首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
While studying powdery mildew resistance in a recombinant line (code 81882) derived from a Hordeum vulgare (cv. ‘Vada’) ×Hordeum bulbosum hybrid, a low infection type of resistance to leaf rust was observed. To determine the mode of inheritance of the leaf rust resistance and whether there was linkage between the two resistances, F2 and F3 progenies from crosses between 81882 and ‘Vada’ were inoculated with the leaf rust and powdery mildew pathogens. Southern blots were prepared using restricted DNA extracted from leaves of 82 F2 plants and four chromosome 2HS sequences were hybridized with the blots to define the length of the introgression. The leaf rust resistance appears to be inherited as a single dominant gene on chromosome 2HS, which co-segregates with the powdery mildew resistance. There was an almost complete association between the resistances and the respective molecular markers, but it is likely that the strong linkage results from the frequent inheritance of the introgressed H. bulbosum DNA as an intact segment of chromatin with only low levels of recombination within the segment.  相似文献   

2.
Xu Jie  J. W. Snape 《Euphytica》1989,41(3):273-276
Summary Two tetraploid and two diploid clones of Hordeum bulbosum were screened for resistance to five isolates of powdery mildew which are virulent on cultivated barley. All were resistant and this resistance was also expressed in hybrids with H. vulgare. The tetraploid genotypes were also resistant to isolates of yellow rust and brown rust. These results show that H. bulbosum contains useful genes for resistance to these diseases and that there is a potential to transfer these into cultivated barley.  相似文献   

3.
Scald is a serious foliar disease that infects barley (Hordeum vulgare L.) causing reduced yields and adversely affecting quality. A means to combat the disease is to breed cultivars that possess genetic resistance. However, all known resistance alleles have so far originated from within the primary genepool of barley. This reliance on H. vulgare and H. vulgare ssp. spontaneum as resistance sources may encourage virulent forms of the pathogen to become established. To broaden the genetic base of cultivated barley and provide novel resistances to many diseases we have used a species from the secondary genepool of barley, H. bulbosum, in a resistance‐breeding programme. In this study we describe the development and trialling of a scald‐resistant recombinant line derived from a hybrid between H. vulgare and H. bulbosum. The scald resistance is simply inherited and located on the short arm of barley chromosome 4 (4HS).  相似文献   

4.
Septoria speckled leaf blotch (SSLB), caused by Septoria passerinii, has become one of the most serious diseases of barley in the Upper Midwest region of the USA. The recombinant line 36L5 derived from a backcross of the susceptible barley cultivar ‘Emir’ and a resistant Hordeum bulbosum parent Cb2920/4/Colch was found to be resistant to S. passerinii. Two doubled haploids derived from 36L5 were backcrossed to cv.‘Emir’ to obtain two BCF2 populations for determining the inheritance of resistance to S. passerinii. BCF2 progeny and BCF2:3 families were evaluated at the seedling stage in the greenhouse for reaction to S. passerinii. BCF2 progeny and BCF2:3 families from both crosses segregated 3 : 1 (resistant : susceptible), and 1:2:1 (resistant : segregating : susceptible), respectively, indicating that the H. bulbosum‐derived SSLB resistance is conferred by a single dominant gene. The H. bulbosum introgressions were positioned on chromosome 4HL by genomic and fluorescent in situ hybridizations (GISH and FISH, respectively) and by Southern hybridization with the rye repetitive sequence pSc119.2. These findings indicate that SSLB resistance in H. bulbosum has the potential to be transferred and utilized in barley breeding programs.  相似文献   

5.
R. Götz  W. Friedt 《Plant Breeding》1993,111(2):125-131
Barley yellow mosaic disease is caused by several viruses, i.e. barley yellow mosaic virus (BaYMV), barley mild mosaic virus (BaMMV) and BaYMV-2. The reaction of different barley germplasms to the barley mosaic viruses was studied in field and greenhouse experiments. The results show a complex situation; some varieties are resistant to all the viruses, while others are resistant to one or two of them only. Crosses between different barley germplasms were earned out in order to test whether genetic diversity of resistance against mosaic viruses does exist, particularly, BaMMV. A total of 45 foreign barley varieties were crossed to German cultivars carrying the resistance gene ym4. In F2 of 27 crosses, no segregation could be detected, leading to the conclusion that the resistance genes of the foreign parents are allelic with ym4 e.g. Ym1 (‘Mokusekko 3’) and Ym2 (‘Mihori Hadaka 3’). A total of 18 crosses segregated in F2 indicating that foreign parents, like ‘Chikurin Ibaraki 1’, ‘Iwate Omugi 1’, and “Anson Barley”, carry resistance genes different from the gene of German cultivars, e.g. ‘Asorbia’ or ‘Franka’. By means of statistical evaluation (Chi2-test), the observed segregation ratios were analyzed in order to obtain significant information on the heredity of resistance. All the resistance genes described here as being different from the gene ym4, act recessively. Most of the exotic varieties seem to carry only one resistance gene. In a few cases, more than one gene may be present.  相似文献   

6.
An inventory of 481 lines derived from 12 Ethiopian barley (Hordeum vulgare L.) landraces and the checks was made for partial resistance to Puccinia hordei under greenhouse and field conditions at Adet, Ambo and Sinana Agricultural Research Centers in 2003 and 2004 cropping seasons in Ethiopia. The experiments were laid out in a triple lattice design. Each plot consisted of two rows of 1–m long with spacing of 0.20 m between rows. The overall mean leaf rust epidemics varied from area under disease progress curve (AUDPC) of 86 to 1,835. The disease was as high as AUDPC 1,378 on the susceptible check L94. Highly significant variations were recorded between and within the landraces/lines in leaf rust incidence, severity, days to heading, plant height, thousand seed weight and yield. Similarly, the variations between and within barley groups from three altitude areas and three ear-types were significant. Landraces 1686, 3255, 3262 and 3783 had the least and landraces 219900, 3975 and 3980 had the highest leaf rust severity. Of the 481 lines tested, 413 (86%) had significantly lower disease than the susceptible check, but not than the partial resistant check Vada. In contrast, the yields were more for lines with less disease than for those with high. The frequency of resistant landraces/lines was more in altitude 2,301–2,500 m, and irregular and two rows ear-types than in lower altitude areas and six rows ear-type. Nevertheless, the correlation and regression analysis revealed the adverse effect of the disease in the yields of barley. The 413 lines with high infection types at seedling stage and lower AUDPC under field conditions possess partial resistance to leaf rust.  相似文献   

7.
K. Wilde    H. H. Geiger    T. Miedaner 《Plant Breeding》2006,125(3):225-230
Leaf rust (Puccinia recondita Rob. ex. Des.) is the most frequently occurring leaf disease in German winter rye (Secale cereale L.). To test the usefulness of race‐specific resistance genes, the effects of increased host diversity and complexity by producing two‐ and four‐line synthetics from inbred lines carrying different resistance genes were analysed. Thirty‐three synthetics along with two full‐sib families and one hybrid variety were tested in 17 environments in Germany under natural infections. For comparison, the parent lines of the synthetics were evaluated in 11 environments. Only two synthetics and the full‐sib families were resistant across all environments. Observed resistance levels of the synthetics were highly correlated (r = 0.83, P = 0.01) with those predicted from the parental values. Host complexity had a minor effect in two‐line synthetics only. In conclusion, the effectiveness of race‐specific leaf‐rust resistances among environments, and increasing the host complexity and diversity does not lead to a higher resistance level than that expected from the resistances of the parents.  相似文献   

8.
Summary Soil-borne mosaic inducing viruses, i.e., barley mild mosaic virus (BaMMV), barley yellow mosaic virus (BaYMV), and BaYMV-2, cause one of the most important diseases of winter barley in Western Europe. Since resistance of all commercial European barley cultivars is due to a single recessive gene (ym4) which is not effective against BaYMV-2, exotic barley germplasms (Hordeum vulgare L., H. spontaneum Koch) were screened for resistance to the different viruses and analyzed for genetic diversity concerning BaMMV resistance. In these studies it turned out that resistance to BaMMV is entirely inherited recessively and that a high degree of genetic diversity concerning resistance is present within the barley gene pool at least to BaMMV. Therefore, exotic barley germplasms are a very useful source for the incorporation of different resistance genes into barley breeding lines, thereby enabling the breeder to create cultivars adapted to cultivation in the growing area of fields infested by soil-borne viruses. Furthermore, in order to obtain more information on these germplasms they were evaluated for agronomic traits and isozyme, RFLP and RAPD analyses were carried out on these varieties to detect markers linked to the respective resistance genes and to obtain information on the genetic similarity between yellow mosaic resistant barley accessions derived from different parts of the world. Actual results of these studies are briefly reviewed.  相似文献   

9.
Summary The leaf rust responses of wheat lines carrying the complementary genes Lr27 and Lr31 and the same genes in a Chinese Spring background which contains Lr34, indicate that Lr34 interacts with the complementary genes to give enhanced levels of field resistance to leaf rust. Lr34, particularly in combination with other genes, is considered to be an important gene for imparting a high degree of durable resistance to leaf rust. Its similarity to Sr2, an adult plant gene for resistance to stem rust and its association with adult plant resistances to stem and stripe rusts are discussed.  相似文献   

10.
Summary Six partially resistant spring barley cultivars were exposed to four barley leaf rust (Puccinia hordei) races in the field and in the greenhouse. The 24 cultivar-race combinations were tested in field plots of 1.5×1.5 m2 in two replications over two years. To reduce the interplot exchange of urediospores each plot was surrounded by winter rye.The level of barley leaf rust varied among cultivars, races and years. In both years the variance for cultivar-race interactions was highly significant and originating largely from the cultivar-race combinations Berac-22. Armelle-22, Armelle-A and Tyra-A. The Berac-22 interaction was towards higher, the other three interactions towards a lower level of barley leaf rust. The reduced rust levels of these three combinations were not due to interactions between the partial resistance of these cultivars and the aggressiveness of the races but to major genes for hypersensitivity not effective to the races 1-2-1 and F, common in Western Europe, but effective against the rare races 22 and A. This was revealed in the greenhouse experiments where all combinations had a susceptible infection type except Armelle-22, Armelle-A and Tyra-A, which showed low infection types in both the seedling and adult plant stages. The urediosori present in the field plots of these three combinations apparently arose from spores derived from other plots; this interplot interchange suggesting partial resistance.The interaction of Berac with race 22 truly was a small race-specific effect within the polygenic, partial resistance of barley to barley leaf rust like the one reported before between Julia and race 18.  相似文献   

11.
Summary Hexaploid and octoploid tritordeums and their parents Hordeum chilense and Triticum spp. were screened for resistance to isolates of wheat and barley yellow and brown rusts. All H. chilense lines were highly resistant to both wheat and barley brown rust, few lines were susceptible to wheat yellow rust while susceptibility to barley yellow rust was common. In general the resistance of tritordeum is predominantly contributed by the wheat parent and apparently the genes for resistance in H. chilense are inhibited in their expression by the presence of the wheat genome.Abbreviations WYR wheat yellow rust - WBR wheat brown rust - BYR barley yellow rust - BBR barley brown rust  相似文献   

12.
Summary Eight Hordeum bulbosum selections were produced from a cross between Cb 2920/4 and Cb 2929/1, two genotypes widely used in doubled haploid breeding programmes. The selections were hybridized with barley to evaluate their ability to produce high proportions of well-differentiated haploid embryos compared with Cb 2929/1 as control. We report here an initial small-scale investigation followed by a larger-scale test in two different environments to assess seed setting, haploid embryo differentiation rates and VB hybrid formation. These VB embryos contain both parental sets of chromosomes and occur more frequently in the glasshouse during the winter. Two of the eight selections were identified as combining the desirable characteristics of both parents, namely high seed setting on cv. Vada which is partially incompatible with H. bulbosum, large numbers of well-differentiated haploid embryos and a low incidence of VB hybrids. The selections are available for release to interested research workers and plant breedersAbbreviations DH doubled haploid - VB a hybrid from H. vulgare x H. bulbosum which contains both parental sets of chromosomes  相似文献   

13.
Leaf‐rust resistance (Rph) genes in 61 Czech and Slovak barley cultivars and 32 breeding lines from registration trials of the Czech Republic were postulated based on their reaction to 12 isolates of Puccinia hordei with different combinations of virulence genes. Five known Rph genes (Rph2, Rph3, Rph4, Rph7, and Rph12) and one unknown Rph gene were postulated to be present in this germplasm. To corroborate this result, the pedigree of the barley accessions was analysed. Gene Rph2, as well as Rph4, originated from old European cultivars. The donor of Rph3, which has been mainly used by Czech and Slovak breeders, is ‘Ribari’ (‘Baladi 16’). Rph12 originates from barley cultivars developed in the former East Germany. Rph7 in the registered cultivar ‘Heris’ originates from ‘Forrajera’. A combination of two genes was found in 10 cultivars. Nine heterogeneous cultivars were identified; they were composed of one component with an identified Rph gene and a second component without any resistance gene. No gene for leaf rust resistance was found in 17 of the accessions tested. This study demonstrates the utility of using selected pathotypes of P. hordei for postulating Rph genes in barley.  相似文献   

14.
P. Devaux    T. Adamski  M. Surma 《Plant Breeding》1990,104(4):305-311
Crosses were made between four spring barley (Hordeum vulgare L.) cultivars and five F1, hybrids with one genotype of Hordeum bulbosum L. in two locations to investigate further previous low crossabilities which had been found in the barley cultivar ‘Apex’ with H. bulbosum. Data at all the main steps of the H. bulbosum technique were recorded and statistically analyzed. Significant differences between barley genotypes were demonstrated for all characters. It was confirmed that ‘Apex’ has poor crossability with H. bulbosum. Out of the three F1 hybrids having ‘Apex’ as one parent, two exhibited low crossability similarly to ‘Apex’ but one showed significantly higher seed setting than ‘Apex’. The effect of the location was only significant on seed setting, while genotype X location interactions were significant on seed setting, seed quality and rate of haploid plants in relation 10 florets pollinated. Another problem which has influenced the success rate of the H. bulbosum method was found in the cultivar ‘Havilla’. Although seed setting and seed quality were high for this cultivar, embryo differentiation was low. However, this latter problem was found to influence less the overall success rate than poor crossability. Mahalanobis's distances were calculated and the dendrite of the shortest distances between barley genotypes was plotted.  相似文献   

15.
Breeding for adult plant resistance (APR) is currently impeded by the low frequency of annual field‐based testing and variable environmental conditions. We developed and implemented a greenhouse‐based methodology for the rapid phenotyping of APR to leaf rust in barley to improve the efficacy of gene discovery and cloning. We assessed the effects of temperature (18 and 23°C) and growth stage (1–5 weeks) on the expression of APR in the greenhouse using 28 barley genotypes with both known and uncharacterized APR. All lines were susceptible in week 1, while lines carrying Rph20 and several with uncharacterized resistance expressed resistance as early as week 2. In contrast, lines lacking Rph20 and carrying either Rph23 and/or Rph24 expressed resistance from week 4. Resistant phenotypes were clearest at 18°C. A subset of 16 of the 28 lines were assessed for leaf rust across multiple national and international field sites. The greenhouse screening data reported in this study were highly correlated to most of the field sites, indicating that they provide comparable data on APR phenotypes for screening purposes.  相似文献   

16.
Summary Ten barley mutants and five Ethiopian barley lines representing 11 independently arisen powdery mildew resistance genes in the ml-o locus were tested at the seedling stage to cultures of the powdery mildew fungus from Europe, Israel, USA. Canada, and Japan. They were resistant with infection type 0/(4) in all tests. They were also resistant to field populations of the pathogen when scored in disease nurseries at more than 78 locations in 29 countries in Europe, the Near East, North and South America. New Zealand, and Japan. This indicates that the 11 genes confer the same, world-wide spectrum of powdery mildew resistance. They have no effect on several other barley diseases such as stripe rust and leaf rust.Part of the research reported here was carried out under IAEA Research Agreement No 1043 and Research Contract No 139-74-1 BIO DK with the European Atomic Energy Community.  相似文献   

17.
A. Graner    S. Streng    A. Drescher    Y. Jin    I. Borovkova  B. J. Steffenson 《Plant Breeding》2000,119(5):389-392
Leaf rust of barley, caused by Puccinia hordei Otth, is an important foliar disease in most temperate regions of the world. Sixteen major leaf rust resistance (Rph) genes have been described from barley, but only a few have been mapped. The leaf rust resistance gene Rph7 was first described from the cultivar ‘Cebada Capa’ and has proven effective in Europe. Previously mapped restriction fragment length polymorphism (RFLP) markers have been used to determine the precise location of this gene in the barley genome. From the genetic analysis of a ‘Bow‐man’/‘Cebada Capa’ cross, Rph7 was mapped to the end of chromosome 3HS, 1.3 recombination units distal to the RFLP marker cMWG691. A codominant cleaved amplified polymorphic site (CAPS) marker was developed by exploiting allele‐specific sequence information of the cMWG691 site and adjacent fragments of genomic DNA. Based on the large amount of polymorphism present in this region, the CAPS marker may be useful for the marker‐assisted selection of Rph7 in most diverse genetic backgrounds.  相似文献   

18.
Summary A set of 105 European wheat cultivars, comprising 68 cultivars with known seedling resistance genes and 37 cultivars that had not been tested previously, was tested for resistance to selected Australian pathotypes of P. triticina in seedling greenhouse tests and adult plant field tests. Only 4% of the cultivars were susceptible at all growth stages. Twelve cultivars lacked detectable seedling resistance to leaf rust, and among the remaining cultivars, 10 designated genes were present either singly or in combination. Lr13 was the most frequently detected gene, present in 67 cultivars, followed by the rye-derived gene Lr26, present in 19 cultivars. Other genes present were Lr1, Lr3a, Lr3ka, Lr10, Lr14a, Lr17b, Lr20 and Lr37. There was evidence for unidentified seedling resistance in addition to known resistance genes in 11 cultivars. Field tests with known pathotypes of P. triticina demonstrated that 57% of the cultivars carried adult plant resistance (APR) to P. triticina. The genetic identity of the APR is largely unknown. Genetic studies on selected cultivars with unidentified seedling resistances as well as all of those identified to carry APR are required to determine the number and inheritance of the genes involved, to determine their relationships with previously designated rust resistance genes, and to assess their potential value in breeding for resistance to leaf rust.  相似文献   

19.
W. Lange 《Euphytica》1971,20(1):14-29
Summary From crosses between diploid and autotetraploid cytotypes of Hordeum vulgare L. (cultivated barley) and H. bulbosum L. (bulbous barley grass) diploid, triploid and tetraploid interspecific hybrids were produced. Both directly and after vegetative segregation crosses in either direction also gave rise to haploids and dihaploids resembling H. vulgare. The use of embryo culture was necessary. Plant morphology of the hybrids was much like that of H. bulbosum, although the hybrid plants were less vigorous. Meiosis in the hybrids was more or less disturbed, and this seemed to be the main cause of the high level of sterility.  相似文献   

20.
W. Lange 《Euphytica》1971,20(2):181-194
Summary In interspecific crosses between diploid and autotetraploid cytotypes of Hordeum vulgare L. (cultivated barley) and H. bulbosum L. (bulbous barley grass), several kinds of hybrid endosperm, vegetative tissue and generative tissue were studied. In all these tissues, mitotic disturbances occurred which resulted in chromosome elimination. The chromosomes of H. bulbosum were eliminated more frequently than those of H. vulgare.Differences between the three types of tissue might have been due to differences between their mitotic rhythms. Differences between various kinds of the same type of tissue were discussed in relation to the ratio of the total number of genomes in embryo, endosperm and maternal tissue, and the ratio of the genomes of the parental species within the hybrid nuclei. For both ratios assumptions as to the genetic value of each genome were taken into account.The cause of the disturbances was probably genic disharmony between the parental genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号