首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates. Other potential clinical applications include improving pregnancy rates from frozen semen, treatment of subfertility in stallions and mares, and induction of ovulation in transitional mares. The objective of this study was to evaluate the efficacy of purified equine follicle stimulating hormone (eFSH; Bioniche Animal Health USA, Inc., Athens, GA) in inducing superovulation in cycling mares. In the first experiment, 49 normal, cycling mares were used in a study at Colorado State University. Mares were assigned to 1 of 3 groups: group 1, controls (n = 29) and groups 2 and 3, eFSH-treated (n = 10/group). Treated mares were administered 25 mg of eFSH twice daily beginning 5 or 6 days after ovulation (group 2). Mares received 250 (of cloprostenol on the second day of eFSH treatment. Administration of eFSH continued until the majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting on day 5 or 6. The treatment regimen was identical to that of group 2. Mares in all 3 groups were bred with semen from 1 of 4 stallions. Pregnancy status was determined at 14 to 16 days after ovulation.In experiment 2, 16 light-horse mares were used during the physiologic breeding season in Brazil. On the first cycle, mares served as controls, and on the second cycle, mares were administered 12 mg of eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time human chorionic gonadotropin (hCG) was administered. Mares were inseminated on both cycles, and embryo collection attempts were performed 7 or 8 days after ovulation.Mares treated with 25 mg of eFSH developed a greater number of follicles (35 mm) and ovulated a greater number of follicles than control mares. However, the number of pregnancies obtained per mare was not different between control mares and those receiving 25 mg of eFSH twice daily. Mares treated with 12 mg of eFSH and administered either hCG or deslorelin also developed more follicles than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles than control mares, whereas the number of ovulations from mares receiving eFSH followed by deslorelin was similar to that of control mares. Pregnancy rate for mares induced to ovulate with hCG was higher than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of the controls. Overall, 80% of mares administered eFSH had multiple ovulations compared with 10.3% of the control mares.In experiment 2, the number of large follicles was greater in the eFSH-treated cycle than the previous untreated cycle. In addition, the number of ovulations during the cycle in which mares were treated with eFSH was greater (3.6) than for the control cycle (1.0). The average number of embryos recovered per mare for the eFSH cycle (1.9 ± 0.3) was greater than the embryo recovery rate for the control cycle (0.5 ± 0.3).In summary, the highest ovulation and the highest pregnancy and embryo recovery rates were obtained after administration of 12 mg of eFSH twice daily followed by 2500 IU of hCG. Superovulation with eFSH increased pregnancy rate and embryo recovery rate and, thus, the efficiency of the embryo transfer program.

Introduction

Induction of multiple ovulations or superovulation has been an elusive goal in the mare. Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates.[1 and 2] Superovulation also has been suggested as a critical requirement for other types of assisted reproductive technology in the horse, including oocyte transfer and gamete intrafallopian transfer. [2 and 3] Unfortunately, techniques used successfully to superovulate ruminants, such as administration of porcine follicle stimulating hormone and equine chorionic gonadotropin have little effect in the mare. [4 and 5]The most consistent therapy used to induce multiple ovulations in mares has been administration of purified equine pituitary gonadotropins. Equine pituitary extract (EPE) is a purified gonadotropin preparation containing approximately 6% to 10% LH and 2% to 4% FSH.[6] EPE has been used for many years to induce multiple ovulations in mares [7, 8 and 9] and increase the embryo recovery rate from embryo transfer donor mares. [10] Recently, a highly purified equine FSH product has become available commercially.The objectives of this study were to evaluate the efficacy of purified eFSH in inducing superovulation in cycling mares and to determine the relationship between ovulation rate and pregnancy rate or embryo collection rate in superovulated mares.

Materials and methods

Experiment 1

Forty-nine normally cycling mares, ranging in age from 3 to 12 years, were used in a study at Colorado State University. Group 1 (control) mares (n = 29) were examined daily when in estrus by transrectal ultrasonography. Mares were administered an implant containing 2.1 mg deslorelin (Ovuplant, Ft. Dodge Animal Health, Ft. Dodge, IA) subcutaneously in the vulva when a follicle 35 mm in diameter was detected. Mares were bred with frozen semen (800 million spermatozoa; minimum of 30% progressive motility) from 1 of 4 stallions 33 and 48 hours after deslorelin administration. The deslorelin implants were removed after detection of ovulation.[11] Pregnancy status was determined at 14 and 16 days after ovulation.Group 2 mares (n = 10) were administered 25 mg of eFSH (Bioniche Animal Health USA, Inc., Athens, GA) intramuscularly twice daily beginning 5 or 6 days after ovulation was detected. Mares received 250 g cloprostenol (Estrumate, Schering-Plough Animal Health, Omaha, NE) intramuscularly on the second day of eFSH treatment. Administration of eFSH continued until a majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Mares were subsequently bred with the same frozen semen used for control mares, and pregnancy examinations were performed as described above.Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting 5 or 6 days after ovulation and were administered 250 μg cloprostenol on the second day of treatment. Mares were randomly selected to receive either a deslorelin implant (n = 5) or 2500 IU of human chorionic gonadotropin (hCG) intravenously (n = 5) to induce ovulation when a majority of follicles reached a diameter of 35 mm. Mares were bred with frozen semen and examined for pregnancy as described above.

Experiment 2

Sixteen cycling light-horse mares were used during the physiologic breeding season in Brazil. Reproductive activity was monitored by transrectal palpation and ultrasonography every 3 days during diestrus and daily during estrus. On the first cycle, mares were administered 2500 IU hCG intravenously once a follicle 35 mm was detected. Mares were subsequently inseminated with pooled fresh semen from 2 stallions (1 billion motile sperm) daily until ovulation was detected. An embryo collection procedure was performed 7 days after ovulation. Mares were subsequently administered cloprostenol, and eFSH treatment was initiated. Mares received 12 mg eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time hCG was administered. Mares were inseminated and embryo collection attempts were performed as described previously.

Statistical analysis

In experiment 1, 1-way analysis of variance with F protected LSD was used to analyze quantitative data. Pregnancies per ovulation were analyzed by x2 analysis. In experiment 2, number of large follicles, ovulation rate, and embryo recovery rate were compared by Student,'s t-test. Data are presented as the mean S.E.M. Differences were considered to be statistically significant at p < .05, unless otherwise indicated.

Results

In experiment 1, mares treated with 25 mg eFSH twice daily developed a greater number of follicles 35 mm in diameter (p = .001) and ovulated a greater number of follicles (p = .003) than control mares (Table 1). However, the number of pregnancies obtained per mare was not significantly different between the control group and the group receiving 25 mg eFSH (p = .9518). Mares treated with 12 mg eFSH and administered either hCG or deslorelin to induce ovulation also developed more follicles 35 mm (p = .0016 and .0003, respectively) than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles (p = .003) than control mares, whereas the number of ovulations for mares receiving eFSH followed by deslorelin was similar to that of control mares (p = .3463). Pregnancy rate for mares induced to ovulate with hCG was higher (p = .0119) than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of controls (p = .692). Pregnancy rate per ovulation was not significantly different between control mares (54.5%) and mares treated with eFSH followed by hCG (52.9%). The lowest pregnancy rate per ovulation was for mares stimulated with 25 mg eFSH and induced to ovulate with deslorelin. The mean number of days mares were treated with 25 mg or 12 mg of eFSH was 7.8 ± 0.4 and 7.5 ± 0.5 days, respectively. Overall, 80.0% of mares administered eFSH had multiple ovulations compared with 10.3% of control mares.  相似文献   

2.
The effects of a low dose of equine purified FSH (eFSH) on incidence of multiple ovulations and embryo recovery rate in mares were studied. During the physiological breeding season in Brazil (19°45′45′S), 14 Mangalarga Marchador donor mares were used in a crossover study and another 25 mares of the same breed, between 3 years and 12 years of age were used as recipients for the embryo transfers. Donors were monitored during two consecutive oestrus cycles, an untreated control cycle followed by a treated cycle, when eFSH was administered. In both cycles, after an embryo collection attempt on day 8 post‐ovulation all mares received 7.5 mg dinoprost and had their two largest follicles tracked daily by ultrasonography until the period of ovulation. Mares were inseminated every 48 h with extended fresh semen from a single stallion after the identification of a 35‐mm follicle until the period of ovulation. Ovulations were induced by intravenous administration of 2.500 IU of human chorionic gonadotropin, upon detection of a 35‐ to 40‐mm follicle. In the treated cycle, 5 mg eFSH was given intramuscularly once a day, from day 8 post previous ovulation until at least one follicle reached 35 mm in diameter. Embryo flushes were performed on day 8 of dioestrus (day 0 = ovulation). Treatment with eFSH resulted in higher (p < 0.05) ovulation rate and incidence of multiple ovulations compared to the control (1.6 vs 1.0 and 50% vs 0%, respectively – one mare had triple ovulation). However, embryo recovery rates in the control and treated cycles were similar (0.8 and 1.0, respectively; p > 0.05). Pregnancy rates in the recipient mares following embryo transfer were similar for the control and eFSH cycles (11/11 and 10/14, respectively). Additional studies are necessary in order to develop a low‐dose protocol for the use of eFSH that brings a more consistent contribution to the efficiency of commercial equine embryo transfer programs.  相似文献   

3.
Strategies for Using eFSH for Superovulating Mares   总被引:1,自引:0,他引:1  
The standard treatment for superovulation of mares is to administer equine follicle-stimulating hormone (eFSH) for 4 to 5 days to stimulate multiple follicles and human chorionic gonadotropin (hCG) to induce synchronous ovulations. Objectives of this study were: (1) to determine whether a short-term (3-day) eFSH treatment protocol would result in similar ovulation and embryo recovery rates compared with the standard eFSH protocol; (2) to determine the efficacy of a decreasing dose of eFSH (step-down protocol) on ovulation rate and embryo recovery; (3) to compare the efficacy of hCG and recombinant equine luteinizing hormone (reLH) for inducing ovulation in FSH-treated mares; and (4) to compare embryo recovery rates and embryo size when mares are flushed at 6.5 or 7.0 days after ovulation. Forty light-horse mares were used in 2005 (experiment 1) and 20 different mares were used in 2006 (experiment 2). In experiment 1, mares were randomly assigned to one of three treatment groups: (1) untreated controls, (2) standard eFSH treatment (12.5 mg intramuscularly twice daily), and (3) 3-day eFSH treatment. In experiment 2, mares were randomly assigned to one of four treatments: (1) untreated controls, (2) standard eFSH protocol, (3) 3-day eFSH treatment, and (4) step-down eFSH treatment (12.5 mg twice daily day 1, 8.0 mg twice daily day 2, 4.0 mg twice daily day 3). Within each treatment, mares were given either hCG (2,500 IU) or equine LH (750 mg, EquiPure LH; reLH) to induce synchronized ovulations. Embryo recovery was performed either 6.5 or 7.0 days after ovulation. In experiment 1, numbers of preovulatory follicles and ovulations were less for mares in the 3-day treatment group than the standard group, but were greater than for controls. Embryo recovery per flush was higher in the standard group (2.6) than the 3-day eFSH treatment (0.8) or control groups (0.8). In experiment 2, the number of preovulatory follicles and number of ovulations were greater in the standard and 3-day treatment groups than in control and step-down groups. The percent embryo recovery per ovulation and mean embryo grade were similar for all groups; however, the embryo recovery per flush was higher for mares in the standard treatment than controls (1.3 vs 0.6) but was similar to the 3-day (1.1) and step-down (0.8) treatments. Embryo recovery was similar for flushes performed on days 6.5 and 7.0 post-ovulation. The percentage of control mares ovulating within 48 hours in response to hCG or reLH was similar. In contrast, a higher percentage of eFSH-treated mares ovulated within 48 hours in response to reLH than hCG (92% vs 71%). In both years, the 3-day eFSH treatment protocol resulted in a greater number of preovulatory follicles and a greater number of ovulations than untreated controls. Unfortunately, the increased ovulation rate for mares administered eFSH for 3 days did not result in a greater number of embryos recovered per flush in either year. Use of a step-down eFSH treatment protocol resulted in fewer preovulatory follicles, fewer ovulations, and fewer embryos as compared with the standard eFSH treatment. In conclusion, the standard eFSH treatment resulted in a greater embryo recovery rate per cycle than either the 3-day or step-down treatment protocols. Recombinant equine LH was more effective than hCG in causing ovulation in eFSH-treated mares.  相似文献   

4.
Horse owners want to have their mares bred as early as possible in the breeding season after February 1. Numerous medical treatments, such as progesterone, dopamine antagonists, and gonadotropin-releasing hormone have been administered to anestrous or transitional mares in an attempt to induce follicular development. Some of these treatments are ineffective or impractical, so there is a need in the horse industry to develop alternative techniques to stimulate follicular development and ovulation early in the breeding season. Twenty transitional mares were assigned to one of two treatment groups. Mares in group 1 (n = 10) served as untreated controls, and mares in group 2 (n = 10) were administered 12.5 mg of purified equine follicle-stimulating hormone (eFSH) (Bioniche Animal Health USA, Inc., Athens, Ga) intramuscularly twice daily for a maximum of 15 consecutive days. Mares were considered to be in transition when the diameter of the largest follicle was ≥25 mm. Once one or more follicles >35 mm were detected, eFSH treatment was discontinued and human chorionic gonadotropin was administered intravenously. The percentage of mares ovulating during the 15-day observation period was compared by means of chi-square analysis. The interval to ovulation and the number of ovulations per mare were compared between the two groups by Student t test. In 8 of 10 mares treated with eFSH follicles developed and ovulation occurred during the 15-day observation period, compared with 0 of 10 control mares. Interval from onset of treatment to ovulation was 7.6 ± 2.4 days for these eight mares. The eight mares were treated for an average of 5.2 ± 1.3 days with eFSH. Thus, the eFSH treatment was effective in advancing the first ovulation of the year in transitional mares.  相似文献   

5.
Equine clinicians rely on ovulation induction agents to provide a timed ovulation in mares for optimal breeding management. Numerous studies have been performed on the efficacy of human chorionic gonadotropin (hCG) to induce ovulation in the mare, but limited clinical data are available for the new deslorelin acetate product SucroMate. This study was designed to evaluate the efficacy of SucroMate (deslorelin) in comparison with hCG to induce ovulation. American Quarter horse mares (n = 256) presented to Colorado State University for breeding management were used in this study. Mares received either deslorelin or hCG when a follicle ≥35 mm was detected by transrectal ultrasound in the presence of uterine edema. Ultrasonographic examinations were subsequently performed once daily until ovulation was detected. Deslorelin was administered to 138 mares during168 estrous cycles, and hCG was given to 118 mares during 136 estrous cycles. Mares administered deslorelin had a similar (P < .05) higher ovulation rate (89.9%) within 48 hours following drug administration than mares administered hCG (82.8%). There are no effects of season or age on ovulation rates in either treatment group. Twenty-one mares administered deslorelin and 11 mares administered hCG were monitored by transrectal ultrasound every 6 hours to detect ovulation as part of a frozen semen management program. Average intervals from deslorelin or hCG administration to ovulation were 41.4 ± 9.4 and 44.4 ± 16.5 hours, respectively. Results of this study indicate that SucroMate is effective at inducing a timed ovulation in the mare.  相似文献   

6.
The objective of this study was to evaluate various equine follicle-stimulating hormone (eFSH) treatment protocols and the effect of “follicle coasting” on ovulation and embryo recovery rates in mares. Cycling mares (n = 40) were randomly assigned to one of four groups 7 days after ovulation: (1) 12.5 mg eFSH twice daily until follicles were 35 mm or larger; (2) 12.5 mg eFSH twice daily until follicles were 32 mm or larger; (3) 12.5 mg eFSH twice daily for 3.5 days followed by 12.5 mg eFSH enriched with luteinizing hormone (LH) twice daily until follicles were 35 mm or larger; and (4) 25 mg eFSH once daily until follicles were 32 mm or larger. Mares in groups 1 and 3 were injected with human chorionic gonadotropin (hCG) (2500 IU intravenously) at the end of eFSH treatment, whereas mares in groups 2 and 4 were given hCG approximately 42 and 54 hours, respectively, after the last eFSH treatment (“follicle coasting”). Nonsurgical embryo collection was performed 6.5 to 7.5 days after ovulation. Each mare experienced a nontreated estrous cycle before being reassigned to a second treatment. Ovulation rates for mares in treatment groups 1 to 4 were 3.3 ± 0.4, 4.1 ± 0.4, 3.5 ± 0.4, and 2.8 ± 0.4 (mean ± SEM; P < .05), respectively. One or more embryos were recovered from more than 80% of mares in each treatment group, and embryo recovery rate per flush was similar among treatment groups (1.9 ± 0.3, 2.6 ± 0.3, 1.9 ± 0.3 and 1.9 ± 0.3, respectively; P > .05). The overall embryo recovery rate was 2.1 ± 1.5 embryos per flush. In summary, ovulation rate was higher for mares treated with eFSH (3.4 ± 0.4) compared with non-treated controls (1.1 ± 0.2). Ovulation rate in mares in which hCG was delayed (follicle coasting) was higher (P < .05) when treatments were given twice per day versus once per day. Administration of equine luteinizing hormone (eLH) in conjunction with eFSH did not have an advantage over mares treated only with eFSH.  相似文献   

7.
Thirty reproductively sound mares were divided into treatment and control groups. In the treatment group, consisting of 14 mares, 2500 I.U. of human chorionic gonadotropin (hCG) was administered intravenously during estrus, in the presence of a 35 mm follicle over five successive cycles in 1987, and at least two cycles in 1988. Beginning with the second cycle of treatment in 1988, these mares were bred to a fertile stallion. The control group, consisting of 16 mares, was followed for two to five cycles in either the 1987 or 1988 season and six of these mares were bred to fertile stallions. Throughout the study period, blood was collected from the mares in the treatment group for analysis of anti-hCG antibodies and cross reactivity of the antibody to purified equine lutenizing hormone (eLH) and equine chorionic gonadotropin (eCG).In 1987, after the first three injections of hCG, mean duration of estrus in treated mares tended to be shorter than in control mares (P<.10). After all five hCG injections in 1987, mean ovulation time for treated mares was shorter than in control mares (P<0.01). However, after two to five hCG injections in 1987, seven treated mares (50%) had some individual ovulation times that did not differ from the control mares.Initially, following the first three injections of hCG in 1988, mean duration of estrus tended to be shorter (P<0.1) in treated mares compared to control mares. A reduction in mean ovulation time was observed after the first two hCG injections of 1988 (P<0.01). However, after one to four hCG injections in 1988, eight treated mares (57.1%) had some individual ovulation times that did not differ from controls.In 1987, all 14 treated mares developed significant levels of antibodies to hCG after one to four injections, and again in 1988, were positive for anti-hCG antibodies after one to three injections. However, no correlation was observed between magnitude of the immune response and duration of ovulation time or pregnancy rate. In cross reactivity studies, no significant binding of plasma anti-hCG antibodies to either eLH or eCG was observed in vitro.Overall, pregnancy and foaling rates of treated (85.7%) and control mares (83.3%) did not differ. Additionally, no difference was observed in number of inseminations per estrus between treated and control mares. In this study, with successive injections of hCG, the expected shortened time to ovulation was not elicited consistently in all mares. However, mares continued to ovulate, conceive and foal in the presence of significant levels of anti-hCG antibodies.  相似文献   

8.
The objective of this study was to compare the efficacy of purified equine‐ and porcine‐FSH treatment regimes in mares in early vernal transition. Mares (n = 22) kept under ambient light were examined ultrasonographically per‐rectum, starting January 30th. They were assigned to one of two treatment groups using a sequential alternating treatment design when a follicle ≥ 25 mm was detected. In the eFSH group, mares were treated twice daily with equine‐FSH, and in the pFSH group mares were treated twice daily with porcine‐FSH; treatments were continued until follicle(s) ≥ 35 mm, and 24 h later hCG was administered. Oestrous mares were inseminated with fresh semen and examined for pregnancy on days 11–20 post‐ovulation. In the eFSH group, 11/11 (100%) mares developed follicle(s) ≥ 35 mm, 8/11 (73%) ovulated and 6/8 (75%) conceived. In the pFSH group, 5/11 (45%) developed follicle(s) ≥ 35 mm, 4/11 (36%) ovulated and 3/4 (75%) conceived. Treatment with eFSH resulted in a greater ovarian stimulation; higher number of pre‐ovulatory‐sized follicles, higher number of ovulations and higher number of embryos (p < 0.05). Following ovulation, serum progesterone concentrations were correlated with the number of CLs and supported early embryonic development; maternal recognition of pregnancy occurred in all pregnant mares. We concluded that eFSH can be used to effectively induce follicular growth and ovulation in vernal transitional mares; however, if bred, diagnosis and management of twins’ pregnancies would be required prior to day 16 because of the increased risk of multiple embryos per pregnancy. Conversely, the current pFSH treatment regime cannot be recommended.  相似文献   

9.
Background Induction of multiple ovulations, or superovulation, may potentially increase the efficiency of equine embryo transfer programs. Our objective was to investigate the effects of equine follicle‐stimulating hormone (eFSH) treatment on the success rate of embryo transfer programs in mares. Methods In the research facility of the University of Saskatchewan, Canada, we studied 12 donor mares and 37 recipient mares during the physiological breeding season. Donor mares were used in two consecutive oestrous cycles: the first served as the control cycle and in the second an eFSH regimen was applied (eFSH cycle). In the control cycle, mares were administered human chorionic gonadotropin (hCG) to induce ovulation when a follicle ≥35 mm in diameter was detected by transrectal ultrasonographic examination. In the second oestrous cycle, twice‐daily eFSH treatment was initiated when a follicle ≥25 mm was detected and treatment ceased when a follicle ≥35 mm was present, at which time hCG was administered. All donor mares were artificially inseminated while in oestrus using fresh semen collected from a stallion of proven fertility. At 8 days post‐ovulation, embryos were recovered transcervically and transferred individually to the uterus of a synchronised recipient mare. Results The eFSH treatment stimulated the ovary and resulted in greater numbers of ovulations and recovered embryos; however the recovered embryos tended to have a lower morphological grade than the control embryos, and the recipient pregnancy rate per transferred embryo was lower than anticipated. Conclusion The numbers of recipient pregnancies and foals born that resulted from eFSH treatment were not different from the control.  相似文献   

10.
The use of equine FSH (eFSH) for inducing follicular development and ovulation in transitional mares was evaluated. Twenty-seven mares, from 3 to 15 years of age, were examined during the months of August and September 2004, in Brazil. Ultrasound evaluations were performed during 2 weeks before the start of the experiment to confirm transitional characteristics (no follicles larger than 25 mm and no corpus luteum [CL] present). After this period, as the mares obtained a follicle of at least 25 mm, they were assigned to one of two groups: (1) control group, untreated; (2) treated with 12.5 mg eFSH, 2 times per day, until at least half of all follicles larger than 30 mm had reached 35 mm. Follicular activity of all mares was monitored. When most of the follicles from treated mares and a single follicle from control mares acquired a preovulatory size (≥35 mm), 2,500 IU human chorionic gonadotropin (hCG) was administered IV to induce ovulation. After hCG administration, the mares were inseminated with fresh semen every other day until ovulation. Ultrasound examinations continued until detection of the last ovulation, and embryo recovery was performed 7 to 8 days after ovulation. The mares of the treated group reached the first preovulatory follicle (4.1 ± 1.0 vs 14.9 ± 10.8 days) and ovulated before untreated mares (6.6 ± 1.2 vs 18.0 ± 11.1 days; P < .05). All mares were treated with prostaglandin F (PGF), on the day of embryo flushing. Three superovulated mares did not cycle immediately after PGF treatment, and consequently had a longer interovulatory interval (22.4 vs 10.9 days, P < 0.05). The mean period of treatment was 4.79 ± 1.07 days and 85.71% of mares had multiple ovulations. The number of ovulations (5.6 vs 1.0) and embryos (2.0 vs 0.7) per mare were higher (P < 0.05) for treated mares than control mares. In conclusion, treatment with eFSH was effective in hastening the onset of the breeding season, inducing multiple ovulations, and increasing embryo production in transitional mares. This is the first report showing the use of FSH treatment to recover embryos from the first cycle of the year.  相似文献   

11.
The aim of this study was to evaluate the effect of equine chorionic gonadotropin (eCG) at the end of progesterone (P4) treatment on follicular and luteal characteristics during transition period (TP) and reproductive breeding season (RP). A total of 13 crossbred mares were distributed in two experimental groups in the spring and summer (n = 26). The animals received intravaginal P4 (1.9 g) releasing device from D0 to D10. On removal of P4 device, the mares received 400 IU of eCG (eCG group) or saline solution (control group). Human chorionic gonadotropin (hCG; 1.750 IU) was administered (DhCG) as soon as ovulatory follicle (OF) ≥35 mm was detected. Ovarian ultrasonography was performed from D0 until 15 days after ovulation. Blood samples were collected on D0, D5, D10, DhCG, 9 days after ovulation (CL9D), and 13 days after ovulation (CL13D). P4 and estradiol concentrations were assessed by chemiluminescence. Data were compared by Tukey test at P < .05. Ovulation rate was similar (P = .096) between seasons (RP = 100%; TP = 70%) but occurred earlier (P = .015) in RP (34.8 ± 10.1 hours) compared with TP (42.0 ± 10.4 hours). Interactions between season and treatment were observed for OF diameter (mm) (RP/control = 36.2 ± 1.8ab; RP/eCG = 32.9 ± 2.8 b; TP/control = 32.2 ± 1.2 b; TP/eCG = 37.2 ± 1.9a; P = .004) and for corpus luteum (CL) diameter (mm) on CL13D (RP/control = 25.4 ± 3.5a; RP/eCG = 22.5 ± 1.8ab; TP/control = 21.6 ± 4.9 b; TP/eCG = 27.4 ± 4.3a; P = .023), although no differences were observed for serum P4 on CL13D (RP/control = 6.0 ± 3.1 ng/mL; RP/eCG = 5.8 ± 0.9 ng/mL; TP/control = 3.6 ± 2.7 ng/mL; TP/eCG = 5.1 ± 2.3 ng/mL; P = .429) or for day of structural CL regression (RP/control = 12.8 ± 1.9; RP/eCG = 12.1 ± 1.1; TP/control = 11.0 ± 1.7; TP/eCG = 13.2 ± 2.0; P = .102). The application of eCG at the moment of P4 implant removal seemed to increase the capacity of luteal maintenance during spring TP. However, eCG treatment was worthless during the breeding season.  相似文献   

12.
The objective of this study was to compare the rate of ovulation when deslorelin and/or human chorionic gonadotropin (hCG) was administered in mares in both the transition period and the ovulatory season. A total of 200 Paint Horses, Quarter Horses, and crossbred mares were used during the transition season (July to September) and the ovulatory season (October to February) of the southern hemisphere. The animals were divided into four groups. In the control group (n = 72), mares received 1 mL of saline; in deslorelin group (n = 171), 1.5 mg of deslorelin was administered by intramuscular (IM) injection; in hCG group (n = 57), 1,667 IU of hCG was administered IV; and in hCG + deslorelin group (n = 438), 1.5 mg of deslorelin (IM) and 1,667 IU of hCG (IV) were administered. The drugs were administered after follicles ≥35 mm in diameter were identified and grade III uterine edema was observed. At 48 hours after application, ultrasonography was performed to detect ovulation. During the transition period, the ovulation rates were 4.3% (control), 78.6% (deslorelin), 50% (hCG), and 73.3% (hCG + deslorelin). During ovulatory season, the ovulation rates were 16.4% (control), 68.8% (deslorelin), 60% (hCG), and 73% (hCG + deslorelin). There was no significant difference (P > .05) in the ovulation rate between the groups or the periods, except that the control group was lower than all others. Furthermore, both hCG and deslorelin are viable options for inducing ovulation during the transition period before ovulation season.  相似文献   

13.
The timing of ovulation is an important component to many equine breeding strategies. The action of luteinizing hormone on ovulation induction has been recognized; however, potential effects of follicle-stimulating hormone (FSH) have been less defined. Objectives of this study were to determine whether (1) mares could be induced to ovulate follicles ≤30 mm; (2) equine FSH (eFSH) has a positive effect on ovulation induction, and (3) ovulation of small follicles would affect embryo recovery. Light-horse mares (n = 12) between 4 and 10 years of age were assigned to treatments when they had a dominant growing follicle with a mean diameter of 24, 28, or 35 ± 2 mm and endometrial edema. Treatments were (1) H35, human chorionic gonadotropin (hCG) at 35 ± 2 mm; (2) F35, eFSH at 35 ± 2 mm; (3) H28, hCG at 28 ± 2 mm; (4) FH28, eFSH and hCG at 28 ± 2 mm; (5) D28, deslorelin (gonadotropin-releasing hormone [GnRH] analog) at 28 ± 2 mm; (6) FH24/H24, hCG or eFSH and hCG at 24 ± 2 mm. Mares’ reproductive tracts were scanned at 24 ± 2-hour intervals after treatment to detect ovulation. Mares were inseminated, and embryos were collected. Numbers of mares that ovulated within 48 ± 2 hours after treatment were: H35, 8/8 (100%); F35, 8/14 (57%); H28, 7/12 (58%); FH28, 9/12 (75%); D28, 3/7 (43%) and FH/H24, 4/14 (29%). The number of mares that ovulated in 48 ± 2 hours for H35 was not different from that for FH28 but was higher (P < .05) than all other groups. Embryo recovery rates, diameters, developmental stages, and morphology scores were not different for mares ovulating 48 hours or less versus more than 48 hours after treatment or among treatment groups. Results of this study demonstrate that follicles ≤30 mm can be induced to ovulate with no effect on embryo recovery or quality, as assessed by stereomicroscopy.  相似文献   

14.
The stimulatory role of equine Chorionic Gonadotropin (eCG) in the production of steroid hormones was evaluated during the first 4 months of pregnancy in mares impregnated by either stallions or jack donkeys. Twenty mares were divided in two groups: Mares in the first group were inseminated with stallion semen (horse pregnancies), and those in the second group were inseminated with donkey semen (mule pregnancies). Blood samples were collected twice weekly from day 30 to day 120 of pregnancy to determine the concentrations of eCG, progesterone, androstenedione, and testosterone. Analysis of variance for repeated measures was used to compare the concentrations of each hormone between groups. Linear regression models that considered the linear and quadratic effects of week of gestation as well as the linear and quadratic effects of the concentrations of eCG on the production of each steroid hormone were carried out. Concentrations of eCG, progesterone, and androstenedione were higher in horse than in mule pregnancies (P < .01 for eCG and P < .05 for progesterone and androstenedione). Testosterone concentrations were also higher in horse pregnancies than in mule pregnancies at weeks 7, 9, and 10 (P < .05). Regression analysis indicated that eCG had considerable stimulatory effects on the secretion of progesterone and androstenedione and weaker effects on the secretion of testosterone. The results suggest that eCG stimulates luteal production of progesterone, androstenedione, and testosterone in horse and mule pregnancies, these effects being more evident in horse pregnancies than in mule pregnancies due to the higher concentrations of eCG in horse pregnancies.  相似文献   

15.
The objective of this study was to compare the incidence of pregnancy loss of mares carrying a mule embryo with that of mares carrying a horse embryo. The possible causes of such mortality were evaluated through serial ultrasonographic evaluations and hormonal monitoring, paying special attention to the role of premature regression of the endometrial cups and its relation to inadequate luteal function.

Twenty-eight mares impregnated by stallions and 19 mares impregnated with donkey semen were evaluated ultrasonographically every week from day 20 to day 150 of pregnancy. The viability of the product was assessed each time, and the diameter of the embryonic vesicle was measured from day 25 to day 60. Blood samples for progesterone and equine chorionic gonadotropin (eCG) determination were taken every week.

Both progesterone and eCG concentrations during normal pregnancies wegre significantly lower in the mares inseminated with donkey semen than in the mares impregnated by stallions (P<.05). In 7 of the mares carrying mule conceptuses to term, the concentrations of eCG remained basal throughout the study. In the other animals from this group, the levels of this hormone did increase but returned to baseline much earlier (on day 77 of pregnancy) than in the mares served by stallions (on day 126 day of pregnancy). There was no significant difference between the growth rate of embryonic vesicles of mares carrying mule embryos and that of mares carrying horse embryos (P>.05).

The incidence of pregnancy loss was significantly higher (P<.05) in mares carrying a mule embryo (36.8 %) than in mares carrying a horse embryo (21.4%); it occurred on average on day 93 of pregnancy in mares carrying mule embryos and on day 43 on mares carrying horse embryos. There was only 1 case in which pregnancy loss was associated with concentrations of both eCG and progesterone that were much lower than the average for the normal pregnancies of the same group, and this was in a mare carrying a horse embryo. The most frequent cause of pregnancy loss was premature luteal regression due to primary luteolysis, as evaluated via peripheral progesterone concentrations. This occurred in 2 mares carrying horse embryos and in 4 mares carrying mule embryos. Three mares carrying mule embryos and 1 carrying a horse embryo had abortions that were not preceded or accompanied by any alteration in progesterone or eCG levels and were thus classified as fetal deaths of non-endocrine origin.

It is concluded that the incidence of pregnancy loss is higher in mares carrying a mule embryo than in mares carrying a horse embryo. However, this is not due to the low progesterone concentrations associated with the premature regression of the endometrial cups that occurs in mares with interspecific pregnancy.  相似文献   


16.
Sixteen estrous cycles from 10 cyclic mares were randomly assigned to a control or sulpiride group (n = 8 each). All mares received 1,500 IU of human chorionic gonadotropin (hCG) (hour 0) during estrus with a follicular diameter ≥32 mm. Mares were scanned every 12 hours until ovulation. In the treatment group, beginning at hour 0, each mare received 1.5 mg/kg of sulpiride every 12 hours intra-muscularly until ovulation or formation of a luteinized unruptured follicle (LUF). Concentrations of luteinizing hormone (LH) and prolactin (PRL) were measured by radioimmunoassay. In each group, there were 10 preovulatory follicles for the eight cycles. The ovulation rate (9/10, 90%) was similar in the control and sulpiride groups. Two mares formed an LUF, which was first detected at hours 48 and 72 for the sulpiride and control mares, respectively. The interval from hCG to ovulation was 49.5 ± 11.1 and 43.5 ± 5.8 hours, for the control and sulpiride groups, respectively (P > .5). LH followed the typical preovulatory surge pattern, with no difference between groups (P > .5). Sulpiride administration increased PRL concentration in treated mares at 24 (P < .1), 36, and 48 hours (P < .05) after treatment. In conclusion, sulpiride administration every 12 hours increased PRL concentration in treated mares after 24 hours of the beginning of treatment. However, at this time window and concentration, PRL did not have any effect on ovulation. The control mare that developed an LUF had a PRL concentration similar to other ovulatory control mares (always ≤10 ng/mL).  相似文献   

17.
Timed artificial insemination (TAI) has boosted the use of conventional artificial insemination (CAI) by employing hormonal protocols to synchronize oestrus and ovulation. This study aimed to evaluate the efficiency of a hormonal protocol for TAI in mares, based on a combination of progesterone releasing intravaginal device (PRID), prostaglandin (PGF) and human chorionic gonadotropin (hCG); and compare financial costs between CAI and TAI. Twenty-one mares were divided into two groups: CAI group (CAIG; n = 6 mares; 17 oestrous cycles) and TAI group (TAIG; n = 15 mares; 15 oestrous cycles). The CAIG was subjected to CAI, involving follicular dynamics and uterine oedema monitoring with ultrasound examinations (US), and administration of hCG (1,600 IU) when the dominant follicle (DF) diameter's ≥35 mm + uterine oedema + cervix opening. The AI was performed with fresh semen (500 × 106 cells), and embryo was recovered on day 8 (D8) after ovulation. In TAI, mares received 1.9 g PRID on D0. On D10, PRID was removed and 6.71 mg dinoprost tromethamine was administered. Ovulation was induced on D14 (1,600 IU of hCG) regardless of the DF diameter's, and AI was performed with fresh semen (500 × 106 cells). On D30 after AI, pregnancy was confirmed by US. The pregnancy rate was 80.0% in TAIG and 82.3% in CAIG (p > .05). The TAI protocol resulted in 65% reduction in professional transport costs, and 40% reduction in material costs. The TAI was as efficient as CAI, provided reduction in costs and handlings, and is recommended in mares.  相似文献   

18.
Between February 15 and May 17, 2011, a total of 88 broodmares (10 maiden, 10 barren, and 68 foaling) maintained on pasture in southeast Texas were examined three times weekly (Tuesday, Thursday, Saturday) by transrectal palpation and ultrasonography. On Tuesday or Thursday, mares in estrus with uterine edema, a relaxed cervix, and a dominant follicle ≥34 mm in diameter were alternately assigned to treatment with the following: group (1) 2,500-unit human chorionic gonadotropin (hCG), intravenous; group (2) 1.0-mg BioRelease Histrelin (Biorelease Technologies, Lexington, KY), intramuscular; or group (3) 0.5-mg BioRelease Histrelin, intramuscular. Ovulation was confirmed by ultrasonographic examination. The percentage of mares ovulating within 2 days appeared to be similar between maiden, barren, and foaling mares, so responses for all mares were totaled for analysis. A nonsignificant trend for higher ovulation rates within 2 days was noted for both dose rates of histrelin compared with hCG treatment (31/37, 84%; 34/37, 92%; and 33/36, 92% for groups 1-3, respectively) (P = .45). Ovulatory responses appeared to improve for both products as the season progressed, yet no differences were detected between response rates to histrelin or hCG for any month (P ≥ .50). The use of 1.0- or 0.5-mg BioRelease Histrelin was found to be at least equally effective as hCG treatment for inducing ovulation within 2 days of treatment throughout the breeding season.  相似文献   

19.
Ovulation-inducing agents are routinely used in broodmare practice. The objective of this study was to compare the efficacy of two compounded deslorelin products and human chorionic gonadotropin (hCG) in inducing ovulation in a clinical reproduction program. Breeding records of 203 mares administered an ovulation-inducing agent during the 2006 breeding season were reviewed. Estrous cycles were included for comparison if agents were administered when the largest follicle was 35 to 45 mm in diameter and endometrial edema was present. There was no significant difference (P > .05) in interval to ovulation for mares receiving deslorelin (1.9 ± 0.7 days) or hCG (2.0 ± 0.7 days). The percentage of mares that ovulated within 48 hours after treatment was also not significantly different between the agents (90.1% and 88.3%, respectively). In summary, clinical efficacy at inducing a timed ovulation in estrual mares with follicles 35 to 45 mm was similar between compounded deslorelin and hCG.  相似文献   

20.
The effects of repeated cloprostenol administration were compared in mares impregnated by horses and mares impregnated by donkeys in order to assess the role of eCG on the development of pregnancy‐associated resistance to the luteolytic and abortifacient effects of PGF2α. Eleven mares impregnated by donkey (mule pregnancy) and 9 mares impregnated by horse (horse pregnancy) were used. Six mares with mule pregnancy and four with horse pregnancy were injected with cloprostenol (0.25 mg) when they were between day 65 and day 75 of pregnancy, and the treatment was repeated 48, 72 and 96 h latter. The rest of the mares remained as controls. Concentrations of eCG were 10 times higher (p < 0.001) in mares impregnated by horses than in mares impregnated by donkeys, and they were not affected by cloprostenol treatment. Luteolysis was completed 30 h after the first cloprostenol injection in mule pregnancies, while mares with horse pregnancies required 96 h and three cloprostenol injections to complete luteolysis. Regression analysis revealed significant associations between eCG concentrations at time 0 and the time required for completion of luteolysis (p < 0.001), foetal death (p < 0.01) and foetal expulsion (p < 0.05). It is concluded that high eCG concentrations in mares impregnated by horses protect the corpora lutea of pregnancy against the luteolytic effects of PGF2α. Low eCG concentrations in mares carrying mule foetuses afford them less protection against the luteolytic effect of PGF2α, and this may be a cause of the increased foetal mortality that occurs between days 60 and 90 of pregnancy in these mares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号