shear force differed (P < 0.05) among rib locations for the SM (2nd to 9th rib), but no logical pattern was evident. The CO (2nd to 7th rib) was more tender toward the anterior end (P < 0.05). The region of the RCR represented by the 4th through 6th rib locations had steaks with higher weighted-average shear force (average shear force of each steak, weighted for surface area of each muscle) values than the remainder of the RCR (P < 0.05). Animal-to-animal variation in shear force was 36% greater than rib-to-rib variation in shear force; thus, statistically significant differences in tenderness among rib locations may be undetectable by consumers. Steaks (n = 330) were offered for sale at a retail supermarket and case time was monitored on each steak to determine consumer purchase preference. Steaks from the 2nd through 4th rib locations required more time to sell (P < 0.01) than steaks from the 5th through 12th rib locations. Two alternative locations for the rib/chuck separation point could be between the 6th and 7th ribs, yielding a ribeye subprimal useful in marketing a "premium quality" product, or between the 4th and 5th ribs, which would yield four more 2.5-cm ribeye steaks per carcass.  相似文献   

7.
Changes in muscle growth, calpastatin activity, and tenderness of three muscles were assessed in 20 callipyge and 20 normal wether lambs slaughtered at live weights (LW) of 7, 20, 36, 52, and 69 kg. At 24 h postmortem, the longissimus (LM), semimembranosus (SM), and supraspinatus (SS) muscles were removed and weighed and samples were obtained for calpastatin activity (CA; 24 h) and Warner-Bratzler shear force (WBS; aged 6 d). For muscle weights and calpastatin activity, the weight group x muscle x phenotype interaction was significant (P < 0.05). Muscle weights were similar (P > 0.05) between phenotypes for all three muscles at 7 kg LW. At 20 kg LW, the LM and SM muscles from the callipyge lambs were heavier (P < 0.05) than those from normal lambs; however, the SS did not differ (P > 0.05) between phenotypes at 7, 20, or 52 kg. From 20 to 69 kg LW, the LM and SM weights were 42 and 49% heavier (P < 0.05) for callipyge than for normal lambs. Calpastatin activity of the callipyge LM was greater (P < 0.05) than that of normal LM at 36, 52, and 69 kg. In the callipyge LM, CA was similar (P > 0.05) at 20, 36, and 52 kg LW and did not differ (P > 0.05) from 7-kg or 69-kg values. Calpastatin activity declined (P < 0.05) across the growth curve for the SM and SS, but values were higher (P < 0.05) in the SM in callipyge than in normal lambs. Shear force values of the LM were lower (P < 0.05) for normal lambs at 36, 52, and 69 kg LW than for callipyge lambs. In the SM and SS, WBS values decreased (P < 0.05) across the growth curve, but values were higher (P < 0.05) for callipyge lambs in the SM only. These data indicate that the selective muscular hypertrophy of the callipyge phenotype develops during the postnatal growth period between 7 and 20 kg LW (19 and 100 d of age). Longissimus and semimembranosus muscles in the callipyge lambs were over 40% heavier from 20 to 69 kg LW; however, they also had higher levels of calpastatin activity and Warner-Bratzler shear force during this time period, indicating the need for postmortem tenderization treatments to improve palatability.  相似文献   

8.
Two experiments were conducted to determine the effect of CaCl2 injection on round muscles obtained from Bos indicus bulls and late-castrate steers. In Exp. 1, the biceps femoris (BF) muscle from the left side of each of 15 bull carcasses was injected within 30 min postexsanguination with .3 M CaCl2 at 10% by weight while either intact (n = 8) on the carcass or after hot boning (n = 7). The right sides served as controls. In Exp. 2, the semimembranosus (SM) muscles from the carcasses of nine steers (castrated at 16 mo of age) were hot-boned within 30 min postexsanguination and one-half were injected with CaCl2 as described above. Hot boning had no effect (P greater than .05) on shear force values. Calcium chloride injection dramatically reduced shear force requirements at 1, 8, and 14 d postmortem compared with noninjected controls in both experiments. Cooking traits of the SM muscle were not affected (P greater than .05) by CaCl2 injection. However, BF muscles injected with CaCl2 required more (P less than .05) time to cook and had greater (P less than .05) cooking losses than BF controls. Calcium chloride injection of prerigor round muscles reduced aging time needed for normal tenderization to 1 d postmortem. Hot boning was successfully used in conjunction with CaCl2 injection to facilitate the injection process.  相似文献   

9.
Carcasses from Hanwoo steers (n = 15) and cows (n = 15) were classified into three groups: group 1 (G1), the carcasses had 10% to < 11.5% intramuscular fat (IMF) in loin muscles; group 2 (G2), the carcasses had 13% to < 14.5% IMF in loin muscles; and group 3(G3), the carcasses had 17% to < 18.5% IMF in loin muscles. These were used to evaluate the effects of gender and carcass group on quality traits and Warner–Bratzler shear force (WBSF) of Psoas major (PM), Longissimus thoracis (LT), Longissimus lumborum (LL), Longus colli (LC), Supraspinatus (SS), Latissimus dorsi (LAD), Semimembranosus (SM), Quadriceps femoris (QF), Biceps femoris (BF) and Semitendinosus (ST) muscles. Our results showed that pH values of LT, LL, LC, BF and QF muscles were lower in steers than in cows (P < 0.05). Water holding capacity (WHC) was found higher in LC, SS, LAD and QF muscles of steers (P < 0.05). At day 2 of ageing, gender affected the WBSF values of only PM, LD and QF muscles in G1, and QF muscle in G3; however, with additional ageing, the gender effect was observed for most of the muscles. Most muscles showed ageing responses; however, the rates of ageing response significantly varied depending on gender and carcass groups. The muscles of G1 and G2 had generally higher tenderization potentials than those of G3. Furthermore, most muscles in G3 had generally lower WBSF values than in G1 and G2. These results clearly indicate that ageing has a significant effect on quality and WBSF of beef muscles, and the classification by loin IMF level may be useful for prediction of the tenderness of other muscles.  相似文献   

10.
The objectives of this study were to determine the effects of storage time (ST) and packaging method (PM) on tenderness and changes in intramuscular connective tissue (IMCT) strength of chevon. Spanish does (8 mo of age, average BW 25 kg) were harvested (n = 12), chilled at 4 degrees C for 24 h, and then fabricated into 2.5-cm-thick leg, shoulder/arm, and loin/rib cuts. The cuts from six carcasses were vacuum-packed and aged at 2 degrees C for 0, 4, 8, or 12 d. To assess the influence of a packaging method that favors oxidation on postmortem tenderization, the cuts from the remaining six carcasses were placed on styrofoam trays, overwrapped with polyvinyl-chloride film, and stored at 2 degrees C for similar periods. At each ST, longissimus (LM), semimembranosus (SM), and triceps brachii (TB) muscles were assessed for Warner-Bratzler shear (WBS) values. The WBS of uncooked meat, myofibrillar fragmentation index (MFI), and collagen solubility were assessed on LM. The IMCT samples were prepared to assess changes in mechanical strengths and for scanning electron microscopy (SEM). Intact honeycomb structures of endomysium, with no muscle fiber elements, were observable under SEM. The PM or ST did not influence the mechanical strength of IMCT preparations, as measured by a texture analyzer. Collagen solubility of LM muscles also did not change during aging. For both PM, cooked meat WBS values were higher (P < 0.01) in SM and TB than in LM. In the SM samples, the average WBS values were higher (P < 0.01) at d 0 than at other ST. Although MFI of LM increased with increasing aging time (P < 0.05), changes in WBS over ST were minimal in TB and LM samples. The WBS of uncooked LM decreased sharply up to 8 d postmortem in both PM (P < 0.05). However, there was no PM x ST interaction to indicate any adverse influence of packaging on tenderization of chevon. The results suggest that aging chevon cuts for more than 4 d may not result in significant additional improvement in tenderness.  相似文献   

11.
This research aimed to determine whether outdoor free-range rearing during the winter (average ambient temperature of 5 degrees C) vs. indoor housing (22 degrees C) affects meat quality, muscle metabolic traits, and muscle fiber characteristics. Forty Large White gilts and barrows were blocked by weight within each gender (20 per gender) and allotted randomly into two groups of pigs, with one reared indoors (IN) in individual pens (2.6 m2) and the other reared outdoors (OUT) from December to March in a 0.92-ha pasture. Both groups had free access to the same grower-finisher diet from 23 to 105 kg. At slaughter, adipose (backfat [BF] and omental fat [OF]) and muscle tissues (longissimus muscle [LM], rectus femoris [RF], and semitendinosus [ST]) were obtained from the right side of each carcass. Muscle fibers were stained and classified on the basis of stain reaction as slow-oxidative (SO), fast oxidative-glycolytic (FOG), and fast glycolytic (FG); fiber area and distribution were determined. Also assessed were carcass characteristics, initial and ultimate pH, L*a*b* values, drip loss percent, glycolytic potential (GP), and intramuscular lipid content, as well as the fatty acid profile of each muscle and adipose tissue. The OUT pigs had lower (P < 0.05) ADG and leaner (P < 0.05) carcasses than IN pigs. Rearing environment did not (P > 0.63) affect the intramuscular lipid content of the ST, but intramuscular lipid content was lower (P < 0.01) in the LM and tended to be higher (P = 0.06) in the RF of OUT than in those of IN pigs. In the BF outer layer of the OUT pigs, the higher PUFA content was compensated by both a lower (P < 0.01) saturated and monounsaturated fatty acid (MUFA) content, whereas in the OF, LM, and dark portion of the ST, only the percentage of MUFA was decreased (P < 0.01). In all tissues of the OUT pigs, the linolenic acid content was higher (P < 0.01) and the n-6:n-3 ratio was lower (P < 0.01). The GP of all muscles was higher (P < 0.01), and the ultimate pH of the RF and ST was lower (P < 0.01), in OUT compared with IN pigs. Lightness (L*) values were lower (P < 0.01) in the LM. Percentages of drip loss were higher (P < 0.05) in the LM and light portion of the ST of OUT than in those of IN pigs. The LM and RF of OUT pigs had more (P < 0.01) FOG and fewer (P < 0.01) FG fibers than muscles of IN pigs. Results suggest that rearing pigs outdoors increases aerobic capacity of glycolytic muscles but has little concomitant influence on meat quality traits.  相似文献   

12.
The objective of this study was to determine effects of electrical stimulation (ES) on muscle quality and sensory traits of 12 Hampshire x Rambouillet callipyge lambs. One side of each carcass was randomly assigned to an ES treatment of 550 V and 60 Hz of electricity for 2 s on and 2 s off 15 times. The other side was a nonstimulated control (NES). Heated calpastatin, sarcomere length, myofibrillar fragmentation index (MFI), Warner-Bratzler shear (WBS), and trained sensory panel values were measured on the semitendinosus (ST), semimembranosus (SM), longissimus (ML), supraspinatus (SP), and triceps brachii (TB) muscles. Electrically stimulating the carcass sides induced a more rapid (P = .001) pH decline in the longissimus muscle, and ES sides had a brighter (P = .001) red color of loineye than nonstimulated sides. At d 14 of storage (2 degrees C), the TB had the highest (P < .05) MFI value, indicating more protein degradation, and the ST and ML muscles had the lowest MFI (P = .008). Regardless of ES treatment, SM and ML had the highest (P < .05) WBS values. The ST muscle had higher (P < .05) WBS values than the SP but did not differ (P > .05) from the TB muscle. Electrical stimulation had no effect on WBS or any trained sensory panel values (P > .05). The percentage of loin chops rated slightly tender or better was improved 30 to 34% by electrical stimulation (P < .05). The ML muscle was scored lower (P < .05) in sustained juiciness compared with the SM, SP, and TB but did not differ (P > .05) from the ST muscle. The SM and ML muscles were rated lower (P < .05) in initial and sustained tenderness scores than other muscles. Tenderness scores were higher (P < .05) for the TB than for the SP but did not differ (P > .05) from the ST muscle. Electrically stimulating callipyge carcasses improves the tenderness of loin chops by increasing the percentage of chops rated from slightly tough to slightly tender.  相似文献   

13.
Muscles from beef carcasses (n = 100) were selected from a commercial processor and aged for 14 d. Longissimus lumborum (LL), semimembranosus (SM), biceps femoris (BF), gluteus medius (GM), triceps brachii (TB), rectus femoris, vastus lateralis, adductor, semitendinosus, infraspinatus, teres major, biceps femoris ischiatic head, biceps femoris sirloin cap, and gracillus steaks were placed in display for 9 d. Instrumental color variables [lightness (L*), redness (a*), yellowness (b*), hue angle, chroma, and overall color change from d 0 (E)] were determined on d 0, 1, 3, 6, and 9 of display. Muscle pH and myoglobin content were determined for LL, SM, BF, GM, and TB. Muscles differed (P < 0.05) in initial values of each color variable evaluated, and the extent and timing of changes during display differed across muscles. Relationships between color variables measured in LL steaks and those measured in steaks from other muscles differed across days of display with the strongest relationships being observed earlier in the display period for labile muscles and later in stable muscles. Lightness of LL steaks was correlated with lightness of all of other muscles evaluated, regardless of display day (r = 0.27 to 0.79). For a*, hue angle, chroma, and E values, the strongest relationships between LL values and those of other muscles were detected between d 9 LL values and those of other muscles on d 3, 6, or 9, depending on the relative stability of the muscle. Correlation coefficients between d 9 a*, hue angle, chroma, and E values in LL and those of other muscles were 0.50, 0.65, 0.28, and 0.43 (P < 0.05) or greater, respectively, for the muscles included in the study. Myoglobin content of SM, BF, GM, and TB was highly correlated with that of LL (r = 0.83, 0.82, 0.72, and 0.67, respectively; P < 0.05). Muscle pH of LL was correlated with pH of SM and GM (r = 0.44 and 0.53; P < 0.05), but not (P > 0.05) pH of BF or TB. Muscle effects generally explained more variation in a*, b*, hue angle, chroma, and E than animal effects. However, the relative importance of animal effects increased as display continued. These data indicate that animal effects were consistent across muscles, though muscle effects had greater contribution to color stability variation. Furthermore, strong relationships between LL color stability and the stability of other muscles indicate that strategies developed to manage animal variation in LL color stability would beneficially affect the entire carcass.  相似文献   

14.
The objectives of this study were to evaluate visual and chemical attributes of beefsteaks from various USDA quality grades and muscles packaged in high-oxygen (80% O2/20% CO2) modified-atmosphere packaging (MAP). A total of nine carcasses were selected to represent Select (n = 3), low Choice (n = 3), and high Choice (n = 3) USDA quality grades. The semimembranosus (SM), semitendinosus (ST), and biceps femoris (BF) muscles were removed from each carcass and allotted to two packaging types (MAP or polyvinyl chloride over-wrap) and were displayed for up to 10 d, with evaluation on d 1, 3, 5, 7, and 10. Fifty-four steaks were evaluated on each day by a five-member trained panel for visual color (lean color and discoloration) and were also analyzed with a Minolta Chroma Meter CR-310 for L* and a* values (lightness and redness, respectively). Chemical properties measured included percentage of metmyoglobin formation and fat content. Visual color scores did not differ (P > 0.05) at d 1 and 3 with respect to all quality grades, but decreased after d 3, with a greater reduction (P < 0.05) in high Choice steaks for both lean color and discoloration. The low Choice steaks packaged in MAP displayedhigher (P < 0.05) lean color scores and less (P < 0.05) discoloration at d 7 and 10 than did Select and high Choice steaks. Redness (a*) values also decreased (P < 0.05) after d 3, whereas (lightness) L* values declined (P < 0.05) from d 1 to 5. The high Choice steaks had higher (P < 0.05) metmyoglobin content than low Choice and Select steaks, but packaging had no effect (P > 0.05) on metmyoglobin content. Muscle type did affect metmyoglobin content; however, the metmyoglobin content of the SM was greatest (P < 0.05), followed by the BF, with the ST having the lowest (P < 0.05) metmyoglobin formation. Results indicate that low Choice steaks react the best in MAP, and the ST maintained greater storage characteristics regardless of quality grade or packaging.  相似文献   

15.
The objectives of this study were 1) to determine which longissimus thoracis et lumborum steaks were appropriate for slice shear force measurement and 2) to determine the among and within institution variation in LM slice shear force values of 6 institutions after they received expert training on the procedure and a standard kit of equipment. In experiment 1, longissimus thoracis et lumborum muscles were obtained from the left sides of 50 US Select carcasses. Thirteen longissimus thoracis and 12 longissimus lumborum steaks were cut 2.54 cm thick from each muscle. Slice shear force was measured on each steak. Mean slice shear force among steak locations (1 to 25) ranged from 19.7 to 27.3 kg. Repeatability of slice shear force (based on variance) among steak locations ranged from 0.71 to 0.96. In experiment 2, the longissimus thoracis et lumborum were obtained from the left sides of 154 US Select beef carcasses. Eight 2.54-cm-thick steaks were obtained from the caudal end of each frozen longissimus thoracis, and six 2.54-cm-thick steaks were obtained from the cranial end of each frozen longissimus lumborum. Seven pairs of consecutive steaks were assigned for measurement of slice shear force. Seven institutions were assigned to steak pairs within each carcass using a randomized complete block design, such that each institution was assigned to each steak pair 22 times. Repeatability estimates for slice shear force for the 7 institutions were 0.89, 0.83, 0.91, 0.90, 0.89, 0.76, and 0.89, respectively, for institutions 1 to 7. Mean slice shear force values were least (P <0.05) for institutions 3 (22.7 kg) and 7 (22.3 kg) and were greatest (P <0.05) for institutions 5 (27.3 kg) and 6 (27.6 kg). Institutions with greater mean slice shear force (institutions 5 and 6) used cooking methods that required more (P <0.05) time (32.0 and 36.9 min vs. 5.5 to 11.8 min) to reach the end point temperature (71 degrees C) and resulted in greater (P <0.05) cooking loss (both 26.6% vs. 14.4 to 24.1%). Differences among institutions in the repeatability of slice shear force were partially attributable to differences among institutions in the consistency of steak thawing and cooking procedures. These results emphasize the importance of sample location within the muscle and cooking method in the measurement of tenderness and indicate that with proper training and application of the protocol, slice shear force is a highly repeatable (R approximately 0.90) measure of beef LM tenderness.  相似文献   

16.
Pork from the LM and semimembranosus muscle (SM) of 59 female Duroc-cross pigs with a mean carcass weight of 80.1 kg (SD = 3.2) were assessed for quality. The pigs were grown on diets containing either animal and plant products (the animal group) or plant products only (the plant group), with or without a supplement (0.31% of the diet) containing extra CLA, selenium, and vitamin E. The 45-min postmortem pH of LM was unaffected by dietary treatment (mean 6.44, SD = 0.21), but the ultimate pH (pHu) was lower for the supplemented animal group for both muscles within the animal group (P < 0.04). Water-holding capacity in terms of drip loss for SM and expressed juice levels for LM, but not cooking loss, was also lower for the supplemented animal group (P < 0.01), but this difference was reduced after adjustment to a constant pHu (P < 0.07). Warner-Bratzler shear force (WBSF) values were greater for the plant group for LM only (P < 0.05), both before and after pHu adjustment. Differences between dietary treatment groups for color (L*, a*, and b*) were small and seldom significant before or after pHu adjustment. Sensory assessment of LM samples (with 5% subcutaneous fat added) from 32 pigs (8 per group) for 8 odor notes and 11 flavor notes by a trained analytical sensory panel of 13 people revealed no differences between the groups, except that the percentage of instances in which a rancid odor was detected was greater for the supplemented plant group compared with the control plant group (25 vs. 12%). Differences (P < 0.001) were shown between the muscles such that, relative to SM, LM had lower pHu values, greater drip losses, greater WBSF values, greater L* values, and lower chroma values, but similar levels of cooking loss. It is concluded that the dietary treatments imposed to improve the nutritional value of pork had some effects on certain meat quality parameters, but that the overall effects on appearance and palatability were small and unlikely to be of practical importance.  相似文献   

17.
The objective of this study was to evaluate the tenderness of beef chuck and round muscles when enhanced with ammonium hydroxide and salt at different pump levels. A randomized, complete block design of 4 treatments and 3 muscles with 3 replications was used, with a total of 15 subprimals per treatment. Treatments included a 0% (CON), 15% (T15), 22.5% (T22), and 30% (T30) target pump. The triceps brachii (TB), biceps femoris (BF), and rectus femoris (RF) muscles were studied. Muscles were injected with a solution of ammonium hydroxide and sodium chloride (patent-pending technology from Freezing Machines Inc., Dakota Dunes, SD). Individual steaks were cut to a thickness of 2.54 cm, vacuum-packaged in trays, and frozen. Warner-Bratzler shear force, pH, and sensory evaluations were determined. Shear force decreased as the target pump percentage increased for all muscles (P < 0.050): TB = 39.9, 35.1, 32.1, and 27.0 N; BF = 39.4, 26.2, 23.3, and 19.3 N; RF = 42.7, 32.9, 30.7, and 28.9 N for CON, T15, T22, and T30, respectively. In all cases, there were no shear force differences between T15 and T22 (P > 0.050). As percentage pump increased, pH increased. The ultimate pH was moderately strongly to strongly related to shear force (r = 0.55, 0.70, and 0.80 for RF, TB, and BF, respectively). Trained taste panel ratings revealed an increase in tenderness, decrease in connective tissue, and an increase in juiciness as pump level increased for all muscles. In all cases but one (juiciness of the RF), the CON had the least desirable ratings and shear force values (P < 0.050). There were no major differences between T15 and T22, and T30 steaks tended to have an uncharacteristic soft and mushy texture. For this reason a 20% target pump level was determined to be the optimum pump level. These data suggest that adjusting pH in beef with ammonium hydroxide and salt can increase tenderness in muscles from the beef chuck and round. Any level of treatment was beneficial, with the greatest shear force benefit occurring in muscle pumped to 30%.  相似文献   

18.
19.
The present study demonstrates the effects of different muscle types and chiller ageing periods on the chemical composition, meat quality parameters, sensory characteristics and volatile compounds of Karean native cattle beed. Longissimus dorsi (LD) and Semitendinosus (ST) muscles aged for 7 days and 28 days were used. Moisture, cooking loss, total collagen and Warner‐Bratzler shear force (WBSF) values for the ST were higher than the LD muscle regardless of ageing period (P < 0.05). The LD muscle had higher intramuscular fat (IMF) (P < 0.05). Ageing for 28 days decreased WBSF values whereas it increased thiobarbituric acid of both muscles. Moreover, tenderness, juiciness and flavor scores were significantly higher for the LD muscle at both ageing periods. Increased ageing time improved tenderness of both muscles, and increased juiciness of the LD muscle, whereas there was decreased flavor score of ST muscle (P < 0.05). The majority of the volatile compounds formed from the oxidation of lipids showed differences between the two muscles. Ageing for 28 days increased in the amounts of many volatile compounds; however, the amounts of some important volatile compounds were decreased. These results clearly demonstrate that muscle type and ageing have a potential effect on meat quality, sensory characteristics and volatile profile.  相似文献   

20.
Crossbred steers (n = 30) were used to explore and compare tenderness improvements in beef round and sirloin muscles resulting from various methods of prerigor skeletal separations. Animals were slaughtered according to industry procedures, and at 60 min postmortem one of six treatments was applied to each side: A) control, B) saw pelvis at the sirloin-round junction, C) separate the pelvic-femur joint, D) saw femur at mid-point, E) combination of B and C, and F) combination of B and D. After 48 h, the following muscles were excised from each side: semimembranosus, biceps femoris, semitendinosus, and adductor from the round; vastus lateralis and rectus femoris from the knuckle; and gluteus medius, biceps femoris and psoas major from the sirloin. Following a 10-d aging period, samples were removed from each muscle to determine the effect of treatment on sarcomere length and Warner-Bratzler shear force. Most skeletal separation treatments resulted in longer sarcomeres than controls for semimembranosus, adductor, semitendinosus, and gluteus medius muscles. All skeletal separation treatments yielded shorter sarcomeres for the psoas major as compared with controls. Warner-Bratzler shear force differed among treatments for rectus femoris, semitendinosus, and psoas major. For rectus femoris, treatments C, D, E, and F resulted in lower (P < 0.05) shear values than for controls. Treatments B, D, and F increased shear force of the semitendinosus relative to controls (P < 0.05) within muscle. Treatment F resulted in higher shear force values for the PM than controls (P < 0.05). Correlations between sarcomere length and shear force were found to be low and quite variable among muscles. In general, treatments increased sarcomere length of several muscles from the sirloin/round region, but had mixed effects on shear force values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号