首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intensive recirculating aquaculture systems (RAS) produce high volumes of biosolid waste. The high salinity of brackish/marine sludge limits its use in landfill sites and waste outflows and it is a source of pollution. A reduction in sludge mass would therefore minimize the potential environmental hazard and economic burden stemming from its disposal. The aims of the current study were: 1) to characterize brackish aquaculture sludge (BAS) from three RAS in order to test for potentially suitable treatments, and 2) to test the BAS's suitability for anaerobic digestion in an upflow anaerobic sludge blanket reactor (UASB). Brackish sludge from three intensive RAS was collected periodically and analyzed for a variety of physical and chemical parameters. The mean sludge electrical conductivity and pH values ranged from 4.0 to 8.6 mS cm− 1 and 7.0 to 7.7, respectively. A low sludge redox potential averaging − 80 mV and dissolved oxygen concentrations of less than 1 mg l− 1 indicated the existence of anaerobic conditions. Volatile solids comprised 56 to 76% of the dry weight and the sludge volume index ranged from 44 to 69 ml g − 1. High concentrations of total nitrogen and total carbon were also observed, resulting in a C:N ratio ranging between 8.1 and 10.3. Toxic and/or inhibitory compounds for methanogenesis such as nitrites, nitrates and sulfides were almost absent. Sludge BOD5 ranged from 10 to 30% dry weight. These data suggest that BAS may be used in anaerobic digestion and methanogenesis without pretreatment. This concept was tested by digesting aquaculture sludge in UASB reactors. Despite the high sulfate and phosphate concentrations in the BAS, these were found not to be inhibitory to methanogenesis. Up to 70% sludge-mass reduction and an average of 40% methane production were demonstrated.  相似文献   

2.
Treatment of sludge from aquaculture is a matter of special importance and there is a need for salt-tolerant biological wastewater treatment to coincide with the development of brackish/marine aquaculture. The aims of the current study were to determine the ability of anaerobic sequencing batch reactor (ASBR) to anaerobically digest sludge from fresh-water recirculating aquaculture systems and the ability of adaptation to low saline conditions. The mesophilic ASBR were evaluated with loading rates between 0.12 and 0.41 g chemical oxygen demand (COD)/day at a 20-day hydraulic retention time (HRT) for start-up and with organic loading rates (OLR) of 0.39–0.41 g COD/L day at a 20-day HRT for saline adaptation. The average removal rate of total chemical oxygen demand (TCOD), total suspended solids (TSS) and volatile suspended solids (VSS) of the ASBR were above 97%, 96% and 91% during the stabilization period of the experimental reactors. The average daily gas production of ASBR was between 0.013 and 0.022 L/g TCOD from day 118. A sludge-mass reduction of up to 94 ± 2.3%, TCOD reduction of 44 ± 13% and VSS/SS of 39–70% were demonstrated for the reactor performance during the gas production period. However, the process of gas production was obviously inhibited, presumably by salt, and unstable due to the dissolved COD (DCOD), total ammonium nitrogen (TAN) and alkalinity of the effluents of the experimental reactors and TSS and sludge volume index (SVI) observed within the reactors. The daily gas production was observed to decrease during the saline adaptation period and stopped when the salinity of the effluents was higher than 8.7 ppt until the end of the experiment.  相似文献   

3.
Marine land-based Recirculating Aquaculture Systems (RAS) are generally perceived as environmentally friendly aquatic production systems. To promote their sustainability even further and reduce the discharge of nutrients, there is a need for cost-effective end-of-pipe treatment technologies for removing nutrients. This includes nitrate-nitrogen (NO3-N) for which well-proven technologies for freshwater systems exists, while similar technologies for saltwater systems are less advanced. Granular technology has been developed since the 1970s in wastewater treatment under the upflow anaerobic sludge bed (UASB) concept. This concept is based on the enrichment of different bacterial aggregations into a compact granule, optimizing synergistic and syntrophic bacterial processes by reducing the diffusion distance of substrates between the different bacterial consortia forming the granule. The following study examined the: 1) granular formation; and 2) nitrate removal capacity of a marine Upflow Anoxic Sludge Bed (UASB) reactor operating at different up-flow velocities (0.40–2.11 m/h). The results showed that marine denitrifying granules developed within 27 days using preconditioned rainbow trout (Oncorhynchus mykiss) organic matter waste, and that the highest specific denitrification rate (321.9 ± 13.1 mg NO3-N/g Total Volatile Suspended Solids (TVSS)/d) was found at an upflow velocity of 0.97 m/h. The marine UASB denitrifying granule reactor had a total capacity of removing 14.9 kg NO3-N/m3 reactor volume per day at a hydraulic retention time of 1.9 h, making it a strong candidate for end-of-pipe denitrification of marine RAS effluent as well as for in-line treatment in marine systems.  相似文献   

4.
Environmental pressure, land utilization, and economic feasibility have resulted in the development of recirculating aquaculture systems (RAS). For many RAS, sludge is collected and washed from the system to waste stabilization ponds (WSPs). However, disposal of brackishwater aquaculture sludge into WSP is often prohibited because the high salinity can interfere with treatment. Moreover, there are problems associated with WSPs because of elevated salt content, such as the common practice of reusing treated water and land application of stabilized sludge. We tested and compared the treatment of brackishwater aquaculture sludge in an upflow anaerobic sludge blanket (UASB) reactor as an alternative to a WSP. In UASB, wastewater flows upward through a blanket of granular sludge and is treated by anaerobic micro‐organisms. Reduction in organic matter and 5‐d biochemical oxygen demand by 97 and 91%, respectively, was achieved in a UASB as compared to corresponding reductions of 22 and 41% in a WSP. During the UASB digestion process, methane is produced and recovered. Overall, a reduction in potential environmentally harmful factors such as salinization, land requirements, greenhouse gas emissions, as well as transportation costs are achieved, making the UASB reactor an attractive possible alternative for saline aquaculture sludge management.  相似文献   

5.
采用中试规模的循环水养殖系统,对比研究碳源连续添加的微生物悬浮生长反应器(SGR-Con)和碳源分次添加反应器(SGR-Sev)的水处理效果。典型反应周期内的溶解性有机碳浓度变化,SGR-Con反应区处于较高的稳定水平,SGR-Sev在反应周期的第0小时至碳源瞬时添加时快速上升至SGR-Con的水平,并且在反应周期的第4小时以后降至较低的稳定水平。实验期间,SGR-Sev反应区和沉淀区的溶解氧含量分别显著高于SGRCon的反应区和沉淀区;2个反应器的反应区pH无显著差异,沉淀区pH在2个反应器之间亦无显著差异。碳源分次添加的方式显著提高了反应器的脱氮效果,SGR-Sev对硝氮和总氮的去除率、出水碱度分别可达63.91%±14.31%、64.07%±12.11%和(278.18±80.33)mg/L。相较于SGR-Con,SGR-Sev的出水总氨氮和亚硝氮浓度较高。反应器采用碳源分次添加的方式可使絮团具有良好的沉降性能。研究表明,微生物悬浮生长反应器宜采用碳源分次添加的方式。  相似文献   

6.
A dual column photobioreactor (PBR) (2 × 47 L) with mixed CO2/air bubbling was tested for cultivation of the microalga Rhodomonas salina as food for live feed copepods. In the continuous growth phase, the cell density was relatively stable at 2.40 ± 0.13 × 106 cells/ml at an average dilution rate of 0.46 ± 0.02 per day throughout the 30‐day experiment. The produced algae had a high content of both total fatty acids (TFA) and free amino acids (FAA). Especially, the harvested algae contained a high proportion of poly‐unsaturated fatty acids that made up 80% of the TFA and of essential amino acids (35% of all FAA), implicating desirable components as feed for copepods. The current PBR was sufficient to feed a culture of the calanoid copepod Acartia tonsa at a density of 2,500 adult/L in ca. 500 L culture with a daily yield of approximately 17 × 106 eggs. To be able to sustain the integrated copepods production, the suggested volume of the algae cultures should be ca. 20% of the copepod culture volume.  相似文献   

7.
The influences of dietary fat concentration on growth and energy deposition were studied in two replicated groups of turbot, Scophthalmus maximus (L.). Individually tagged turbot (202.3 g) held at 15.6 °C were offered dry pellets in excess. These contained either high-fat (25.4%) or low-fat (16.6%) concentration and identical protein (43.2%). After 3 months, feed treatments were crossed in two replicates, and the remaining fish were offered a mix of feeds for a further 2 months. Fish were sacrificed for analysis of body composition at the start of the experiment, at the time of feed treatment changes and when the experiment was terminated. There were no significant differences in energy intake, specific growth rate or weight between treatments at any time during the experiment. At the time of the feed treatment change fish offered high-fat feed had a significantly higher relative body fat (8.2 vs. 6.3% w/w) and lower body water (71.2 vs. 73%), but there were no differences in protein or ash content. By the end of the experiment, differences in body composition had diminished. The results indicate that fat content in the turbot may be manipulated by changing the dietary fat content, apparently without major influences on weight gain.  相似文献   

8.
Eight of the existing 9.1 m (30 ft) diameter circular culture tanks at the White River National Fish Hatchery in Bethel, Vermont, were retrofitted and plumbed into two 8000 L/min partial water reuse systems to help meet the region's need for Atlantic salmon (Salmo salar) smolt production. The partial reuse systems were designed to increase fish production on a limited but biosecure water resource, maintain excellent water quality, and provide more optimum swimming speeds for salmonids than those provided in traditional single-pass or serial-reuse raceways. The two systems were stocked with a total of 147,840 Atlantic salmon parr in May of 2005 (mean size 89 mm and 8.5 g/fish) and operated with 87–89% water reuse on a flow basis. By the time that the smolt were removed from the systems between March 28 to April 12, 2006, the salmon smolt had reached a mean size of 24 cm and 137 g and hatchery staff considered the quality of the salmon to be exceptional. Overall feed conversion was <1:1. The Cornell-type dual-drain circular culture tanks were found to be self-cleaning and provided mean water rotational velocities that ranged from a low of 0.034 m/s (0.2 body length per second) near the center of the tank to a high of 39 cm/s (2.2 body length per second) near the perimeter of the tank. The fish swam at approximately the same speed as the water rotated. System water quality data were collected in mid-September when the systems were operated at near full loading, i.e., 24 kg/m3 maximum density and 52.1 and 44.1 kg/day of feed in system A and system B, respectively. During this evaluation, afternoon water temperatures, as well as dissolved oxygen (O2), carbon dioxide (CO2), total ammonia nitrogen (TAN), and total suspended solids (TSS) concentrations that exited the culture tank's sidewall drains averaged 14.8 and 15.9 °C, of 7.9 and 8.2 mg/L (O2), 4.0 and 3.2 mg/L (CO2), 0.72 and 0.67 mg/L (TAN), and 0.52 and 0.13 mg/L (TSS), respectively, in system A and system B. Dissolved O2 was fairly uniform across each culture tank. In addition, water temperature varied diurnally and seasonally in a distinct pattern that corresponded to water temperature fluctuations in the nearby river water, as planned. This work demonstrates that partial reuse systems are an effective alternative to traditional single-pass systems and serial-reuse raceway systems for culture of fish intended for endangered species restoration programs and supplementation programs such as salmon smolt.  相似文献   

9.
在基础饲料中分别添加不同剂量的凝结芽孢杆菌(Ⅰ:1.0×1011cfu/kg饲料,Ⅱ:3.0×1011cfu/kg饲料,Ⅲ:6.0×1011cfu/kg),室外水族箱中饲养奥尼罗非鱼(Oreochromis niloticus×O.aureus)(34.50±0.25 g),用基础饲料投喂作为对照,每饲料组设三个重复,每水族箱随机放养16尾鱼,投喂率为3%。采用静水饲养以避免各箱之间水的交换。56 d后测定鱼体的生长和消化酶活性。结果显示:不同添加量的凝结芽孢杆菌均能显著提高奥尼罗非鱼胃、肝胰脏和肠道蛋白酶活性(P<0.05),但酶的活性随添加量的提高呈下降趋势。凝结芽孢杆菌的添加对胃、肝胰脏和肠道淀粉酶及脂肪酶活性没有显著影响(P>0.05)。Ⅰ组和Ⅱ组的干物质表观消化率、蛋白质消化率、相对增重率、饵料系数和蛋白质效率均显著高于对照组(P<0.05),而Ⅲ组和对照组之间差异不显著(P>0.05)。结果提示,饲料中添加1.0×1011cfu/kg饲料的凝结芽孢杆菌就能显著促进奥尼罗非鱼的生长和饲料营养物质的利用,满足最佳生长。  相似文献   

10.
The accumulation of particulate organic matter (POM) in recirculating aquaculture systems (RAS) has become an important issue with the intensification of finfish production. The objective of this study was to assess the foam fractionation efficiency of a vacuum airlift in different conditions (POM concentrations, airflow rates, bubble sizes, water renewal rates and feed addition). In sea water, the vacuum airlift allowed removing 20% of the initial POM concentration per hour (foam fractionation efficiency), corresponding to a 20.7-fold concentration factor between the tank and the foam. In rearing conditions, efficiency increased with decreasing water renewal rate or increasing POM concentration. An increase in airflow rate from 10 to 80 L min−1 in the vacuum airlift significantly decreased foam fractionation efficiency when feed was added to the water. The impact of feeding was only observed with high airflow rates where bubble coalescence occurred. Calculated POM production by fish ranged between 15.9 and 23.5 g h−1 and was equivalent to estimations based on feed conversion ratio (FCR). This indicated that all the POM produced was extracted by the vacuum airlift.  相似文献   

11.
A 60‐day indoor experiment was conducted to study the effect of dietary supplementation of biofloc on metabolic enzyme activities and immune responses in Penaeus monodon juveniles. Biofloc developed in indoor fibreglass‐reinforced plastic (FRP) tanks (1000 L) was used as dietary supplement in P. monodon (2.90 ± 0.10 g) reared in 1000‐L FRP tanks. Graded level of dried biofloc was included in shrimp basal diets, 0% (control, B0), 4% (B4), 8% (B8) and 12% (B12). The level of metabolic enzymes like malate dehydrogenase (MDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was not significantly different with control up to 8% dietary supplementation. A higher level of total haemocyte count (THC) was noticed in B8 (22.16 ± 2.17 × 106 cells mL?1) and B4 (21.11 ± 0.56 × 106 cells mL?1) compared with control, C (14.61 ± 2.74 × 106 cells mL?1). Biofloc‐supplemented groups recorded significantly higher (< 0.05) serum SOD and catalase activity (P < 0.01) in comparison with control. The groups fed with 4% dietary biofloc supplement recorded highest relative percentage survival (RPS), 45% after challenge with Vibrio harveyi followed by 36% and 27% RPS in B8 and B12 groups. Based on these results, it can be concluded that supplementation of biofloc even at 4% level in the feed improves immune responses and metabolic activities in black tiger shrimp juveniles.  相似文献   

12.
This study evaluated wood chips and wheat straw as inexpensive and readily available alternatives to more expensive plastic media for denitrification processes in treating aquaculture wastewaters or other high nitrate waters. Nine 3.8-L laboratory scale reactors (40 cm packed height × 10 cm diameter) were used to compare the performance of wood chips, wheat straw, and Kaldnes plastic media in the removal of nitrate from synthetic aquaculture wastewater. These upflow bioreactors were loaded at a constant flow rate and three influent NO3–N concentrations of 50, 120, and 200 mg/L each for at least 4 weeks, in sequence. These experiments showed that both wood chips and wheat straw produced comparable denitrification rates to the Kaldnes plastic media. As much as 99% of nitrate was removed from the wastewater of 200 mg NO3–N/L influent concentration. Pseudo-steady state denitrification rates for 200 mg NO3–N/L influent concentrations averaged (1360 ± 40) g N/(m3 d) for wood chips, (1360 ± 80) g N/(m3 d) for wheat straw, and (1330 ± 70) g N/(m3 d) for Kaldnes media. These values were not the maximum potential of the reactors as nitrate profiles up through the reactors indicated that nitrate reductions in the lower half of the reactors were more than double the averages for the whole reactor. COD consumption per unit of NO3–N removed was highest with the Kaldnes media (3.41–3.95) compared to wood chips (3.34–3.64) and wheat straw (3.26–3.46). Effluent ammonia concentrations were near zero while nitrites were around 2.0 mg NO2–N/L for all reactor types and loading rates. During the denitrification process, alkalinity and pH increased while the oxidation–reduction potential decreased with nitrate removal.

Wood chips and wheat straw lost 16.2% and 37.7% of their masses, respectively, during the 140-day experiment. There were signs of physical degradation that included discoloration and structural transformation. The carbon to nitrogen ratio of the media also decreased. Both wood chips and wheat straw can be used as filter media for biological denitrification, but time limitations for the life of both materials must be considered.  相似文献   


13.
Anaerobic digestion is a way to utilize the potential energy contained in solid waste produced in recirculating aquaculture systems (RASs), either by providing acidogenic products for driving heterotrophic denitrification on site or by directly producing combustive methane. In this study the biochemical acidogenic potential of solid waste from juvenile rainbow trout was evaluated by measuring the yield of volatile fatty acids (VFA) during anaerobic digestion by batch or fed-batch reactor operation at hydrolysis time (HT)/hydraulic retention time (HRT) of 1, 5, or 10 days (and for batch additional 14 and 20 days) in continuously stirred tank reactors. Generally, the VFA yield increased with time and no effect of the reactor type used was found within the time frame of the experiment. At 10 days HT or 10 days HRT the VFA yield reached 222.3 ± 30.5 and 203.4 ± 11.2 mg VFA g−1 TVS0 (total volatile solids at day 0) in batch and fed-batch reactor, respectively. For the fed-batch reactor, increasing HRT from 5 to 10 days gained no significant additional VFA yield. Prolonging the batch reactor experiment to 20 days increased VFA production further (273.9 ± 1.6 mg VFA g−1 TVS0, n = 2). After 10 days HT/HRT, 16.8–23.5% of total Kjeldahl N was found as TAN and 44.3–53.0% of total P was found as ortho-phosphate. A significant difference between reactor types was detected for the phosphorous dissolution at 5 days HT/HRT as a relatively steep increase (of a factor 2–3) in ortho-P content occurred in fed-batch reactors but similar steep increase was only notable after 10 days HT for batch reactors. No differences between reactor types at the other HT/HRT were recorded for P as well as (for all HT/HRT for) N. Based on this study a HRT of approximately 5 days would be recommended for the design of an acidogenic continuously stirred reactor tank in a RAS single-sludge denitrification set-up. The biochemical methane potential of the sludge was estimated to 318 ± 29 g CH4 g−1 TVS0 by a batch assay and represented a higher utility of the solid waste when comparing the methane yield with the VFA yield (in COD units). This points toward a technological challenge of ultimately increase the acidogenic output to match the methane yield as both products are formed from the same source.  相似文献   

14.
A 3 × 3 factorial experiment was conducted with Mozambique tilapia. Oreochromis mossambicus (Peters), using satiate feeding with 25%, 30% or 35% dietary protein concentrations each with three energy concentrations 10.5,12.6 or 14.7 kJ per g of purified diets. Protein-to-energy ratios (P/DE ratio) ranged from 17 to 33.4 mg protein kJ?1 of digestible energy (DE). Diets were fed to triplicate random groups of 15 fingerlings for 62 days in glass aquaria. Improvement in both weight gain and feed conversion rate (FCR) was achieved when dietary protein increased (P < 0.05), while increasing dietary energy concentration reduced feed consumption and increased mortality (P < 0.05). Protein efficiency ratio (PER) increased as dietary protein decreased and as dietary energy increased (P < 0.05). P/DE ratio correlated positively with gain, energy retention (ER) and feed consumption (r= 0.96,0.96 and 0.73 respectively) and negatively with feed conversion rate (FCR), protein productive value (PPV), protein efficiency ratio (PER) and mortality (r= -0.93, -0.95. -0.91 and -0.84 respectively). Weight gain had a positive relation with feed consumption (r= 0.82). The optimum P/DE ratio in purified diets for Mozambique tilapia for rapid growth, efficient feed conversion and maximum retention of protein and energy appears to be approximately 23.8 mg of protein kJ?1 of DE.  相似文献   

15.
A design procedure addressing effluent total dissolved gas pressure limits along with standard performance indicators such as oxygen absorption efficiency (kg absorbed/kg applied), and transfer efficiency (kg/kW.h), is presented for surface agitation equipment operating in an oxygen-enriched atmosphere. Application of this contactor type in closed culture systems is attractive given its insensitivity to biological fouling and ability to operate without the need for a significant hydraulic gradient. Performance algorithms were developed through application of chemical reactor theory, Henry's Law and the Ideal Gas Law. In the analysis, gas and liquid phases were treated as being homogeneous. The design steps presented are unique in that required mass transfer coefficients (KLa), operating pressures (CP), and oxygen feed rates (G/L) are calculated for target changes in both dissolved oxygen and nitrogen without the use of iterative numerical procedures. A second calculation sequence establishes the sensitivity of system performance to changes in G/L when CP and KLa are known.  相似文献   

16.
An experiment was conducted for 60 d in a recirculatory system consisting of 20 glass aquariums (each of size 41 × 41 × 46 cm) to evaluate meat and bone meal (MBM) as partial replacement for fish meal (FM) in Macrobrachium rosenbergii postlarvae (PLs) with a view to develop an inexpensive nursery diet. Three nursery diets were formulated to contain 32% protein and to be as isoenergetic as possible. FM in these diets was progressively replaced with MBM (Diet 1 contained 25% FM and 14% MBM, Diet 2 contained 20% FM and 20% MBM, and Diet 3 contained 15% FM and 26% MBM). Inclusion levels of mustard oilcake and sesame meal in diets were kept fixed at 10%. A commercial shrimp nursery diet (30% protein) from Saudi Bangla Fish Feed Ltd., Mymensingh, was used as the reference diet (Diet 4). Each treatment had three replicates. PLs of M. rosenbergii (26 ± 0.02 mg) were stocked at the rate of 60 PLs (1 PL/L) in each aquarium. At the beginning, PLs were fed three times daily at a rate of 20% of the body weight and it was gradually reduced to 10% at Day 30. The ranges of water quality parameters in the system were as follows: temperature, 27–29 C; dissolved oxygen, 6.5–8.4 mg/L; pH, 6.8–8.3; and total ammonia, 0.01–0.15 mg/L. The result of the study showed that there was no significant difference (P > 0.05) between the weight gains of PLs fed Diet 1 (containing 14% MBM) and Diet 4 (reference diet) but was significantly higher than other dietary groups containing higher levels of MBM. Diets 1 and 4 showed significantly lower (P < 0.05) apparent food conversion ratios (1.74 and 1.73, respectively). The survival (%) of PLs ranged between 62 and 76% with PLs fed Diets 1 and 4 showing significantly higher (P < 0.05) survival. The result of the study demonstrated that the MBM could be included at 14% level in a nursery diet, and a diet containing 25% FM, 14% MBM, 10% sesame meal, and 10% mustard oilcake may be recommended for profitable production of PLs of M. rosenbergii.  相似文献   

17.
Shrimp aquaculture effluents were bioremediated in a two‐phase system (System A) using the black clam Chione fluctifraga and the benthic microalgae Navicula sp., and then reused to farm whiteleg shrimp Litopenaeus vannamei. In the experimental design, Systems B and C had an identical structure as System A, but no clams or microalgae were added. System B received the same shrimp effluents while System C received only estuarine water. Shrimp raw effluents had a poor water quality. System A improved the water quality by decreasing the concentrations of total nitrogen, total ammonia nitrogen (TAN), nitrites, nitrates, phosphates, total suspended solids (TSS) and organic suspended solids (OSS). System B also decreased the concentration of TAN, TSS and OSS via sedimentation, but the effect was less pronounced than that observed in System A. Shrimp reared in the bioremediated effluents (System A) had better production (3166 kg ha?1) and higher survival (89.2%) than those reared in effluents from Systems B (2610 kg ha?1, 75.1%) and C (2874 kg ha?1, 82.1%). It is concluded that the bioremediation system was moderately efficient and the bioremediated effluents were suitable to farm L. vannamei.  相似文献   

18.
One pilot-scale portable Nutrient Film Technique (NFT) aquaponic system has been designed, developed, and tested at ICAR-CIFA, Bhubaneswar for a period of 90 days (October to December 2018) to study the efficiency of the new design. The experimental setup has three separate units, each consisting of four major components, such as Fibreglass Reinforced Plastic (FRP) round fish culture tank (ø2.15 × 0.9 m) with operational capacity 2800 L, biofilter unit made up of Polypropylene (PP) of 100 L capacity, FRP rectangular hydroponics tank (4 × 0.9 × 0.35 m) having 2.64 m2 plantation area and High-density Polyethylene (HDPE) sump (ø0.6 × 0.7 m) of 200 L capacity. Implementation of custom designed and calibrated automatic water recirculation system gives an average flow rate of 94.7 L/h for continuous flow of nutrients from fish culture tank to hydroponics tank. The designed system harnesses gravity flow in 75 % of the cycle. For performance assessment, the system was initially stocked with 54 numbers of fish fry/m3 (153.7 g/m3) of pangas (Pangasius hypophthalmus) in culture tank and 27 marigold (Tagetes erecta) plants/m2 in hydroponics tank. Length and weight gain of fish were by 77.04 % and 397.2 % from initial, respectively, and marigold plant harvested 107 number of flowers/m2. The Total Ammoniacal Nitrogen (TAN) reduction in biofilter was found to be 61.97 %.  相似文献   

19.
This study was carried out to investigate the viability of utilizing aquaponic technology in culturing local fish: snakehead Channa striata and water spinach Ipomoea aquatica. Snakehead was raised for 150 days in a floating plastic pond with an area of 3 × 4 × 1.2 m having a capacity volume of ∼14.4 m3. Fish were randomly arranged into two experimental systems at density of ∼0.3 kg fingerlings/m3 e.g. SAQ – snakehead in aquaponics; SC – snakehead in normal system where control ponds were continuously aerated with ∼20% daily exchange of water. Fish were fed commercial feed twice a day. Initial results showed that in aquaponics compared with normal systems the SAQ efficiency exhibited 70% water exchange; five times lower in NH3 level: (0.01–0.03 mg/L vs. 0.05–0.16 mg/L); three times lower in NO2 level: (0.28–0.58 mg/L vs. 0.56–2.59 mg/L). Snakehead production was significantly higher in aquaponics with higher survival ratio of fish: 99.76% vs. 71.40%; ∼3 times higher in fish yield: 366 kg vs. 130 kg. The production of water spinach was also elevated in aquaponics versus normal systems 406.4 kg vs. 188 kg. The total income from snakehead and water spinach in SAQ were 4 times higher than in normal farming systems: 1219.42 $US and 307.04 $US. Based on the results of the current study, it is expected that applying aquaponics utilizing local available materials and species will enhance the sustainability of the overall system and keep the aquaponics lasting and expanding to social life especially on sustainable culturing snakehead Channa striata.  相似文献   

20.
A 2.83 m3 prototype paddle-washed bead filter for combined solids capture and biological filtration was successfully operated in a commercial recirculating alligator (Alligator mississippiensis) facility. The bead filter was originally designed and operated as a downflow filter but due to operational and water quality problems, it was reconfigured to operate in an upflow mode. Water quality conditions and filter performance improved dramatically, with the upflow bead filter capable of handling the equivalent loading of 10.3 kg m−3 beads per day of 40% protein feed, despite oxygen limitations and hydraulic problems associated with the retrofitted alligator system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号