首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Our previous studies showed that several sipholane triterpenes, sipholenol A, sipholenone E, sipholenol L and siphonellinol D, have potent reversal effect for multidrug resistance (MDR) in cancer cells that overexpressed P-glycoprotein (P-gp/ABCB1). Through comparison of cytotoxicity towards sensitive and multi-drug resistant cell lines, we identified that the semisynthetic esters sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate potently reversed P-gp-mediated MDR but had no effect on MRP1/ABCC1 and BCRP/ABCG2-mediated MDR. The results from [3H]-paclitaxel accumulation and efflux studies suggested that these two triterpenoids were able to increase the intracellular accumulation of paclitaxel by inhibiting its active efflux. In addition, western blot analysis revealed that these two compounds did not alter the expression levels of P-gp when treated up to 72 h. These sipholenol derivatives also stimulated the ATPase activity of P-gp membranes, which suggested that they might be substrates of P-gp. Moreover, in silico molecular docking studies revealed the virtual binding modes of these two compounds into human homology model of P-gp. In conclusion, sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate efficiently inhibit the P-gp and may represent potential reversal agents for the treatment of multidrug resistant cancers.  相似文献   

2.
The resistance of tumor cells to a broad range of anticancer agents continues to be a problem for the success of cancer chemotherapy. Multidrug resistance (MDR) is due in part to three drug transporter proteins: ABCB1/P-glycoprotein (P-gp), ABCC1/multidrug resistance protein 1 (MRP1) and ABCG2/breast cancer resistance protein (BCRP). These transporters are part of the ATP-binding cassette (ABC) superfamily, whose members function as ATP-dependent drug-efflux pumps. Their activity can be blocked by various drugs such as verapamil (calcium channel blocker) and cyclosporin A (immunosuppressive agent), etc. These compounds are called MDR modulators or reversals. This review highlights several marine natural products with reversal effect on multidrug resistance in cancer, including agosterol A, ecteinascidin 743, sipholane triterpenoids, bryostatin 1, and welwitindolinones.  相似文献   

3.
Multidrug-resistance is a major obstacle facing cancer chemotherapy. This paper demonstrates that novel compound Ophiobolin-O reverses MCF-7/ADR resistance to adriamycin (ADM). The IC50 of ADM treated MCF-7 cells was 2.02 ± 0.05 µM and 74.00 ± 0.18 µM treated MCF-7/ADR cells, about 37-fold, compared to the former. However, 0.1 µM Ophiobolin-O (less than 20% inhibition concentration) combined with ADM caused the decreased IC50 of ADM to 6.67 ± 0.98 µM, indicating it reversed ADM resistance of MCF-7/ADR cells (11-fold). Furthermore, Ophiobolin-O increased ADM-induced mitochondrial pathway apoptosis and G2/M phase arrest, which is partly due to the elevation level of ROS in MCF-7/ADR cells. As we described in this paper, the reversal effect of Ophiobolin-O may be due to the reduction of resistance-related protein P-Glycoprotein (P-gp, also known as MDR1) through inhibiting the activity of the multidrug resistance 1 (MDR1) gene promoter, which makes MCF-7/ADR cells more sensitive to ADM treatment. Assays in nude mice also showed that the combination of ADM and Ophiobolin-O significantly improved the effect of ADM.  相似文献   

4.
Chemical analysis of an M1 agar plate cultivation of a marine fish-gut-derived fungus, Chrysosporium sp. CMB-F214, revealed the known chrysosporazines A–D (11–14) in addition to a suite of very minor aza analogues 1–6. A microbioreactor (MATRIX) cultivation profiling analysis failed to deliver cultivation conditions that significantly improved the yields of 1–6; however, it did reveal that M2 agar cultivation produced the new natural product 15. A precursor-directed biosynthesis strategy adopting supplementation of a CMB-F214 M1 solid agar culture with sodium nicotinate enhanced production of otherwise inaccessible azachrysposorazines A1 (1), A2 (2), B1 (3), C1 (4), C2 (5) and D1 (6), in addition to four new chrysosporazines; chrysosporazines N–P (7–9) and spirochrysosporazine A (10). Structures inclusive of absolute configurations were assigned to 1–15 based on detailed spectroscopic and chemical analyses, and biosynthetic considerations. Non-cytotoxic to human carcinoma cells, azachrysosporazies 1–5 were capable of reversing doxorubicin resistance in P-glycoprotein (P-gp)-overexpressing human colon carcinoma cells (SW620 Ad300), with optimum activity exhibited by the C-2′ substituted analogues 3–5.  相似文献   

5.
Pancreatic ductal adenocarcinoma (PDAC) is a devastating digestive system carcinoma with high incidence and death rates. PDAC cells are dependent on the Gln metabolism, which can preferentially utilize glutamic oxaloacetate transaminase 1 (GOT1) to maintain the redox homeostasis of cancer cells. Therefore, small molecule inhibitors targeting GOT1 can be used as a new strategy for developing cancer therapies. In this study, 18 butyrolactone derivatives (1–18) were isolated from a marine-derived Aspergillus terreus, and asperteretone B (5), aspulvinone H (AH, 6), and (+)-3′,3′-di-(dimethylallyl)-butyrolactone II (12) were discovered to possess significant GOT1-inhibitory activities in vitro, with IC50 values of (19.16 ± 0.15), (5.91 ± 0.04), and (26.38 ± 0.1) µM, respectively. Significantly, the molecular mechanism of the crystal structure of GOT1–AH was elucidated, wherein AH and the cofactor pyrido-aldehyde 5-phosphate competitively bound to the active sites of GOT1. More importantly, although the crystal structure of GOT1 has been discovered, the complex structure of GOT1 and its inhibitors has never been obtained, and the crystal structure of GOT1–AH is the first reported complex structure of GOT1/inhibitor. Further in vitro biological study indicated that AH could suppress glutamine metabolism, making PDAC cells sensitive to oxidative stress and inhibiting cell proliferation. More significantly, AH exhibited potent in vivo antitumor activity in an SW1990-cell-induced xenograft model. These findings suggest that AH could be considered as a promising lead molecule for the development of anti-PDAC agents.  相似文献   

6.
AD-2-1 is an antitumor fungal mutant obtained by diethyl sulfate mutagenesis of a marine-derived Penicillium purpurogenum G59. The G59 strain originally did not produce any metabolites with antitumor activities in MTT assays using K562 cells. Tracing newly produced metabolites under guidance of MTT assay and TLC analysis by direct comparison with control G59 extract, seven new (1–7) and two known (8–9) lipopeptides were isolated together with five known polyketides 10–14 from the extract of mutant AD-2-1. Structures of the seven new compounds including their absolute configurations were determined by spectroscopic and chemical evidences and named as penicimutalides A–G (1–7). Seven known compounds were identified as fellutamide B (8), fellutamide C (9), 1′-O-methylaverantin (10), averantin (11), averufin (12), nidurufin (13), and sterigmatocystin (14). In the MTT assay, 1–14 inhibited several human cancer cell lines to varying extents. All the bioassays and HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses demonstrated that the production of 1–14 in the mutant AD-2-1 was caused by the activated production of silent metabolites in the original G59 fungal strain. Present results provided additional examples for effectiveness of the chemical mutagenesis strategy using diethyl sulphate mutagenesis to discover new compounds by activating silent metabolites in fungal isolates.  相似文献   

7.
P-glycoprotein (P-gp) is a protein belonging to the ATP-binding cassette (ABC) transporters superfamily that has clinical relevance due to its role in drug metabolism and multi-drug resistance (MDR) in several human pathogens and diseases. P-gp is a major cause of drug resistance in cancer, parasitic diseases, epilepsy and other disorders. This review article aims to summarize the research findings on the marine natural products with P-glycoprotein inhibitor properties. Natural compounds that modulate P-gp offer great possibilities for semi-synthetic modification to create new drugs and are valuable research tools to understand the function of complex ABC transporters.  相似文献   

8.
Two new cubitanoids, nanoculones A and B (1 and 2), and three new cembranoids, nanolobols A–C (3–5), as well as six known compounds, calyculone I (6), sinulariuol A (7), sinulariols C, D, H, and J (8–11), were isolated from the soft coral Sinularia nanolobata, collected off the coast of the eastern region of Taiwan. Their structures were elucidated on the basis of extensive spectroscopic analysis. Cytotoxicity of compounds 1–11 was evaluated. The nitric oxide (NO) inhibitory activity of selected compounds was further measured by assay of lipopolysaccharide (LPS)-stimulated NO production in activated RAW264.7 cells. The results showed that none of 1–11 exhibited cytotoxicity against the tested cancer cell lines, whereas compound 8 was found to significantly reduce NO production.  相似文献   

9.
Chemical investigation of the South China Sea soft coral Lemnalia sp. afforded 13 structurally diverse terpenoids, including three new neolemnane sesquiterpene lineolemnenes E–G (1–3); a new aristolane-type sesquiterpenoid, 2-acetoxy-aristolane (4); four new decalin-type bicyclic diterpenes, named biofloranates A−D (5−8); a new serrulatane, named euplexaurene D (9); and a new aromadendrane-type diterpenoid cneorubin K (10), together with three known related compounds (11−13). The structures of the new compounds were elucidated by NMR spectroscopy, the Mosher’s method, and ECD analysis. Compounds 1–13 were tested in a wide panel of biological assays. Lineolemnene J (3) showed weak cytotoxicity against the CCRF-CEM cancer cell line. The isolated new diterpenes, except euplexaurene D (9), demonstrated moderate antimicrobial activity against Bacillus subtilis and Staphylococcus aureus with a MIC of 4−64 μg/mL. Compound 2 exhibited a mild inhibitory effect against influenza A H1N1 virus (IC50 = 5.9 µM).  相似文献   

10.
Three new (1–3) and 11 known (4–14) C25 steroids with an unusual bicyclo[4.4.1]A/B ring system were isolated by tracing newly produced metabolites in the EtOAc extract of an antitumor mutant AD-1-2 obtained by the diethyl sulphate (DES) mutagenesis of a marine-derived Penicillium purpurogenum G59. HPLC-PDAD-UV and HPLC-ESI-MS analyses indicated that the G59 strain did not produce these metabolites and the production of 1–14 in the mutant AD-1-2 extract was caused by the activation of silent metabolites in the original G59 strain by DES mutagenesis. The structures of the new compounds, named antineocyclocitrinols A (1) and B (2) and 23-O-methylantineocyclocitrinol (3), including their absolute configurations were determined by various spectroscopic methods, especially the NMR and Mo2-induced CD analyses. Compounds 1–3 provide the first examples of the C25 bicyclo[4.4.1]A/B ring steroids with the Z-configuration of 20,22-double bond. All of 1–14 weakly inhibited several human cancer cell lines to varying extents. These results provided additional examples for the successful application of the chemical mutagenesis strategy using DES to discover new compounds by activating silent metabolites in fungal isolates and supported also the effectiveness and usefulness of this new strategy.  相似文献   

11.
The marine plathyhelminth Macrostomum lignano was recently isolated from Adriatic shore sediments where it experiences a wide variety of environmental challenges, ranging from hypoxia and reoxygenation, feeding on toxic algae, to exposure to anthropogenic contaminants. As multidrug resistance transporters constitute the first line of defense against toxins and toxicants we have studied the presence of such transporters in M. lignano in living animals by applying optical methods and pharmacological inhibitors that had been developed for mammalian cells. Application of the MDR1 inhibitor Verapamil or of the MRP1 inhibitors MK571 or Probenecid increased the intracellular fluorescence of the reporter dyes Fura-2 am, Calcein am, Fluo-3 am in the worms, but did not affect their staining with the dyes Rhodamine B, CMFDA or Ageladine A. The marine sponge alkaloid Ageladine A remained intracellularly trapped for several days in the worms, suggesting that it does not serve as substrate of multidrug resistance exporters. In addition, Ageladine A did not affect multidrug resistance-associated protein (MRP)-mediated dye export from M. lignano or the MRP1-mediated glutathione (GSH) export from cultured rat brain astrocytes. The data obtained demonstrate that life-imaging is a useful tool to address physiological drug export from intact marine transparent flatworms by using multiphoton scanning microscopy.  相似文献   

12.
A series of new C11 cyclopentenones 1–7 was isolated, together with four known metabolites 9/10, 12 and 13, from the extract of the didemnid ascidian Lissoclinum sp. The other didemnid ascidian Diplosoma sp. contained didemnenones 1, 2 and 5, and five known metabolites 8–12. The structures of 1–7 were elucidated by spectroscopic analyses. Cytotoxicity of the isolated compounds was evaluated against three human cancer cell lines (HCT116, A431 and A549).  相似文献   

13.
Three new steroids, petasitosterones A and B (1 and 2) and a spirosteroid petasitosterone C (3), along with eight known steroids (4–11), were isolated from a Formosan marine soft coral Umbellulifera petasites. The structures of these compounds were elucidated by extensive spectroscopic analysis and comparison of spectroscopic data with those reported. Compound 3 is a marine steroid with a rarely found A/B spiro[4,5]decane ring system. Compounds 1–3 and 5 displayed inhibitory activity against the proliferation of a limited panel of cancer cell lines, whereas 2 and 5 exhibited significant anti-inflammatory activity to inhibit nitric oxide (NO) production. The inhibitory activities for superoxide anion generation and elastase release of compounds 1–11 were also examined to evaluate the anti-inflammatory potential, and 2–4 were shown to exhibit significant activities.  相似文献   

14.
15.
16.
Chemical investigation of the South-Pacific marine sponge Suberea clavata led to the isolation of eight new bromotyrosine metabolites named subereins 1–8 (2–9) along with twelve known co-isolated congeners. The detailed configuration determination of the first representative major compound of this family 11-epi-fistularin-3 (11R,17S) (1) is described. Their chemical characterization was achieved by HRMS and integrated 1D and 2D NMR (nuclear magnetic resonance) spectroscopic studies and extensive comparison with literature data. For the first time, a complete assignment of the absolute configurations for stereogenic centers C-11/17 of the known members (11R,17S) 11-epi-fistularin-3 (1) and 17-deoxyfistularin-3 (10) was determined by a combination of chemical modifications, Mosher’s technology, and ECD spectroscopy. Consequently, the absolute configurations of all our new isolated compounds 2–9 were determined by the combination of NMR, Mosher’s method, ECD comparison, and chemical modifications. Interestingly, compounds 2–7 were obtained by chemical transformation of the major compound 11-epi-fistularin-3 (1). Evaluation for acetylcholinesterase inhibition (AChE), DNA methyltransferase 1 (DNMT1) modulating activity and antifouling activities using marine bacterial strains are also presented.  相似文献   

17.
Chemical examination of a South China Sea soft coral Lobophytum sp. led to the isolation of three new α-methylene-γ-lactone-containing cembranoids, (1R*,3R*,4R*,14R*,7E,11E)-3,4-epoxycembra-7,11,15(17)-trien-16,14-olide (1), (1R*,7S*,14S*,3E,11E)-7-hydroperoxycembra-3,8(19),11,15(17)-tetraen-16,14-olide (2), and (1R*,7S*,14S*,3E,11E)-18-acetoxy-7-hydroperoxycembra-3,8(19),11,15(17)-tetraen-16,14-olide (3), along with eleven known analogues 4–14. The structures of the new compounds were elucidated through extensive spectroscopic analysis, including 1D and 2D NMR data. Compounds 1–3 exhibited moderate cytotoxic activity against the selected tumor cell lines. Moreover, 2 and 3 were found to be moderate inhibitors against the bacteria S. aureus and S. pneumoniae.  相似文献   

18.
A new stereoisomer of an araguspongine/xestospongin alkaloid, named araguspongine M (1), has been isolated together with 12 known compounds, araguspongines B (2) and D (3), dopamine, three galactosyl diacylglycerols, 24-methyl cholesterol, 5,6-dihydrocholesterol, β-sitosterol, and three 5α,8α-epidioxy sterols (11–13), from the marine sponge Neopetrosia exigua (formerly Xestospongia exigua) collected in Palau. The structure of 1 was assigned on the basis of its spectral data analysis. This is the first report on the isolation of dopamine from a marine sponge. This compound may be produced by an endosymbiotic Synechococcus-like cyanobacterium. Compounds 1–3 and 11–13 showed cytotoxicity against HL-60 at IC50’s of 5.5, 5.5, 5.9, 22.4, 9.5, and 9.6 μM, respectively. The possible biosynthesis origin of the isolated metabolites is discussed.  相似文献   

19.
Breast cancer resistance protein (BCRP) is a protein belonging to the ATP-binding cassette (ABC) transporter superfamily that has clinical relevance due to its multi-drug resistance properties in cancer. BCRP can be associated with clinical cancer drug resistance, in particular acute myelogenous or acute lymphocytic leukemias. The overexpression of BCRP contributes to the resistance of several chemotherapeutic drugs, such as topotecan, methotrexate, mitoxantrone, doxorubicin and daunorubicin. The Food and Drugs Administration has already recognized that BCRP is clinically one of the most important drug transporters, mainly because it leads to a reduction of clinical efficacy of various anticancer drugs through its ATP-dependent drug efflux pump function as well as its apparent participation in drug resistance. This review article aims to summarize the different research findings on marine natural products with BCRP inhibiting activity. In this sense, the potential modulation of physiological targets of BCRP by natural or synthetic compounds offers a great possibility for the discovery of new drugs and valuable research tools to recognize the function of the complex ABC-transporters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号