首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wright, H. M., Chen, A. V., Martinez, S. E., Davies, N. M. Pharmacokinetics of oral rufinamide in dogs. J. vet. Pharmacol. Therap.  35 , 529–533. The objective of this study was to determine the pharmacokinetic properties and short‐term adverse effect profile of single‐dose oral rufinamide in healthy dogs. Six healthy adult dogs were included in the study. The pharmacokinetics of rufinamide were calculated following administration of a single mean oral dose of 20.0 mg/kg (range 18.6–20.8 mg/kg). Plasma rufinamide concentrations were determined using high‐performance liquid chromatography, and pharmacokinetic data were analyzed using commercial software. No adverse effects were observed. The mean terminal half‐life was 9.86 ± 4.77 h. The mean maximum plasma concentration was 19.6 ± 5.8 μg/mL, and the mean time to maximum plasma concentration was 9.33 ± 4.68 h. Mean clearance was 1.45 ± 0.70 L/h. The area under the curve (to infinity) was 411 ± 176 μg·h/mL. Results of this study suggest that rufinamide given orally at 20 mg/kg every 12 h in healthy dogs should result in a plasma concentration and half‐life sufficient to achieve the therapeutic level extrapolated from humans without short‐term adverse effects. Further investigation into the efficacy and long‐term safety of rufinamide in the treatment of canine epilepsy is warranted.  相似文献   

2.
The objective of this study was to evaluate the pharmacokinetic properties and physiologic effects of a single oral dose of alprazolam in horses. Seven adult female horses received an oral administration of alprazolam at a dosage of 0.04 mg/kg body weight. Blood samples were collected at various time points and assayed for alprazolam and its metabolite, α‐hydroxyalprazolam, using liquid chromatography/mass spectrometry. Pharmacokinetic disposition of alprazolam was analyzed by a one‐compartmental approach. Mean plasma pharmacokinetic parameters (±SD) following single‐dose administration of alprazolam were as follows: Cmax 14.76 ± 3.72 ng/mL and area under the curve (AUC0–∞) 358.77 ± 76.26 ng·h/mL. Median (range) Tmax was 3 h (1–12 h). Alpha‐hydroxyalprazolam concentrations were detected in each horse, although concentrations were low (Cmax 1.36 ± 0.28 ng/mL). Repeat physical examinations and assessment of the degree of sedation and ataxia were performed every 12 h to evaluate for adverse effects. Oral alprazolam tablets were absorbed in adult horses and no clinically relevant adverse events were observed. Further evaluation of repeated dosing and safety of administration of alprazolam to horses is warranted.  相似文献   

3.
Siao, K. T., Pypendop, B. H., Stanley, S. D., Ilkiw, J. E. Pharmacokinetics of amantadine in cats. J. vet. Pharmacol. Therap. 34 , 599–604. This study reports the pharmacokinetics of amantadine in cats, after both i.v. and oral administration. Six healthy adult domestic shorthair female cats were used. Amantadine HCl (5 mg/kg, equivalent to 4 mg/kg amantadine base) was administered either intravenously or orally in a crossover randomized design. Blood samples were collected immediately prior to amantadine administration, and at various times up to 1440 min following intravenous, or up to 2880 min following oral administration. Plasma amantadine concentrations were determined by liquid chromatography–mass spectrometry, and plasma amantadine concentration–time data were fitted to compartmental models. A two‐compartment model with elimination from the central compartment best described the disposition of amantadine administered intravenously in cats, and a one‐compartment model best described the disposition of oral amantadine in cats. After i.v. administration, the apparent volume of distribution of the central compartment and apparent volume of distribution at steady‐state [mean ± SEM (range)], and the clearance and terminal half‐life [harmonic mean ± jackknife pseudo‐SD (range)] were 1.5 ± 0.3 (0.7–2.5) L/kg, 4.3 ± 0.2 (3.7–5.0) L/kg, 8.2 ± 2.1 (5.9–11.4) mL·min/kg, and 348 ± 49 (307–465) min, respectively. Systemic availability [mean ± SEM (range)] and terminal half‐life after oral administration [harmonic mean ± jackknife pseudo‐SD (range)] were 130 ± 11 (86–160)% and 324 ± 41 (277–381) min, respectively.  相似文献   

4.
Ondansetron is a 5‐HT3 receptor antagonist that is an effective anti‐emetic in cats. The purpose of this study was to evaluate the pharmacokinetics of ondansetron in healthy cats. Six cats with normal complete blood count, serum biochemistry, and urinalysis received 2 mg oral (mean 0.43 mg/kg), subcutaneous (mean 0.4 mg/kg), and intravenous (mean 0.4 mg/kg) ondansetron in a cross‐over manner with a 5‐day wash out. Serum was collected prior to, and at 0.25, 0.5, 1, 2, 4, 8, 12, 18, and 24 h after administration of ondansetron. Ondansetron concentrations were measured using liquid chromatography coupled to tandem mass spectrometry. Noncompartmental pharmacokinetic modeling and dose interval modeling were performed. Repeated measures anova was used to compare parameters between administration routes. Bioavailability of ondansetron was 32% (oral) and 75% (subcutaneous). Calculated elimination half‐life of ondansetron was 1.84 ± 0.58 h (intravenous), 1.18 ± 0.27 h (oral) and 3.17 ± 0.53 h (subcutaneous). The calculated elimination half‐life of subcutaneous ondansetron was significantly longer (P < 0.05) than oral or intravenous administration. Subcutaneous administration of ondansetron to healthy cats is more bioavailable and results in a more prolonged exposure than oral administration. This information will aid management of emesis in feline patients.  相似文献   

5.
The objective of this study was to assess the pharmacokinetic profile and determine whether any adverse effects would occur in seven healthy adult horses following oral meloxicam tablet administration once daily for 14 days at a dose of 0.6 mg/kg·bwt. Horses were evaluated for health using physical examination, complete blood count, serum chemistry, urinalysis, and gastroscopy at the beginning and end of the study. Blood was collected for the quantification of meloxicam concentrations with liquid chromatography and mass spectrometry. The mean terminal half‐life was 4.99 ± 1.11 h. There was no significant difference between the mean Cmax, 1.58 ± 0.71 ng/mL at Tmax 3.48 ± 3.30 h on day 1, 2.07 ± 0.94 ng/mL at Tmax 1.24 ± 1.24 h on day 7, and 1.81 ± 0.76 ng/mL at 1.93 ± 1.30 h on day 14 (P = 0.30). There was a statistically significant difference between the Tmax on the sample days (P = 0.04). No statistically significant increase in gastric ulcer score or laboratory analytes was noted. Oral meloxicam tablets were absorbed in adult horses, and adverse effects were not statistically significant in this study. Further studies should evaluate the adverse effects and efficacy of meloxicam tablets in a larger population of horses before routine use can be recommended.  相似文献   

6.
A study on pharmacokinetics of ponazuril in piglets was conducted after a single oral dose of 5.0 mg/kg b.w. Plasma concentrations were measured by high‐performance liquid chromatography assay with UV detector at 255‐nm wavelength. Pharmacokinetic parameters were derived by use of a standard noncompartmental pharmacokinetic analysis. Samples from six piglets showed good plasma concentrations of ponazuril, which peaked at 5.83 ± 0.94 μg/mL. Mean ± SD area under the plasma concentration–time curve was 1383.42 ± 363.26 h/μg/mL, and the elimination half‐life was 135.28 ± 19.03 h. Plasma concentration of ponazuril peaked at 42 h (range, 36–48 h) after administration and gradually decreased but remained detectable for up to 33 days. No adverse effects were observed during the study period. The results indicate that ponazuril was relatively well absorbed following a single dose, which makes ponazuril likely to be effective in swine.  相似文献   

7.
Clark, M. H., Hoenig, M., Ferguson, D. C., Dirikolu, L. Pharmacokinetics of pioglitazone in lean and obese cats. J. vet. Pharmacol. Therap.  35 , 428–436. Pioglitazone is a thiazolidinedione insulin sensitizer that has shown efficacy in Type 2 diabetes and nonalcoholic fatty liver disease in humans. It may be useful for treatment of similar conditions in cats. The purpose of this study was to investigate the pharmacokinetics of pioglitazone in lean and obese cats, to provide a foundation for assessment of its effects on insulin sensitivity and lipid metabolism. Pioglitazone was administered intravenously (median 0.2 mg/kg) or orally (3 mg/kg) to 6 healthy lean (3.96 ± 0.56 kg) and 6 obese (6.43 ± 0.48 kg) cats, in a two by two Latin Square design with a 4‐week washout period. Blood samples were collected over 24 h, and pioglitazone concentrations were measured via a validated high‐performance liquid chromatography assay. Pharmacokinetic parameters were determined using two‐compartmental analysis for IV data and noncompartmental analysis for oral data. After oral administration, mean bioavailability was 55%, t1/2 was 3.5 h, Tmax was 3.6 h, Cmax was 2131 ng/mL, and AUC0–∞ was 15 556 ng/mL·h. There were no statistically significant differences in pharmacokinetic parameters between lean and obese cats following either oral or intravenous administration. Systemic exposure to pioglitazone in cats after a 3 mg/kg oral dose approximates that observed in humans with therapeutic doses.  相似文献   

8.
This study described the pharmacokinetics of the intravenous fluorophore, fluorescein, and aimed to evaluate its utility for use in upper gastrointestinal confocal endomicroscopy (CEM). Six healthy, mature, mixed‐breed dogs were anesthetized and then dosed intravenously with fluorescein at 15 mg/kg. Blood samples were collected at predetermined time‐points. Dogs were examined by upper gastrointestinal confocal endomicroscopy and monitored for adverse effects. Plasma fluorescein concentrations were measured using high‐performance liquid chromatography (HPLC) with UV/Vis detection. Mean plasma concentration at 5 min was 57.6 ± 18.2 mg/L, and plasma concentrations decreased bi‐exponentially thereafter with a mean concentration of 2.5 mg/L ± 1.26 at 120 min. Mean terminal plasma elimination half‐life (t½β) was 34.8 ± 8.94 min, and clearance was 9.1 ± 3.0 mL/kg/min. Apparent volume of distribution at steady‐state was 0.3 ± 0.06 L/kg. Fluorescein provided optimal fluorescent contrast to enable in vivo histologically equivalent evaluation of topologic mucosal morphology within the first 30 min following intravenous administration. Adverse effects were not observed. Based upon the calculated clearance, a constant rate infusion at a rate of 0.18 mg/kg/min is predicted to be adequate, following an initial loading dose (2 mg/kg), to maintain plasma concentration at 20 mg/L for optimal CEM imaging during the study period.  相似文献   

9.
Siao, K. T., Pypendop, B. H., Stanley, S. D., Ilkiw, J. E. Pharmacokinetics of oxymorphone in cats. J. vet. Pharmacol. Therap. 34 , 594–598. This study reports the pharmacokinetics of oxymorphone in spayed female cats after intravenous administration. Six healthy adult domestic shorthair spayed female cats were used. Oxymorphone (0.1 mg/kg) was administered intravenously as a bolus. Blood samples were collected immediately prior to oxymorphone administration and at various times up to 480 min following administration. Plasma oxymorphone concentrations were determined by liquid chromatography–mass spectrometry, and plasma oxymorphone concentration–time data were fitted to compartmental models. A three‐compartment model, with input in and elimination from the central compartment, best described the disposition of oxymorphone following intravenous administration. The apparent volume of distribution of the central compartment and apparent volume of distribution at steady state [mean ± SEM (range)] and the clearance and terminal half‐life [harmonic mean ± jackknife pseudo‐SD (range)] were 1.1 ± 0.2 (0.4–1.7) L/kg, 2.5 ± 0.4 (2.4–4.4) L/kg, 26 ± 7 (18–38) mL/min.kg, and 96 ± 49 (62–277) min, respectively. The disposition of oxymorphone in cats is characterized by a moderate volume of distribution and a short terminal half‐life.  相似文献   

10.
11.
12.
Single and multiple dose pharmacokinetics (PK) of mirtazapine transdermal ointment applied to the inner ear pinna of cats were assessed. Study 1 was a randomized, cross‐over single dose study (n = 8). Cats were treated once with 0.5 mg/kg of mirtazapine transdermal ointment applied topically to the inner ear pinna (treatment) or administered orally (control) and then crossed over after washout. Plasma was collected predose and at specified intervals over 96 hr following dosing. Study 2 was a multiple dose study (n = 8). Cats were treated daily for 14 days with 0.5 mg/kg of mirtazapine transdermal ointment applied topically to the inner pinna. Plasma was collected on Day 13 predose and at specified intervals over 96 hr following the final dose. In Study 1, single transdermal administration of mirtazapine resulted in mean Tmax = 15.9 hr, Cmax = 21.5 ng/mL, AUC0‐24 = 100 ng*hr/mL, AUC0‐∞ = 260 ng*hr/mL and calculated half‐life = 26.8 hr. Single oral administration of mirtazapine resulted in mean Tmax = 1.1 hr, Cmax = 83.1 ng/mL, AUC0‐24 = 377 ng*hr/mL, AUC0‐∞ = 434 ng*hr/mL and calculated half‐life = 10.1 hr. Mean relative bioavailability (F) of transdermal to oral dosing was 64.9%. In Study 2, daily application of mirtazapine for 14 days resulted in mean Tmax = 2.1 hr, Cmax = 39.6 ng/mL, AUC0‐24 = 400 ng*hr/mL, AUC0‐∞ = 647 ng*hr/mL and calculated half‐life = 20.7 hr. Single and repeat topical doses of a novel mirtazapine transdermal ointment achieve measurable plasma concentrations in cats.  相似文献   

13.
The objective of this study was to determine the pharmacokinetics of single‐ and multi‐dose ceftiofur crystalline‐free acid (CCFA) administered subcutaneously at a dose of 13.2 mg/kg to 12 neonatal foals 1–3 days of age. Six foals received a single subcutaneous dose, while 6 additional foals received 4 doses of CCFA at 48‐h intervals. Blood samples were collected at pre‐determined times following drug administration, and plasma concentrations of ceftiofur free acid equivalents (CFAE) were measured using high‐performance liquid chromatography. Following single‐dose administration of CCFA, the mean ± standard deviation maximum observed plasma concentration was 3.1 ± 0.6 μg/mL and observed time to maximal plasma concentration was 14.0 ± 4.9 h. Following multi‐dose administration of CCFA, the mean ±standard deviation times above CFAE concentrations of ≥0.5 μg/mL and ≥2.0 μg/mL were 192.95 ± 15.86 h and 78.80 ± 15.31 h, respectively. The mean ± standard deviation area under the concentration vs time curve (AUC0→∝) was 246.2 ± 30.7 h × μg/mL and 172.7 ± 27.14 h × μg/mL following single‐ and multi‐dose CCFA administrations, respectively. Subcutaneous administration of CCFA at 13.2 mg/kg in neonatal foals was clinically well‐ tolerated and resulted in plasma concentrations sufficient for the treatment of most bacterial pathogens associated with neonatal foal septicemia. Multi‐dose administration of four doses at dosing interval of 48 h between treatments maintains appropriate therapeutic concentrations in neonatal foals.  相似文献   

14.
Lehr, T., Narbe, R., Jöns, O., Kloft, C., Staab, A. Population pharmacokinetic modelling and simulation of single and multiple dose administration of meloxicam in cats. J. vet. Pharmacol. Therap. 33 , 277–286. The objectives of these investigations were: first, to describe the pharmacokinetic properties of meloxicam in cats following single and multiple oral administration and secondly, to simulate different oral dosage regimes for meloxicam in cats after multiple dose administration to illustrate and evaluate those dosage regimes for the alleviation of inflammation and pain in cats. Six healthy domestic short hair cats were treated orally with various dosage regimes (0.05–0.2 mg/kg/day). Plasma samples were collected at predefined times and quantitatively analysed using liquid/liquid extraction followed by reverse phase HPLC with UV‐detection. Meloxicam plasma concentration data were analysed using the population pharmacokinetic approach (software: NONMEM). The final model was used to simulate different dosage regimes. The plasma concentration–time profiles of meloxicam in cats after oral single and multiple dose administration were best described by an open one‐compartment model with first‐order absorption and first‐order elimination. Pharmacokinetic parameters were estimated to be 0.00656 L/h/kg for the total apparent body clearance (CL/F), 0.245 L/kg for the apparent volume of distribution (V/F), 1.26 1/h for the absorption constant (KA) and 25.7 h for the mean plasma terminal half‐life. Simulations showed that the median trough steady‐state concentrations of 228 ng/mL were reached after five, one or 6 days following a single initial dose of 0.05, 0.1 and 0.2 mg/kg each followed by 0.05 mg/kg/day.  相似文献   

15.
Objective To validate a means of collecting tears from cats, develop an assay for quantifying famciclovir and penciclovir in tears, and to assess famciclovir and penciclovir concentrations and pharmacokinetics in the tears of cats being treated orally with famciclovir for suspected herpetic disease. Animals Seven client‐owned cats. Procedures Cats were treated orally with a median (range) dose of 40 (39–72) mg of famciclovir/kg three times daily for at least 24 h. At various time points following famciclovir administration, tear samples were collected using Schirmer tear test strips. Tear famciclovir and penciclovir concentrations were measured using liquid chromatography‐mass spectrometry, and concentration‐time profiles were analyzed noncompartmentally. The relationship between famciclovir dose and tear penciclovir concentration near its maximum was evaluated using least squares linear regression. Results Maximum tear famciclovir concentration of 0.305 μg/mL occurred at 2.64 h; elimination half‐life was 2.28 h. Maximum tear penciclovir concentration (0.981 μg/mL) occurred 2.25 h following oral administration of famciclovir; elimination half‐life was 2.77 h. A significant positive correlation was noted between famciclovir dose and tear penciclovir concentration at various time points between 0.5 and 3.75 h following drug administration (P = 0.025). Tear penciclovir concentration exceeded the concentration shown to have in vitro efficacy against feline herpesvirus (FHV‐1) (0.304 μg/mL) in about half of samples collected. Conclusions Oral administration of 40 mg of famciclovir/kg to cats resulted in a tear penciclovir concentration‐time profile that approximated the plasma penciclovir concentration‐time profile and frequently achieved a penciclovir concentration at the ocular surface likely to be effective against FHV‐1.  相似文献   

16.
OBJECTIVE: To describe the disposition of and pharmacodynamic response to atenolol when administered as a novel transdermal gel formulation to healthy cats. ANIMALS: 7 healthy neutered male client-owned cats. PROCEDURES: Atenolol was administered either orally as a quarter of a 25-mg tablet or as an equal dose by transdermal gel. Following 1 week of treatment, an ECG and blood pressure measurements were performed and blood samples were collected for determination of plasma atenolol concentration at 2 and 12 hours after administration. RESULTS: 2 hours after oral administration, 6 of 7 cats reached therapeutic plasma atenolol concentrations with a mean peak concentration of 579 +/- 212 ng/mL. Two hours following transdermal administration, only 2 of 7 cats reached therapeutic plasma atenolol concentrations with a mean peak concentration of 177 +/- 123 ng/mL. The difference in concentration between treatments was significant. Trough plasma atenolol concentrations of 258 +/- 142 ng/mL and 62.4 +/- 17 ng/mL were achieved 12 hours after oral and transdermal administration, respectively. A negative correlation was found between heart rate and plasma atenolol concentration. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of atenolol at a median dose of 1.1 mg/kg every 12 hours (range, 0.8 to 1.5 mg/kg) in cats induced effective plasma concentrations at 2 hours after treatment in most cats. Transdermal administration provided lower and inconsistent plasma atenolol concentrations. Further studies are needed to find an effective formulation and dosing scheme for transdermal administration of atenolol.  相似文献   

17.
The pharmacokinetics of selamectin were evaluated in cats and dogs, following intravenous (0.05, 0.1 and 0.2 mg/kg), topical (24 mg/kg) and oral (24 mg/kg) administration. Following selamectin administration, serial blood samples were collected and plasma concentrations were determined by high performance liquid chromatography (HPLC). After intravenous administration of selamectin to cats and dogs, the mean maximum plasma concentrations and area under the concentration-time curve (AUC) were linearly related to the dose, and mean systemic clearance (Clb) and steady-state volume of distribution (Vd(ss)) were independent of dose. Plasma concentrations after intravenous administration declined polyexponentially in cats and biphasically in dogs, with mean terminal phase half-lives (t(1/2)) of approximately 69 h in cats and 14 h in dogs. In cats, overall Clb was 0.470 +/- 0.039 mL/min/kg (+/-SD) and overall Vd(ss) was 2.19 +/- 0.05 L/kg, compared with values of 1.18 +/- 0.31 mL/min/kg and 1.24 +/- 0.26 L/kg, respectively, in dogs. After topical administration, the mean C(max) in cats was 5513 +/- 2173 ng/mL reached at a time (T(max)) of 15 +/- 12 h postadministration; in dogs, C(max) was 86.5 +/- 34.0 ng/mL at T(max) of 72 +/- 48 h. Bioavailability was 74% in cats and 4.4% in dogs. Following oral administration to cats, mean C(max) was 11,929 +/- 5922 ng/mL at T(max) of 7 +/- 6 h and bioavailability was 109%. In dogs, mean C(max) was 7630 +/- 3140 ng/mL at T(max) of 8 +/- 5 h and bioavailability was 62%. There were no selamectin-related adverse effects and no sex differences in pharmacokinetic parameters. Linearity was established in cats and dogs for plasma concentrations up to 874 and 636 ng/mL, respectively. Pharmacokinetic evaluations for selamectin following intravenous administration indicated a slower elimination from the central compartment in cats than in dogs. This was reflected in slower clearance and longer t(1/2) in cats, probably as a result of species-related differences in metabolism and excretion. Inter-species differences in pharmacokinetic profiles were also observed following topical administration where differences in transdermal flux rates may have contributed to the overall differences in systemic bioavailability.  相似文献   

18.
Yamarik, T. A., Wilson, W. D., Wiebe, V. J., Pusterla, N., Edman, J., Papich, M. G. Pharmacokinetics and toxicity of ciprofloxacin in adult horses. J. vet. Pharmacol. Therap. 33 , 587–594. Using a randomized, cross‐over study design, ciprofloxacin was administered i.g. to eight adult mares at a dose of 20 mg/kg, and to seven of the eight horses at a dose of 5 mg/kg by bolus i.v. injection. The mean C0 was 20.5 μg/mL (±8.8) immediately after i.v. administration. The Cmax was 0.6 μg/mL (±0.36) at Tmax 1.46 (±0.66) h after the administration of oral ciprofloxacin. The mean elimination half‐life after i.v. administration was 5.8 (±1.6) h, and after oral administration the terminal half‐life was 3.6 (±1.7) h. The overall mean systemic availability of the oral dose was 10.5 (±2.8)%. Transient adverse effects of mild to moderate severity included agitation, excitement and muscle fasciculation, followed by lethargy, cutaneous edema and loss of appetite developed in all seven horses after i.v. administration. All seven horses developed mild transient diarrhea at 36–48 after i.v. dosing. All eight horses dosed intragastrically experienced adverse events attributable to ciprofloxacin administration. Adverse events included mild transient diarrhea to severe colitis, endotoxemia and laminitis necessitating euthanasia of three horses on humane grounds. The high incidences of adverse events preclude oral and rapid i.v. push administration of ciprofloxacin.  相似文献   

19.
Neonatal foals have unique pharmacokinetics, which may lead to accumulation of certain drugs when adult horse dosage regimens are used. Given its lipophilic nature and requirement for hepatic metabolism, metronidazole may be one of these drugs. The purpose of this study was to determine the pharmacokinetic profiles of metronidazole in twelve healthy foals at 1–2.5 days of age when administered as a single intravenous (IV) and intragastric (IG) dose of 15 mg/kg. Foals in the intravenous group were studied a second time at 10–12 days of age to evaluate the influence of age on pharmacokinetics within the neonatal period. Blood samples were collected at serial time points after metronidazole administration. Metronidazole concentration in plasma was measured using LC‐MS. Pharmacokinetic parameters were determined using noncompartmental analysis and compared between age groups. At 1–2.5 days of age, the mean peak plasma concentration after IV infusion was 18.79 ± 1.46 μg/mL, elimination half‐life was 11.8 ± 1.77 h, clearance was 0.84 ± 0.13 mL/min/kg and the volume of distribution (steady‐state) was 0.87 ± 0.07 L/kg. At 10–12 days of age, the mean peak plasma concentration after IV infusion was 18.17 ± 1.42 μg/mL, elimination half‐life was 9.07 ± 2.84 h, clearance was 1.14 ± 0.21 mL/min/kg and the volume of distribution (steady‐state) was 0.88 ± 0.06 L/kg. Oral approximated bioavailability was 100%. Cmax and Tmax after oral dosing were 14.85 ± 0.54 μg/mL and 1.75 (1–4) h, respectively. The elimination half‐life was longer and clearance was reduced in neonatal foals at 1–2.5 days as compared to 10–12 days of age (P = 0.006, P = 0.001, respectively). This study warrants consideration for altered dosing recommendations in foals, especially a longer interval (12 h).  相似文献   

20.
The purpose of this study was to determine the pharmacokinetics of the FDA‐approved labeled dose of diclazuril and compare it to a low dose in plasma and CSF in adult horses. During each research period, six healthy adult horses received 0.5 mg/kg of 1.56% diclazuril pellets (ProtazilTM, Merck Animal Health) compared to the approved labeled dose of 1 mg/kg orally once in two separate phases. A dose of 0.5 mg/kg was calculated to each horse's weight. Blood was then collected immediately before diclazuril administration and then at regular intervals up to a 168 h. After the last blood collection following the single dose at hour 168, a once daily oral dose was administered for the next 10 days to ensure the drug's concentration reached steady‐state. To determine the CSF concentration at steady‐state, CSF samples were collected after the 9th oral dose. Blood was then collected after the 10th dose and then at regular intervals up to 168 h. A washout period of 4 weeks was allowed before repeating this protocol for the FDA‐labeled dose at 1 mg/kg. Plasma and CSF samples were analyzed by high‐pressure liquid chromatography. A one‐compartment pharmacokinetic model with first‐order oral absorption was fitted to the single administration data. Steady‐state pharmacokinetics was performed using noncompartmental analysis for steady‐state analysis. The mean (standard deviation) concentration of diclazuril in CSF following the low dose was 26 ng/mL (5 ng/mL), while CSF in the FDA‐labeled dose was 25 ng/mL (4 ng/mL), P = 0.3750. Substantial accumulation in plasma occurred at steady‐state after the 10th dose for both doses. The results of this study show that diclazuril pellets given at the approved label dose and a lower dose both produce similar plasma drug concentrations at steady‐state and attain plasma and CSF concentrations known to inhibit Sarcocystis neurona in cell culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号