首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Powdery mildew resistance in Czech and Slovak barley cultivars   总被引:5,自引:0,他引:5  
Fifteen powdery mildew resistance genes and the gene MlaN81 derived from ‘Nepal 81’were found in 76 Czech and Slovak spring and winter barley cultivars when tested for reaction to a set of powdery mildew isolates. Nine cultivars (‘Donum’, ‘Expres’, ‘Jubilant’, ‘Orbit’, ‘Primus’, ‘Progres’, ‘Stabil’, ‘Vladan’ and ‘Zlatan’) are composed of lines with different resistance genes. The Mlat gene is present in nine cultivars and was transferred from the Anatolian landrace ‘A‐516′. The resistances derived from ‘KM‐1192’and ‘CI 7672’were identical and designated Ml(Kr). Five winter barley cultivars possess the Ml(Bw) resistance. The winter barley line ‘KM‐2099’carries the mlo gene. The parental cultivar ‘Palestine 10’was also tested in which the genes Mlk1, MlLa were identified. The German cultivar ‘Salome’, a parent of seven cultivars tested, probably carries the gene MlLa in addition to mlo and Mla7. The gene mlo6 may be present in the cultivar ‘Heris’. Most of the results were confirmed by the pedigrees of the cultivars.  相似文献   

2.
Leaf segments from seedlings of 68 old barley varieties and 38 more recent cultivars of past or current importance in France were infected with 6—9 powdery mildew isolates in order to identify race-specific resistance genes. No resistance gene was apparent in the 21 old winter varieties, 43 of 47 old spring varieties, 10 recent winter and 3 recent spring cultivars. Two old spring varieties (‘Colmar S 142’ and ‘Johanna’) were postulated to have Mlg and Ml(CP), and two others (‘Pontrieux’ and ‘Finistère 62-5’) had an unidentified, weakly effective gene. Mlg, Ml(CP), Mlb, Mla6 and Mlal3 were the only genes detected in recent winter cultivars. Recent spring cultivars presented the greatest diversity; the presence of one or several genes among Mlal, Mla6, Mla9, Mla12, Mlg, Ml(CP), Ml(La), Mlk and mlo was postulated in several lines.  相似文献   

3.
T. Miedaner    K. Flath 《Plant Breeding》2007,126(6):553-558
Powdery mildew in wheat (Blumeria graminis f. sp. tritici) is a major disease in Northern and Central Europe. The aim of the study was to analyse the effectiveness and environmental stability of quantitative powdery mildew resistance under high epidemic pressure in the field across years in the absence/presence of ineffective race‐specific resistances. Cultivars with and without Pm (major) genes were inoculated in three experiments with a genetically broad mildew population with all matching virulences. Resistance was measured three times by assessing the percentage of leaf area covered by powdery mildew on a plot basis (0–100%). Mean powdery mildew severity of the highly susceptible cv. ‘Kanzler’ varied across 10 years from 24% to 66% (Exp. 1). Means of three cultivars without Pm genes, ‘Ramiro’, ‘Miras’ and ‘Zentos’, and several cultivars with ineffective Pm genes varied quantitatively from 4% to 13%. Environmental stability of the quantitative resistances was on average higher than that of susceptible genotypes, as revealed by a regression approach. In the second experiment, all groups of cultivars with ineffective Pm gene(s) contained a large proportion of entries with a similar low mildew rating as the quantitatively resistant standard ‘Miras’. Mildew severity of pairs of cultivars with the same Pm gene(s) was significantly different across 6 years (Exp. 3) indicating the presence of additional quantitative resistances in some of these cultivars. In the analysis of variance, genotypic variance had a high impact (P < 0.01) with low importance of genotype × environment interaction. Consequently, heritabilites were high (0.95–0.97). In conclusion, breeders have already accumulated effective minor genes for powdery mildew resistance in many of the released German winter wheat cultivars. These quantitative resistances are long lasting, environmentally stable and provide a high level of protection to powdery mildew.  相似文献   

4.
Two-hundred and thirty-two accessions of barley landraces collected from Tunisia were screened for resistance to powdery mildew. A number of race-specific genes were detected using the detached leaf technique. Among the 232 accessions tested, 169 were susceptible to powdery mildew, 20 were resistant and 43 showed differential reactions to the three isolates of powdery mildew used. An attempt was made to determine the number of genes, the types of gene, the types of gene action and the gene loci in 20 resistant accessions. Three types of cross were made: (1) the accessions were crossed to the susceptible variety ‘Pallas’, (2) the accessions were crossed with ‘Pallas’ isolines, and (2) accessions with identical powdery mildew reaction patterns were intercrossed. Three isolates of Erysiphe graminis f. sp. hordei were used: Bzm-1, KM 18-75, R13C. A number of different resistance genes were detected among the 19 resistant accessions. Surprisingly, segregation indicating single genes only were detected with the isolates used. Some of these genes could be associated with loci already known. In 19 cases a dominant and in one a recessive mode of inheritance was detected. The recessive gene was not located at the mlo locus. This investigation represents the first systematic study of race-specific genes for powdery mildew resistance in Tunisian landraces. The newly identified sources of resistance may be used in many strategies of breeding for disease resistance.  相似文献   

5.
The inheritance of the powdery mildew resistance gene Pm9 originating from the hexaploid spring wheat cultivar ‘Normandie’ was analyzed in relation to Pm1 and Pm2. Two leaf segments of individual P1?, P2?, F1? and F2-plants of the cross ‘Normandie’ (Pm1, 2, 9) בFederation’ (no known Pm gene) were inoculated separately with two powdery mildew isolates. Using powdery mildew isolate No. 6 virulent for Pm1 and Pm2 but avirulent for Pm9, a 1 resistant (r): 3 susceptible (s) F2-segregation was found for the Pm9 gene. Using powdery mildew isolate No. 3 virulent for Pm1 and Pm9 but avirulent for Pm2, a 3 (r): 1 (s) F2-segregation was found for the Pm2 gene. Combining the data of both experiments (leaf segments of identical plants had been used), a 9 (sr): 3 (ss): 3 (rr): 1 (rs) segregation resulted for the F2 of this cross: therefore, independent inheritance of the genes Pm2 and Pm9 can be concluded. Similarly, the cross ‘Mephisto’ (Pm1, 2, 9) בAmor’ (no known Pm gene) was analyzed. The Pm9 gene again showed a monogenically recessive inheritance, whereas Pm1 showed a monogenically intermediate segregation upon inoculation with powdery mildew isolate No. 9a virulent for Pm2 and Pm9 but avirulent for Pm1. Combining the single gene segregations, linkage between both genes was found among the progenies. A distance of 8.5 cM was calculated. Analyzing a set of spring wheat cultivars with seven defined powdery mildew isolates, the presence of Pm1, Pm2 and Pm9 in these lines was verified; in most cases, Pm1 occurred together with Pm9.  相似文献   

6.
Genes for Powdery Mildew Resistance in Cultivars of Spring Wheat   总被引:1,自引:0,他引:1  
M  Heun  G. Fischbeck 《Plant Breeding》1987,99(4):282-288
Twenty-three cultivars of spring wheat were inoculated with nineteen different powdery mildew isolates; their ruction patterns hive been compared with those of twenty-two cultivars/lines carrying identified powdery mildew resistance genes. Applying the gene-for-gene hypothesis, it is evident that three cultivars have none of the resistance genes used, seven others (including ‘Solo’) may carry Pm4b, only. The resistance pattern of ‘Selpek’ is identical to A/-1 resistant cultivars of winter wheat and may be explained by the presence of Pm5. The resistance pattern of Pm5 (Mt-i) cultivars is very different from a number of ‘Kolibri’-related cultivars of spring wheat. Since either all or nothing of that specific pattern has been transferred to all cross progenies of ‘Kolibri’, a single gene is assumed to oe responsible for it, preliminarily designated as Ml-k. The cultivar ‘Mephisto’ carries the ‘Normandie’ resistance (Pwl 2, 9). In five cultivars to spring wheat the combined effects of at least two of the above-mentioned sources have been found. Despite the fact that ‘Normandie’ and ‘Sappo’ are not closely related. ‘Sappo’ shows the complete ‘Normandie’ resistance pattern plus that of Pm4b. The same is true for ‘Planet’ and ‘Walter’.  相似文献   

7.
Identification of RAPD markers closely linked to the mlo-locus in barley   总被引:1,自引:0,他引:1  
Developing resistance to powdery mildew, Erysiphe graminis f.sp. hordei, is a major goal of many barley breeding programmes. Several resistance genes have been tagged or mapped with molecular markers. The mlo gene confers durable resistance towards all known isolates of the pathogen. In this study, RAPD markers and bulked segregant analysis were used to determine PCR-based markers linked to the mlo-locus. Sixty doubled haploid lines from a cross between an isogenic line of ‘Ingrid’ carrying the mlo11 allele and a susceptible cv. ‘Pokko’ were used as plant material. Seven linked RAPD markers were found, the closest lying 1.6 cM away from the resistance gene. When eight barley varieties were assayed for the presence of this band, F4-980, it was found in the resistant varieties but not in the susceptible ones. The linked marker bands could be amplified from DNA-samples prepared by using three different methods, including a quick squash technique. PCR-based markers linked to the resistance gene can be used as tools for selection in breeding programmes.  相似文献   

8.
A review of data on powdery mildew resistance genes in the Mla locus of barley reveals that there are at least 12 clusters of genes present, each comprising one Mla gene and one or more closely linked, additional resistance genes. Tentative designations are listed for 16 additional resistance genes. Many sources of powdery mildew resistance in barley appear to harbour multigene families in the Mla region, not single ‘superior’genes.  相似文献   

9.
M. Heun  G. Fischbeck 《Plant Breeding》1989,103(3):262-264
The inheritance of the Mlk powdery mildew resistance originating from ‘Heine 2174.50’ was analyzed by crossing the Mlk resistant cultivar ‘Ralle’× cv. ‘Amor’ (highly susceptible) and vice versa and by observing the reactions of F1- and F2-plants after inoculation with two different Mlk avirulent powdery mildew isolates. In all cases, a 3 (resistant): I (susceptible) segregation was found in F2. The reactions of the F2plants against the two powdery mildew isolates were identical in each case. Therefore, it is supposed that one dominant resistant gene is responsible for the resistant reactions against these two isolates. These results support the earlier assumption of Heun and Fischbeck (1987b) that the whole Mlk resistance pattern is controlled by a single gene.  相似文献   

10.
Race specific powdery mildew resistance in 23 winter wheat cultivars, eight spring wheat cultivars, and 14 lines/cultivars possessing known powdery mildew resistance genes, has been studied by analyzing host/pathogen interactions. The cultivars were tested as intact seedlings, and as detached primary leaf segments on water agar; both methods revealed reproducible and concordant results. The 45 cultivars/lines were divided into 24 resistance spectra according to the patterns of reaction to the powdery mildew isolates used. Of the 31 cultivars investigated, eight did not possess any of the resistance genes detected, and the remaining 23 were divided in 16 resistance spectra. The race specific resistance of nine cultivars was conferred by the single resistance genes Pm2, Pm4b, Pm5/Ml-i: or Pm6, while the race specific resistance of 14 cultivars was conferred by 2, 3, 4 or 5 genes in combination.  相似文献   

11.
While studying powdery mildew resistance in a recombinant line (code 81882) derived from a Hordeum vulgare (cv. ‘Vada’) ×Hordeum bulbosum hybrid, a low infection type of resistance to leaf rust was observed. To determine the mode of inheritance of the leaf rust resistance and whether there was linkage between the two resistances, F2 and F3 progenies from crosses between 81882 and ‘Vada’ were inoculated with the leaf rust and powdery mildew pathogens. Southern blots were prepared using restricted DNA extracted from leaves of 82 F2 plants and four chromosome 2HS sequences were hybridized with the blots to define the length of the introgression. The leaf rust resistance appears to be inherited as a single dominant gene on chromosome 2HS, which co-segregates with the powdery mildew resistance. There was an almost complete association between the resistances and the respective molecular markers, but it is likely that the strong linkage results from the frequent inheritance of the introgressed H. bulbosum DNA as an intact segment of chromatin with only low levels of recombination within the segment.  相似文献   

12.
Fourty two barley lines direved from the F7 of crosses between barley cultivars and different accessions of Hordeum spontaneum collected in Israel and 30 lines or varieties with known genes for resistance to powdery mildew were included m this study. Eleven European and three Israeli powdery mildew cultures, possessing virulence genes corresponding to known resistance genes, were used to make comparisons between the varieties with known resistance genes and H. spontaneum derived lines. The reaction pattern of 39 H. spontaneum derived lines was clearly different from the reaction pattern o; any of the known genes for mildew resistance included in this study. Only two cases were observed in which the reaction pattern of H. spontaneum derived lines agreed with reaction patterns of known genes for mildew resistance viz. Ml-a9 and Ml-p. Trie Mildew resistance of one line apparently traces back to uncontrolled outcrossing with a Ml-a.6+Ml-g resistant cultivar. Since the majority of the 42 host genotypes tested showed distinctive variation in resistant reaction types against different mildew cultures, this study docs not support the assumption that differences in resistant infection types against distinct mildew cultures are sufficient to indicate the presence of supplementary genes for resistance in a given genotype of the host. The results justify the conclusion that the natural population of H. spontaneum in Israel forms a large gene pool for mildew resistance which is not yet used m cultivated barley.  相似文献   

13.
Barley powdery mildew caused by Blumeria graminis f. sp. hordei can be effectively controlled using genetic resistance. Moreover, specific resistances are also important for characterizing cultivars and verifying their origin, purity and authenticity. Winter barley is distinguished by several specific resistances, which are usually absent in spring barley. Besides responses caused by known genes, many cultivars showed a response suggesting the presence of an unknown resistance. Therefore, the aim of this research was firstly, to test winter barley cultivars, suspected to carry an unknown resistance gene, using a large collection of pathogen isolates for their expression of this specific response and to characterise the corresponding resistance. A set of 16 winter barley accessions originating from four gene banks was studied where each accession was represented by five single plant progenies. For resistance tests, 56 isolates of the pathogen were used. A new resistance with a proposed designation of Lu was found in all 16 selected accessions. Apart from Lu, eight well‐known Ml genes (a6, a8, a12, g, h, Lo, ra and Ru2) were postulated. Two accessions of cv. 'Borwina' originating from different gene banks were found to differ in their set of resistance genes.  相似文献   

14.
The spatio-temporal distribution of race-specific resistances to powdery mildew was analysed in northern France (the east, the north and the west of Paris). Resistances were identified in 26 winter and six spring barley cultivars. Seedling leaf segments were inoculated with 20 powdery mildew isolates, chosen to identify 14 resistance alleles. As opposed to other European countries, the resistance alleles differed between winter and spring cultivars grown in the three regions. Most of the winter cultivars had no resistance allele, or only the widespread resistance alleles Mlra and/or Mlh, plus Mlg in the west. Mla9 and Mla13 were also present in the north, but at a low frequency. Spring cultivars carried the alleles Mla7, Mla9, Mla12, Mlk, Mlg or MlLa in the east, where a diversification of resistances has occurred since 1987, particularly because of the use of ‘Volga’ (Mla7, Mlk, Mlg and MlLa). In the north and the west, Mla12 dominated after a decrease in the frequency of Mla7, Mla13 has recently been introduced in the north and the west with the cultivar ‘Vodka’.  相似文献   

15.
规模化定位小麦品种携带的抗白粉病基因对于抗病性种质创新和新品种选育具有重要的意义。本研究采用Illumina Infinium iSelect 90k SNP芯片结合集群分离分析法(bulked segregate analysis,BSA)对36个河南省小麦新品系携带的抗白粉病基因进行了定位。SNP芯片检测表明,在24个小麦品系构建的抗、感池DNA间可检测到一个明显富集的SNP峰,表明其可能携带单一主效抗白粉病基因;在其他12个小麦品系构建的抗、感池DNA间可检测到多个SNP峰,推测其可能含多个抗白粉病基因。有26个小麦品系在2AL染色体上检测到的SNP数目最多,推测其携带位于2AL染色体上的Pm4b抗白粉病基因。开发出与2AL染色体上抗白粉病基因紧密连锁的分子标记Xwggc116,可用于这些小麦品系中抗白粉病基因的分子检测。研究结果表明高通量SNP分析技术平台可以用来规模化定位小麦品种中的抗白粉病基因,明确了河南省抗白粉病小麦品系中携带Pm2、Pm4b、Pm21和新1BL/1RS易位等有限的抗白粉病基因,抗病基因资源非常狭窄,亟需引进新的多样化抗病基因资源,拓宽遗传基础,培育抗病小麦新品种。  相似文献   

16.
An Ethiopian wheat collection consisting of 293 tetraploid and hexaploid entries was investigated for resistance to powdery mildew, Septoria glume blotch, and leaf rust with the aim of finding probable new genes for resistance to these diseases. Seedlings were screened with isolates of these diseases in the greenhouse or growth chamber. The material was also scored for field resistance to powdery mildew after the fifth leaf stale. The diversity of the reaction types to powdery mildew and Septoria glume blotch was estimated by the Shannon-Weaver diversity index. Thirty-nine entries (13%) of the collection were resistant to moderately resistant co the mildew isolates, 14S-77 and 46—77, that had: a combined virulence spectrum effective against nine identified genes for resistance to powdery mildew. One hundred and et till TV-tour entries (63 %) of the collection showed field resistance to mildew. One hundred and eighty-one entries (62 %) of the collection were at least moderately resistant in an aggressive isolate of Sartorial nodorum. Resistance to a race of leaf rust was detected in one hundred and sixty-eight entries or 58.% of the collection. Generally, resistance to these diseases is concentrated in Central and Southern Ethiopia. The different reaction types of the resistant entries to these diseases and the high estimates of diversity for reaction types indicated the presence of many different probable new genes and genetic backgrounds for resistance to these diseases.  相似文献   

17.
S. B. Thomsen    H. P. Jensen    J. Jensen    J. P. Skou  J. H. Jørgensen   《Plant Breeding》1997,116(5):455-459
In order to determine more precisely the location of the barley leaf stripe gene, called the ‘Vada-resistance gene’, on barley chromosome 2, 63 chromosome-doubled barley lines were tested. Using data on known chromosome 2 genetic markers, the ‘Vada-resistance gene’ was estimated to be located between the markers MSU21 and Xris45b, and at a distance of about 20% recombination from the powdery mildew resistance gene MILa. We suggest that the ‘Vada-resistance gene’ is designated Rdg1a and that all former leaf stripe resistance gene designations should be rejected. To identify possible new sources of resistance, 11 barley cultivars/lines known to possess leaf stripe resistance and originating from different parts of the world, were tested with one Danish and two Syrian isolates of the leaf stripe fungus. Three apparently genetically different sources of race-specific resistance were found. The ‘Vada-resistance’ in the cultivar ‘Golf was effective against seven out of eight isolates’ populations of the leaf stripe fungus differing in geographical origin.  相似文献   

18.
A total of 59 old wheat cultivars grown in Germany prior to 1960 were tested for mildew response using a collection of 12 differential isolates of Erysiphe graminis DC f. sp. tritici Marchal (Blumeria graminis (DC) Speer f. sp. tritici). Nineteen cultivars did not possess any major resistance gene and 25 were characterized by susceptible or intermediate responses. Fifteen cultivars revealed isolate-specific response patterns that could not be attributed to known major resistance genes or gene combinations. Many of the old German cultivars inherited a mildew-resistance gene from the Canadian cultivar ‘Garnet’ which is tentatively designated M1-Ga. Cultivars ‘Bretonischer Bartweizen’ (designated M1-Br) and ‘Adlungs Alemannen’ (designated M1-Ad) appeared to carry unknown resistance genes. Among 18 winter wheat cultivars released in the former GDR. eight showed susceptibility to all isolates used. Cv. “Borenos” carries resistance gene Pm3c. Five cultivars possess gene Pm4b. two cultivars gene pm5 and one cultivar a combination of genes Pm2 and Pm4b. Cultivar ‘Zentos’ was resistant to almost all isolates used. Its resistance might be conditioned by different unknown major resistance genes.  相似文献   

19.
Wheat powdery mildew and stripe rust, caused by Blumeria graminis f.sp.tritici (syn. Erysiphe graminis f.sp.tritici) and Puccinia striiformis Westend., respectively, are two important fungal diseases of wheat in many regions in the world that cause significant annual yield losses. In the present study, a dominant powdery mildew and a dominant stripe rust resistance gene in wheat line 101-3 which derived from the progenies of the wide cross between common wheat and Dasypyrum villosum Candary L., was located on chromosome 6B and 1B, respectively, by monosomic analyses. The two genes are different from known resistance genes on chromosome 6B for powdery mildew and 1B for stripe rusts, suggesting that the two genes might be novel resistance genes for powdery mildew and stripe rust, respectively. It is uncertain whether the two genes are allelic or lined with other resistance genes located on chromosome 6B for powdery mildew and 1B for stripe rust. Further allelism tests are necessary to determine the relationships between the resistance gene and other genes located on chromosome 6B for powdery mildew and 1B for stripe rust through molecular markers.  相似文献   

20.
苹果白粉病是危害苹果的重要病害之一。本试验通过人工喷雾接种苹果白粉病的方法,研究了10个不同苹果品种对白粉病的抗病性。抗性鉴定结果表明,‘鸡冠’、‘早嘎啦’、‘美国八号’、‘伏花皮’和‘华红’发病轻,属于抗病品种,‘信浓红’、‘富士’、‘秦阳’和‘国光’发病较重,属于感病品种,且幼嫩的叶子较成熟的叶片容易发病。本试验结果为抗白粉病的机制研究、培育抗病新品种等提供了重要依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号