首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cooling of equine semen obtained from some stallions results in lower seminal quality and viability when the seminal plasma (SP) is present. The objective of this study was to evaluate the effect of the removal of SP using a Sperm Filter on the viability of cooled stallion semen. For this purpose, 31 stallions were used. Their ejaculates were divided into three groups: CN, semen was diluted with an extender; FLT, SP was removed by filtration; and CT, SP was removed by centrifugation and cooled to 15°C for 24 hours. Sperm kinetics and plasma membrane integrity were evaluated immediately after collection (T0) and after 24 hours of refrigeration (T1). No difference (P > .05) was noted at T1 for total sperm motility (TM), progressive sperm motility, or plasma membrane integrity when semen samples from all the stallions were analyzed. However, when samples from stallions termed “bad coolers” were analyzed (TM = <30% at T1), a difference was observed in TM and progressive sperm motility for CN compared with FLT and CT at T1. Sperm recovery was greater when SP was removed using the filter (FLT) to that when the SP was removed by centrifugation (CN) (89% vs. 81%). Thus, we concluded that filtering with a Sperm Filter is an efficient and practical method for removal of SP from stallion ejaculates, with lower sperm loss than centrifugation. We also found that the presence of SP reduces the quality and viability of cooled semen from stallions whose semen is sensitive to the process of refrigeration.  相似文献   

2.
Insemination with chilled transported semen has become distinctly important in the horse-breeding industry. To ensure cell survival during cooled storage, semen is diluted with an appropriate extender and the concentration of seminal plasma (SP) is reduced. Nevertheless, SP plays an important immunomodulatory role in the female genital tract and supports sperm fertility. The aim of the present study was to evaluate the effect of the addition of autologous SP after cooled storage to highly concentrated stallion semen. Therefore, SP was removed by simple centrifugation of extended semen, aspiration of the supernatant, and resuspension of the sperm pellet with semen extender. Motion characteristics were evaluated after cooled storage for 48 hours at concentrations of 333 × 106 sperm/mL in comparison with stored samples at concentration of 25 × 106 sperm/mL (control). The highly concentrated semen samples were diluted with an extender containing 0%, 5%, 20%, and 80% SP directly before motility analysis. Dilution of the cooled semen with a fresh semen extender without SP (0%) increased kinematic parameters (curvilinear velocity [VCL] 137.3 vs. 151.8; straight-line velocity [VSL] 49.0 vs. 57.5; average path velocity [VAP] 69.5 vs. 79.4 μm/second; amplitude of lateral head [ALH] 3.1 vs. 3.3 μm; beat cross frequency [BCF] 31.6 vs. 33.5 Hz; P < .05) but not total motility (51% vs. 43%) and progressive motility (46% vs. 36%) compared with controls. The addition of SP after storage for 48 hours decreased sperm total motility and progressive motility regardless of SP concentration: 5 (38% and 34%), 20 (37% and 33%), and 80% SP (27% and 22%; P < .05). In contrast, kinematic parameters were enhanced by extenders containing 5% and 20% SP (VCL: 148.0 and 155.6; VSL: 59.2 and 60.9; VAP: 78.7 and 81.9; BCF: 33.4 and 35.7; ALH: 3.4 and 3.4; P < .05). However, using an extender containing 80% SP was detrimental to kinematic parameters (VCL: 151.2; VSL: 52.2; VAP: 76.9; BCF: 34.8; P < .05) except for ALH, which increased (3.5; P < .05). In conclusion, cooled storage at concentrations of 333 × 106 sperm/mL did not affect sperm motility. The addition of a fresh extender or an extender containing small concentrations of SP to highly concentrated ejaculated sperm increased kinematic values after storage; however, increasing concentrations of SP decreased sperm motility.  相似文献   

3.
This study aimed to assess the effects of sodium caseinate and cholesterol to extenders used for stallion semen cooling. Two ejaculates from 19 stallions were extended to 50 million/mL in four different extenders and cooled-stored for 24 hours at 5°C. The extender 1 (E1) consisted of a commercially available skim milk–based extender. The extender 2 (E2) consisted of E1 basic formula with the milk component being replaced by sodium caseinate (20 g/L). The extender 3 (E3) consisted of E1 basic formula added to cholesterol (1.5 mg/120 million sperm). The extender 4 (E4) consisted of a combination of the E2 added to cholesterol. At 24 hours after cooling, sperm motility parameters, plasma membrane stability (PMS), and mitochondrial membrane potential were assessed. In addition, cooled semen (1 billion sperm at 5°C/24 hours) from one “bad cooler” and one “good cooler” stallions, split into four extenders was used to inseminate 30 light breed mares (30 estrous cycles/extender). Milk-based extenders (E1 and E2) had superior sperm kinetics than E3 and E4 (P < .05). Plasma membrane stabilization was significantly higher (P < .05) in E4 than E1, whereas E2 and E3 presented intermediate values (P > .05). The mitochondrial potential intensity was lower (P < .05) in E2 and E4 groups compared with E1 and E3. The good cooler stallion had high fertility (∼80%) in all extenders. However, for bad cooler stallion, E1 40% (8/20) and E2 45% (9/20) had poor fertility (P < .05) compared with E4 85% (17/20), whereas E3 55% (11/20) had intermediate value (P > .05). In conclusion, the association of sodium caseinate and cholesterol improved fertility of bad cooler stallion semen cooled for 24 hours.  相似文献   

4.
The aim of the present study was to evaluate the quality of raw and cooled semen in Icelandic stallions. Experiments were performed using seven stallions aged between 3 and 19 years. From each stallion, six ejaculates were collected, and semen quality was determined. Thereafter, the semen was split into eight equal parts and processed with and without centrifugation using the extenders INRA 82-egg yolk, INRA 96, GENT, and Equi-Pro to a final concentration of 30 × 106 sperm/mL. The extended semen was then cooled in an Equitainer, where it was stored for 24 hours, and subsequently refrigerated for another 24 hours at 5°C. Immediately after dilution as well as after 24 and 48 hours storage, sperm motility was analyzed using computer-assisted sperm analyzer, and viability was assessed after dual DNA staining with SYBR-14 in combination with propidium iodide. The results show that the stallion had a significant (P < .05) influence on all variables evaluated in raw semen, and mean (±SEM) values of 43.4 ± 4.3 mL for the volume, 193.0 ± 17.0 × 106 sperm/mL for the concentration, 6.7 ± 0.5 × 109 for total sperm and 73.5 ± 2.1% for total sperm motility, 48.7 ± 2.0% for progressive motility, and 65.3 ± 2.0% for rapid cells were measured. In the cold-stored semen, all variables were significantly (P < .05) influenced by the stallion, extender, and storage time (48 hours). Except for Equi-Pro, all extenders examined were suitable for cooled semen preservation. For storage of more than 24 hours, centrifugation and removal of the seminal plasma were advantageous for all extenders with the exception of Equi-Pro.  相似文献   

5.
The objective of this study was to compare semen parameters and embryo recovery rates of cooled stallion semen extended with INRA 96 or BotuSemen Gold. In experiment 1, 45 ejaculates from nine mature stallions were collected, assessed, and equally split between both extenders and then extended to 50 million sperm/mL. Then, the extended semen was stored in three passive cooling containers (Equitainer, Equine Express II, and BotuFlex) for 48 hours. In experiment 2, the same ejaculates extended in experiment 1 were cushion-centrifuged, the supernatant was discarded, and the pellets were resuspended at 100 million sperm/mL with their respective extender. Semen was then cooled and stored as in experiment 1. In both experiments, sperm motility parameters, plasma membrane integrity, and high mitochondrial membrane potential were assessed at 0, 24, and 48 hours post cooling. For experiment 3, 12 mares (n = 24 cycles) were bred with 48 hour–cooled semen from one stallion. Semen was processed as described in experiment 1. Mares had embryo flushing performed by 8-day post-ovulation. In experiment 1, BotuSemen Gold displayed superior total and progressive motility relative to INRA 96 (P < .05). There were no significant differences between the types of containers in any experiment. In experiment 2, INRA 96 and BotuSemen Gold extenders had similar total and progressive motility, but BotuSemen Gold had superior sperm velocity parameters at all timepoints. Embryo recovery was identical for both extenders (50%). Finally, the results obtained herein suggest that BotuSemen Gold is a suitable alternative to be included in semen cooling tests against INRA 96 in clinical practice.  相似文献   

6.
Processing stallion semen for assisted reproductive procedures, such as intracytoplasmic sperm injection (ICSI), requires special considerations regarding cooling, concentrating, and handling of sperm. The aim of experiment 1 was to determine whether cooled semen could be frozen without removal of seminal plasma and at a low sperm concentration while maintaining motile sperm for ICSI selection procedures. In experiment 2, five media for holding stallion sperm were compared to evaluate sperm motility for an interval of time sufficient for ICSI sperm selection procedures. In experiment 1, semen samples from eight stallions were cooled for 24 hours in two extenders, CST (E-Z Mixin-CST “Cool-Store/Transport” Animal Reproduction Systems) and INRA96 (Institut National de la Recherche Agronomique, IMV International Corporation), before being frozen in four freezing diluents, and were evaluated at 0, 45, and 75 minutes after thawing. The cooling extender did not significantly affect sperm motility, but modified French and glycerol egg yolk diluents provided the best sperm motility for frozen–thawed groups. In experiment 2, semen samples from seven stallions were used to test five media for holding sperm. Samples were analyzed for total and progressive motility at hourly intervals. Mean total and progressive motility were not different (P > .05) among groups from 1 through 4 hours. At 5 hours, groups differed (P = .004), with sperm held in Tyrode’s with albumin, lactate, and pyruvate having higher (P < .05) total and progressive motility than all other samples. In conclusion, motile stallion sperm can be obtained after the sperm are cooled for 24 hours, frozen, and thawed; various media are available to maintain sperm motility during equine ICSI selection procedures.  相似文献   

7.
For unknown reasons, stallion fertility and sperm longevity during cooled storage of semen vary markedly between individuals. Spermatozoa from individual stallions react differently to the presence, or the removal, of seminal plasma (SP). The aim was to evaluate differences in protein content in stallion seminal plasma with either a positive or a negative effect on sperm chromatin integrity during storage. Stallion semen samples from different ejaculate fractions were stored at 5°C for 24 hr. Sperm survival was assessed after storage using a sperm chromatin structure assay. Protein expression in SP with either positive or negative effects on sperm survival during storage was studied using two-dimensional differential gel electrophoresis and liquid chromatography–mass spectrometry. Lower sperm chromatin integrity was associated with upregulation of the proteins kallikrein, CRISP-3 and HSP-1, while higher chromatin integrity was associated with upregulation of TIMP-2. In the sperm-rich fractions, kallikrein and CRISP-3 differed significantly between SP samples with differing effects on sperm chromatin integrity. In the sperm-poor fractions, TIMP-2 and HSP-1 differed significantly between the two SP groups. Differences in the seminal plasma proteome are associated with sperm longevity during cooled storage.  相似文献   

8.
The importance of seminal plasma (SP) components for stallion semen quality and freezability is little known. This study aimed to evaluate the relationship between SP components and fresh/cryopreserved stallion semen quality. Semen of 30 stallions was collected, and then, SP was recovered and lyophilized. Total protein (TP), vitamin C (CVIT), vitamin E (EVIT), vitamin A (AVIT), iron (Fe), copper (Cu), magnesium, and zinc (Zn) in SP were assessed. Sperm was frozen in an extender supplemented with lyophilized SP. In fresh semen motility, abnormal morphology (AM), sperm vitality (SV), and plasma membrane integrity (PMI) were evaluated. In post-thaw semen, additionally, total motility (TM), progressive motility (PM), straight line velocity (VSL), curvilinear velocity (VCL), average path velocity (VAP), amplitude of lateral head displacement (ALH), and beat cross-frequency (BCF) were assessed. Levels of component of SP were established by a distribution analysis. Generalized linear models were fitted. Comparisons of means were done with Tukey's test. Correlation and regression analyses were performed. Vitamins and ions were found to be related to fresh semen quality. For post-thaw sperm, medium TP showed higher semen quality. Negative regression and correlation coefficients between CVIT and all post-thaw semen parameters were found. Low EVIT yielded the lowest PM, VSL, and VAP values, while a high level of AVIT yielded the best results for sperm quality. A high level of Cu yielded higher results for TM, PM, VCL, and ALH. Moreover, a negative correlation was found between Zn, SV, and PMI. In conclusion, SP composition influences fresh and post-thaw stallion semen quality.  相似文献   

9.
The objective was to assess the influence of polyunsaturated fatty acid supplementation on the quality of fresh, cooled, and frozen-thawed stallion semen. Ten stallions received their normal diet (control group) or normal diet plus 150 mL of polyunsaturated fatty acid (PUFA) linseed-based oil (PUFA group). Semen was collected every 15 days during 60 days. Stallions were reversed across the treatments after a sixty-day interval. Semen was evaluated at 2, 6, 12, and 24 hours after cooling and 24 hours after freezing. Motility (MOT), vigor, membrane viability, morphology, acrosome integrity, and osmotic tolerance test (OTT) were evaluated. In the frozen-thawed semen, sperm dynamic characteristics were analyzed by computer-assisted sperm analysis and thiobarbituric acid reactive substances (TBARs) determined. The effects of treatment, time, semen type, and their interactions were submitted to PROCMIX (SAS) and means compared by the Tukey test. There was no treatment effect on the quality of fresh and cooled semen. However, frozen-thawed semen MOT, vigor, and OTT were superior (P < .05) in control compared to PUFA group. An interactive effect of sample day by treatment was observed, such that, TBARs increased over time (P = .002) in the PUFA group after 15, 30, 45, and 60 days from the beginning of supplementation. Thus, sperm may become more susceptible to the reactive oxygen species, probably due to the incorporation of polyunsaturated fat in the cell membrane. The addition of PUFA-enriched oil may be an alternative for improving frozen-thawed semen quality by increasing its MOT and resistance to osmotic changes to which sperm cells are submitted during the freezing process.  相似文献   

10.
This study assessed the effect of oral supplementation with the primary antioxidants and fatty acids involved in spermatogenesis (L-carnitine, selenium, vitamin E, omega-3, and omega-6) on the seminal quality in fresh, cooled, and frozen semen of stallions (n = 8), using a randomized design. The animals were divided into Group I (n = 4) and Group II (n = 4) for a 30-week experiment. The two groups alternated between nutraceutical supplementation and a placebo over the course of the experiment. Semen collections were performed in two sets: once in the middle of the experiment, before the two groups switched treatments, and once at the end. The volume, appearance, sperm concentration, spermatozoa kinetics, and membrane integrity of fresh semen were evaluated. The spermatozoa kinetics and membrane integrity of cooled (for 24, 36, and 48 hours) and frozen semen were also evaluated. No differences were observed in volume, appearance, and sperm concentration between treatment and control. However, compared with placebo, nutraceutical supplementation increased (P < .05) total motility, trajectory speed, as well as plasma and acrosomal membrane integrity in spermatozoa from fresh semen. In cooled semen, nutraceutical treatment also increased (P < .05) total motility, speed, and membrane integrity of spermatozoa compared with the control. In frozen semen, supplementation increased (P < .05) spermatozoa progressive motility and plasma membrane integrity. Our results suggest a positive, synergistic effect of the antioxidant L-carnitine and selenium on spermatozoa kinetics. Similarly, the increase in plasma and acrosomal membrane integrity could be attributed to higher concentrations of polyunsaturated fatty acids (a key cell-membrane component), combined with the prevention of excess lipid peroxidation by antioxidants. In conclusion, supplementation with nutraceuticals containing fatty acids and antioxidants improved the quality of fresh, cooled, and frozen stallion semen. Therefore, nutraceutical use should increase the success of artificial insemination with cooled and cryopreserved semen.  相似文献   

11.
The dilution effect and effect of restoring seminal plasma (SP) proportion in diluted semen were determined in chilled Asian elephant sperm. Semen was collected from eight males, and samples with ≥30% motile sperm were used in the study. Tris‐glucose‐egg yolk extender (TE) was used for cooled storage at 4°C for 48 hr. In experiment 1 (n = 18), semen was diluted to 1:1, 1:3, 1:7 and 1:15 with TE (volume per volume). There were no significant changes in sperm viability and sperm with normal acrosome integrity among dilutions, but sperm motility and motility velocities were greater (p < .05) in the 1:1 dilution than those of the 1:7 and 1:15 dilutions at 48 hr of storage. In experiment 2, supplemented SP was derived from elephants and stallions. In experiment 2.1, diluted semen (1:7 dilution) was restored with SP to obtain a 1:2 proportion (n = 8). Sperm motility, viability and sperm with normal acrosome integrity were similar among treatments, but motility velocities were greater (p < .05) with stallion SP at 48 hr of storage. In experiment 2.2, diluted semen (1:15 dilution) was restored with SP to obtain a 1:3 proportion (n = 10). Sperm viability and sperm with normal acrosome integrity were similar among treatments at 48 hr of storage. However, sperm motility and motility velocities were greater (p < .05) with stallion SP than those of others. In conclusion, elephant sperm motility was affected by a dilution effect and restoration of SP proportion with stallion SP, but not with elephant SP, could improve motility in chilled highly diluted sperm.  相似文献   

12.
The aim of this study was to determine whether there was an increase in pregnancy rates when frozen-thawed stallion semen was processed by single layer centrifugation (SLC) through a colloid before insemination. In addition, changes in semen parameters, including motility, were determined before and after SLC. Twenty light-horse mares (aged 3-16 years) and one Thoroughbred stallion (aged 16 years) having average fertility with fresh and cooled semen (>50% per cycle) and displaying a postthaw motility of >35% were used. Control mares were inseminated using 4- × 0.5-mL straws (200 × 106/mL) of frozen-thawed semen. Treatment mares were inseminated with 4 × 0.5 mL of frozen-thawed semen after processing by SLC. Pregnancy rates were compared using Fisher exact test, and continuous parameters were evaluated by a Student t test. The pregnancy rates at day 14 were not different for the mares inseminated with control versus SLC-processed semen, despite the difference in sperm number (171 × 106 ± 21, 59 × 106 ± 25 progressively motile sperm). After frozen-thawed semen was processed by SLC, the percentage progressively motile sperm improved (P < .05), and SLC processing resulted in a 21.8% recovery of spermatozoa. In summary, centrifugation of frozen-thawed semen through a single layer of colloid increased the percentage of motile spermatozoa, but did not improve pregnancy rates after deep horn insemination.  相似文献   

13.
Sperm concentration and sperm membrane intactness (SMI) or viability are two measures of sperm quality that provide important but different information about a stallion's reproductive capability. Sperm concentration is a measure that, by itself, informs little about the reproductive status of either the stallion or the ejaculate. Nevertheless, it is part of the product, along with semen volume, that determines total sperm number. The correct calculation of total sperm number directly affects the number of mares a stallion can breed and therefore, fertility. If either sperm concentration or semen volume is incorrectly measured, both the number of mares that a stallion can breed and the fertility of those breedings are affected. Although considerable between-stallion variation exists, sperm concentration, semen volume and total sperm number tend to be seasonal and vary with ejaculation frequency.  相似文献   

14.
The objective of the study was to investigate if reducing the seminal plasma of stallion extended semen by centrifugation once will suffice to maintain acceptable semen quality for insemination after 4 days of cool storage. Collected semen was extended to 25 × 106 sperm/mL and subjected to one of the following treatments: noncentrifuged (control), centrifuged for 10 minutes at 900 × g and 1800 × g. The supernatant was partially removed, and the sperm pellet, reconstituted and re-extended. It was then placed in a passive cooling device overnight and then transferred to a refrigerator for the remainder of the cooling period. At day 0, 2, and 4, total motility (TM), progressive motility (PM), and plasma (PLM) and acrosomal membrane integrity were assessed. Centrifuged groups had higher TM and PM at day 4 than the control group (P < .05). Likewise, centrifuged groups had higher intact PLM in day 4 (P < .05). A single centrifugation cycle to reduce seminal plasma concentration will suffice to preserve sperm integrity acceptable for an artificial insemination dose up to 4 days of cool storage.  相似文献   

15.
Alternative sources of lipoproteins in semen extenders could replace animal by-products. We hypothesized that: (1) post-thaw semen parameters and fertility would not be different in coconut water (CW)–treated samples compared with egg yolk (EY)–treated samples and (2) the use of an oxygen scavenger (Oxyrase) would improve post-thaw sperm motility and membrane integrity and decrease lipid peroxidation. Experiment 1: three ejaculates each from five stallions were split into four treatments: EY, CW, egg yolk with Oxyrase, and coconut water with Oxyrase. Computer-assisted sperm analysis measured progressive and total motility, velocity, and linearity. Membrane integrity, apoptosis, and lipid peroxidation were evaluated using propidium iodide, annexin, and BODIPY fluorescent probes, respectively. Samples were cryopreserved, stored in liquid nitrogen, and then thawed to 37°C and analyzed again. Experiment 2: one ejaculate was divided into two aliquots and cryopreserved using either CW or EY. In a crossover design, 12 mares were bred on two consecutive cycles with either EY or CW. Pregnancy evaluations were at 14-day gestation. No differences were detected in sperm parameters between CW and EY (P > .05). Oxyrase did not improve sperm motility parameters in post-thaw samples, nor did it show protective effects for viability or against membrane damage (P > .05). More mares became pregnant using CW than EY (11/12 vs. 6/12, respectively; P = .013). Use of CW is a viable alternative to animal-based products in the cryopreservation of stallion semen.  相似文献   

16.
Cyclodextrins improve post-thaw viability and motility of semen as well as mediate cholesterol efflux and subsequent acrosome reaction in spermatozoa from several species. The objectives of this study were: (a) to assess the effect of prefreeze addition of 60 mM hydroxypropyl-β-cyclodextrin (β-CD) on post-thaw viability and motility of jack and stallion semen cryopreserved in ethylene glycol-based freezing extenders containing 5% or 20% (v/v) egg yolk (LEY and HEY, respectively), and (b) to evaluate the ability of 1 μM calcium ionophore A23187 and/or 60 mM β-CD to induce acrosome reaction in thawed jack and stallion spermatozoa. Post-thaw motility of spermatozoa cryopreserved in HEY was higher (P < .05) for jack but lower (P < .05) for stallion spermatozoa when compared with LEY. Jack and stallion spermatozoa both exhibited higher (P < .05) motility when cryopreserved in 60 mM β-CD than without β-CD. Curvilinear velocity was faster (P < .05) for jack and stallion spermatozoa cryopreserved in LEY than in HEY. A treatment × time interaction affected (P < .05) the proportion of spermatozoa that underwent acrosome reaction. Post-thaw incubation of jack and stallion spermatozoa with β-CD for 90 minutes induced acrosome reaction in 85% and 22% of viable sperm cells, respectively; however, only 32% of jack and 8% of stallion spermatozoa incubated with calcium ionophore underwent acrosome reaction. This study is the first to evaluate the effect of β-CD (not loaded with cholesterol) on jack semen cryopreservation, and results reveal that β-CD may be a useful tool to enhance semen cryopreservation and to induce post-thaw acrosome reaction in jack spermatozoa.  相似文献   

17.
The objective was to assess the influence of pomegranate seed oil supplementation on the quality of fresh, cooled and frozen–thawed Arabian breed stallion semen. Eight stallions (n = 4 per group) received their normal diet (control group) or normal diet top dressed with 200 ml of pomegranate seed oil (PSO group). Semen was collected every fifteen days for 90 days. Stallions were reversed across the treatments after a sixty‐day interval. In cooled and stored condition (2, 12 and 24 hr), spermatozoa motion characteristics, membrane integrity, viability, morphology and lipid peroxidation were analysed. In frozen–thawed semen, sperm dynamic characteristics were analysed by CASA, acrosome status and mitochondrial activity (evaluated by Flow cytometry) determined. The effects of treatment, time, semen type and their interactions were submitted to PROCMIX (SAS®), and means compared by the Tukey test. Also, collected semen samples were artificially inseminated to evaluate fertility and pregnancy rate after day 60 of the experiment. The results from fresh condition showed that semen volume, sperm concentration, abnormality and live sperm were not affected by dietary treatment (p > 0.05). In cooled condition, the higher value for sperm plasma membrane integrity and viability was observed in PSO group compared to control after 24 hr cooled and stored in 5°C. In postthawed condition, the higher value for CASA total motility and acrosome status was observed in PSO group compared to control group (p < 0.05). One hundred and twenty‐six mares were artificially inseminated for fertility trial using control and PSO groups’ fresh semen. The average pregnancy rates were not significantly different between control and treated group (62.88% and 65.90%, respectively) (p > 0.05). We concluded that under the conditions of this study, dietary supplementation of 200 ml pomegranate seed oil seems to relatively improved Arabian horse sperm quality during storage in cooled and frozen condition via increasing plasma membrane integrity, viability and acrosome status, but did not improve the pregnancy rates.  相似文献   

18.
Cooled stallion semen has a short viable life, which ranges with acceptable motility and viability from 24 up to 48 hours. The purpose of this study was to compare the effects of storage pH, the ability of three different zwitterionic buffers, and cholesterol-loaded cyclodextrins (CLC) to preserve the motility and integrity of stallion sperm cooled to 5°C for 48 hours. Fourteen ejaculates were collected and split to receive CLC or not (control group). After incubation, each sample was split into six subsamples and diluted in KMT extender containing 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES), or 2-(N-morpholino)ethanesulfonic acid (MES) buffers, and the final pH was adjusted to either 7.0 or 6.6, totalizing 12 experimental groups as a function of CLC, buffer, and pH variables (2 × 3 × 2 factorial). The motility parameters and integrity of plasma and acrosome membranes (live cell index) were determined using computer-automated semen analysis and epifluorescence microscopy at 3, 6, 24, and 48 hours of cooling period. According to results, pH was not a significant source of variation for motility and live sperm over different cooling periods. However, samples diluted in BES exhibited higher progressive motility within 3 hours and higher percentages of total motile cells after 48 hours of incubation at 5°C (P < .05). After 24 hours of storage, CLC-treated sperm samples presented higher motility than control group (P < .05), and after 48 hours of incubation, CLC-treated sperm exhibited higher percentages of live, motile, and progressively motile sperms (P < .05). We inferred that equine semen diluted in KMT containing BES as buffer and CLC treatment improve the equine sperm survival during storage at 5°C for 48 hours.  相似文献   

19.
Equine chorionic gonadotropin (eCG), obtained from pregnant mares, is used for assisted reproductive technologies in laboratory rodents and livestock. The objective of the present study was to use equine follicle-stimulating hormone (eFSH) to increase the incidence of twin pregnancies, through multiple ovulations, and increase eCG. Nineteen light horse–type mares were enrolled in the study. The control group (n = 9) was bred with fresh or cooled semen and given human chorionic gonadotropin (hCG) at the time of breeding. The second group (n = 10) was given 12.5 mg of eFSH intramuscularly twice a day beginning 5–7 days after ovulation. Prostaglandin F2α was administered intramuscularly the second day of eFSH treatment. Treatment with eFSH continued until follicles were >35 mm in diameter, and mares were then given no treatment for 36 hours. The mares were then bred with fresh or cooled semen from the same stallion as the control group and given hCG. Blood samples were taken weekly from day 35 to day 105 after ovulation. Serum concentration of eCG was obtained, and data were analyzed with multivariate analysis using the mixed procedure. Significance was set at P < .05. Data were combined for all mares carrying twins and compared with those carrying singletons. The group of mares carrying twins had higher peak concentrations of eCG and higher values for area under the curve compared with mares carrying singletons (P < .05). These results suggest inducing twins could be a method used to increase eCG production.  相似文献   

20.
This study aimed to evaluate stallion sperm survival after 24 h of cooled storage in the presence of seminal plasma (SP) derived from the sperm-rich fractions (SRF) or sperm-poor fractions(SPF) of the ejaculate, without SP, or in the presence of SP from other stallions. Ejaculates were collected from four stallions using an automated phantom, which separated the semen into five cups. Centrifuged and washed spermatozoa from cup 2 (SRF) were mixed with skim milk extender to a concentration of 100 x 10(6) sperm/ml and then 1:1 (v/v) with SP from the stallion's own or another stallions' second (SP-SRF) or last cup (SP-SPF). Skim milk extender (K) and skim milk extender supplemented with modified Tyrode's medium (KMT) were used as control treatments. After a 24-h storage period in a transport container, spermatozoa were evaluated for motion characteristics and plasma membrane integrity by calcein acetoxymethyl (AM)/propidium iodide staining. The percentage of spermatozoa with intact plasma membranes after storage was lower in SP-SRF than in SP-SPF, and the highest in K (P < 0.05). Progressive motility (PMOT) was lower for sperm stored in SP-SRF than for sperm stored in SP-SPF (P < 0.05), but there was no significant difference in total motility (TMOT). Sperm stored in KMT (P < 0.05) registered the highest TMOT and PMOT percentages. Osmolarity was significantly higher and pH lower in K than in KMT or SP. Treatment with SP-SPF from three stallions benefited the PMOT of sperm from one stallion. These preliminary findings suggest that SP from SRFs may be more harmful during storage than SP from SPFs. Removal of SP improves sperm survival in KMT extender, and exchanging SP between stallions seems to influence sperm survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号