首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A simple, rapid method for the preparation of parallelepiped-shaped samples from a grain is used in the proposal of a study of the rheological behaviour of wheat endosperm. Compression rupture, creep and relaxation tests are used. A series of compression tests on mealy and vitreous endosperm of different wheat varieties (soft, hard and durum) shows that the rheological properties are influenced by both the genetic origin and grain vitreousness. The main mechanical characteristics—Young's modulus, elastic and rupture stresses, rupture energy and rupture strain—were determined at moisture contents of 12 to 17%. The influence of the moisture content on rheological behaviour is demonstrated. The vitreous endosperm of some wheat varieties displays considerable ductility before rupture. The nature of this plasticity was analysed by creep and relaxation tests on hard and soft wheats. Comparison of the different endosperm rheology values clarifies the notions of vitreousness and hardness. Wheat classification based on endosperm mechanical characteristics is proposed. It seems that Young's modulus characterises hardness whereas rupture energy is related to the vitreousness of the different varieties studied. Entering the results in a Young's modulus–rupture energy system leads to a classification of wheats according to two essential factors: hardness of varietal origin and vitreousness of cultural origin.  相似文献   

2.
This review summarizes the results of studies on near-isogenic common wheat lines differing in the Pinb-D1 allele encoding puroindoline B or durum wheat into which both wild-type puroindoline genes were introduced. The material was grown in different environments to evaluate the respective effect of puroindoline genes or of the environmental factors on grain characteristics and milling behavior.Environmental conditions were found to impact grain porosity (=1/vitreousness) and the presence of both wild-type puroindoline genes was found to reduce the vitreousness threshold under 60%. Hardness measurements with single kernel characterization system were found to differ from near-infrared reflectance spectroscopy analysis and were linearly related to vitreousness but differently depending on the puroindoline allele carried.Puroindoline genes were found to play a major role in the grain porosity, breaking energy, size of generated particles and in the concentration of phytic acid and damaged starch into flour whereas vitreousness introduced variations in the ability to break and in the level of damaged starch.Finally, the highest flour yield is obtained from either vitreous common wheat grains carrying the wild-type puroindoline alleles or carrying mutated alleles and displaying low vitreousness. This result was confirmed using common French wheat cultivars whose puroindoline genes were identified.  相似文献   

3.
Ozone treatment (10 g/kg) of common wheat grains with a new patented process, Oxygreen®, used before milling was found to significantly reduce (by 10–20%) the required energy at breaking stage whatever the grain hardness and without changes in the flour yield. Detailed study of each of the milling steps undertaken on a hard type cultivar showed that both the breaking and the reduction energy were decreased. Reduction of the coarse bran yield was also observed concomitantly with an increase in the yield of white shorts. Biochemical characterization of the milling fractions pointed out changes in technological flour properties as starch damage reduction, aleurone content enrichment and increase of insoluble glutenin polymers. Measurement of wheat grain tissue mechanical properties showed that ozone treatment leads to reduction of the aleurone layer extensibility and affects the local endosperm resistance to rupture. These data as well as the direct effect of ozone oxidation on biochemical compounds could explain the observed changes in milling energy, bran and shorts yield and flour composition.  相似文献   

4.
小麦籽粒发育时期Puroindolines蛋白与硬度的关系   总被引:1,自引:0,他引:1  
为探讨Puroindolines蛋白的表达特点与籽粒硬度的关系,采用改进的SDS-PAGE凝胶分析了不同硬度小麦品种的籽粒在各个发育时期Puroindolines蛋白的表达.结果表明,不同硬度的小麦籽粒中总Puroindolines(PinA和PinB)蛋白的表达量差异不大,但与胚乳淀粉颗粒结合的Puroindolines蛋白量差异非常明显:在籽粒发育的不同时期,软质小麦籽粒淀粉粒表面结合的Puroindolines蛋白量显著高于硬质小麦;基因型同为野生型但硬度有差异的品种,籽粒较软的材料其淀粉粒表面结合的Puroindolines蛋白量也明显高于较硬的材料,说明该蛋白的结合特性是决定籽粒硬度的直接原因.结果还表明,胚乳中水溶性戊聚糖与籽粒硬度关系密切.  相似文献   

5.
Endosperm Texture in Wheat   总被引:2,自引:0,他引:2  
One of the fundamental means of classifying wheat is through its endosperm texture. It impacts significantly on the milling process affecting among other things flour particle size and milling yield. Hardness in wheat is largely controlled by genetic factors but it can be affected by the environment and factors such as moisture, lipid, and pentosan content. The principal genetic locus controlling endosperm texture in wheat, Ha, is located on the chromosome 5D. At this locus several genes, notably the puroindolines, have been identified. Puroindolines are the major components of the 15 kDa protein band associated with starch granules that is more abundant in soft wheats than in hard. Recently the puroindolines have been shown to enhance grain hardness in rice. In this review we discuss the structure of hard and soft wheat endosperm with particular emphasis on when differences in endosperm texture can be detected in the developing seed. The role of the environment and other factors that may affect the endosperm texture is also examined together with the role of the puroindoline genes at theHa locus. Finally, we compare endosperm hardness in wheat and in barley.  相似文献   

6.
Grain physical characteristics and milling behavior of a durum wheat line in which both wild-type puroindoline genes were translocated and stabilized after backcrossing (Svevo-Pin) were compared with the parent line (Svevo). The only observed differences between grain characteristics were the mechanical resistance and starchy endosperm porosity revealed through vitreosity measurement. A significant increase of flour and a decrease of semolina yield and break milling energy were observed from Svevo-Pin in comparison with the non-recombinant parent line in accordance to the lower grain mechanical resistance and higher porosity measurements. Moreover, the particle size distribution shown for Svevo-Pin flour appeared consistent with a lower adhesion between starch granules and the protein matrix attributed to the presence of wild-type puroindolines. Coarse bran yield was conversely increased. This appeared to be due to a lower starchy endosperm recovery as a higher proportion of grain starch was found in this bran fraction. Flour from the durum parent line was inversely enriched in phytic acid, a cellular marker of the aleurone layer. Starch damage was also lower in Svevo-Pin flours in comparison with Svevo. All of the observed differences between translocation and parent lines were confirmed independent of the culture growth conditions (n = 12).  相似文献   

7.
The aim of this study was to examine enzymatic modification of wheat bran, performed in a low-moisture process, and the reduction of bran particle size as means of improving the technological performance of wheat bran in expanded extrudates. Modification of bran by hydrolytic enzymes increased the crispiness and decreased the hardness and piece density of extrudates containing wheat bran and endosperm rye flour in 20:80 ratio. These improvements correlated (P < 0.01 or 0.05) with an increased content of water extractable arabinoxylan and decreased water holding capacity of the bran, as well as with increased longitudinal expansion of the extrudates. Furthermore, bran with a fine average particle size (84 μm) produced extrudates with improved mechanical properties and higher radial expansion than coarse bran (particle size 702 μm). The impact of bran particle size was also observed in the cellular structure of the extrudates as differences in cell size and homogeneity. The bran drying method, oven or freeze drying after enzymatic modification, did not have a major impact on the properties of the extrudates. The study showed that the functionality of wheat bran in extrusion can be improved by enzymatic modification using a low-water process and by reduction of bran particle size.  相似文献   

8.
The objective of this study was to produce wholegrain wheat flour on a laboratory-scale with particle size distributions similar to commercially-milled samples without re-milling the bran. The moisture contents of four hard winter wheat cultivars were adjusted to 7.29–7.98% (by drying), 9.00–10.6% (“as is”), and 15.6% (by tempering) prior to milling into wholegrain flour. The moisture treatments appeared to affect the partitioning of wholegrain flour particles into each of three categories: fine (<600 μm), medium (600–849 μm) and coarse (≥850 μm). When the distributions of particles were grouped into these categories, wholegrain flours made from dried and “as is” wheat fell within the values for commercial wholegrain flours, while that from tempered wheat contained more coarse particles than even the coarsest commercial wholegrain flour. Loaf volumes and crumb firmness were not significantly different between bread made from wholegrain flour that had been produced from dried or “as is” wheat, but loaf volume was significantly lower and bread crumb firmness was significantly higher when wholegrain flour from tempered wheat was used. These results show that wheat may be milled without tempering to produce wholegrain flour with particle size similar to some commercially-milled flours without needing to re-grind the bran.  相似文献   

9.
山西小麦品种籽粒硬度与主要品质性状研究   总被引:1,自引:0,他引:1  
为明确山西省近十年育成小麦新品种的籽粒硬度和品质状况,利用单籽粒谷物特性测定仪(SKCS)、DA7200多功能近红外分析仪,对来自山西省近十年审定的56个小麦新品种的籽粒硬度、蛋白质含量、出粉率等指标进行了检测和分析。结果发现,山西省近十年审定的小麦品种中,硬质麦比例较高,为78%,混合型麦和软质麦比例较低,分别为12%和8%;硬度指数范围较宽,为16.33~78.93。经相关分析,小麦籽粒硬度指数与被测品质性状均呈正相关关系,其中,与出粉率、吸水率、最大拉伸阻力均呈极显著正相关(P0.01)。硬质麦的蛋白质含量、湿面筋含量、出粉率、沉降值等品质参数均显著高于混合型麦和软质麦。混合型麦的蛋白质含量、湿面筋含量、出粉率、沉降值等品质参数略高于软质麦。  相似文献   

10.
Durum wheat grains are used for producing food, such as pasta or couscous. The grain mechanical properties which are linked to its internal micro-structure (i.e. endosperm porosity) are known to determine its ability to produce semolina during milling. The proportion of grains having porous endosperm in a batch appears therefore as a critical quality factor for the durum wheat value chain. Our objective was to investigate the ability of X-ray micro-tomography (μCT) method to describe the porous or vitreous counterpart structures in the endosperm of durum wheat grains. We selected two different durum wheat samples displaying vitreous or partially porous endosperms. The grains were analyzed using μCT at two pixel sizes (1 μm or 7 μm). The μCT data collected at 7 μm pixel size were used for qualitative classification of grains according to apparent distribution curve of the porosity parameters. Analysis of μCT images at 1 μm pixel size allowed us to propose pore size classification in the vitreous and porous parts of the endosperm in three durum wheat grain. Results are used to better describe the durum-wheat endosperm microstructure, but requires long scanning periods.  相似文献   

11.
The objective of this study was to produce wholegrain wheat flour on a laboratory-scale with particle size distributions similar to commercially-milled samples without re-milling the bran. The moisture contents of four hard winter wheat cultivars were adjusted to 7.29–7.98% (by drying), 9.00–10.6% (“as is”), and 15.6% (by tempering) prior to milling into wholegrain flour. The moisture treatments appeared to affect the partitioning of wholegrain flour particles into each of three categories: fine (<600 μm), medium (600–849 μm) and coarse (≥850 μm). When the distributions of particles were grouped into these categories, wholegrain flours made from dried and “as is” wheat fell within the values for commercial wholegrain flours, while that from tempered wheat contained more coarse particles than even the coarsest commercial wholegrain flour. Loaf volumes and crumb firmness were not significantly different between bread made from wholegrain flour that had been produced from dried or “as is” wheat, but loaf volume was significantly lower and bread crumb firmness was significantly higher when wholegrain flour from tempered wheat was used. These results show that wheat may be milled without tempering to produce wholegrain flour with particle size similar to some commercially-milled flours without needing to re-grind the bran.  相似文献   

12.
Starch was isolated from 98 hard red winter (HRW) wheat and 99 hard red spring (HRS) wheats. Granule size/volume distributions of the isolated starches were analyzed using a laser diffraction particle size analyzer. There were significant differences in the size distribution between HRW and HRS wheats. The B-granules (<10 μm in diameter) occupied volumes in the range 28.5–49.1% (mean, 39.9%) for HRW wheat, while HRS wheat B-granules occupied volumes in the range 37.1–56.2% (mean, 47.3%). The mean granule sizes of the distribution peaks less than 10 μm in diameter also showed a significant difference (HRW, 4.32 vs. HRS, 4.49 μm), but the mean sizes of the distribution peaks larger than 10 μm were not significantly different (21.54 vs. 21.47 μm). Numerous wheat and flour quality traits also showed significant correlation to starch granule size distributions. Most notably, protein content was inversely correlated with parameters of B-granules. Crumb grain score appeared to be affected by starch granule size distribution, showing significant inverse correlations with B-granules. Furthermore, the linear correlations were improved when the ratio of B-granules to protein content was used, and the polynomial relation was applied. There also appeared to be an optimum range of B-granules for different protein content flour to produce bread with better crumb grain.  相似文献   

13.
小麦籽粒硬度是当前小麦育种的主要目标之一,对小麦的制粉品质有重要影响,是小麦品质评价的重要指标之一。本文从小麦籽粒硬度测定方法、籽粒硬度与胚乳结构的关系、籽粒硬度对面粉品质和面制品品质的影响、籽粒硬度的遗传规律、品种与环境对籽粒硬度的影响、籽粒硬度育种改良等方面介绍了国内外相关领域的研究现状,并对未来发展提出展望,为小麦育种中籽粒硬度的改良提供参考。  相似文献   

14.
The objective of this research was to investigate physicochemical and biochemical characteristics of field-sprouted grain sorghum and its fermentation performance in ethanol production. Five field-sprouted grain sorghum varieties, which received abnormally high rainfall during harvest, were used in this study. Enzyme activities, microstructure, flour pasting properties, kernel hardness, kernel weight, kernel size, flour size and particle distribution of field-sprouted grain sorghum were analyzed. The effect of germination (i.e., sprouting) on conversion of grain sorghum to ethanol was determined by using a laboratory dry-grind ethanol fermentation procedure. Sprouted sorghum had increased α-amylase activity; degraded starch granules and endosperm cell walls; decreased kernel hardness, kernel weight, kernel size, and particle size; and decreased pasting temperature and peak and final viscosities compared with non-sprouted grain sorghum. The major finding is that the time required for sprouted sorghum to complete fermentation was only about half that of non-sprouted sorghum. Also, ethanol yield from sprouted sorghum was higher (416–423 L/ton) than that from non-sprouted sorghum (409 L/ton) on a 14% moisture basis.  相似文献   

15.
Mineral element distributions in milling fractions of Chinese wheats   总被引:2,自引:0,他引:2  
Malnutrition related to micronutrient deficiency can create immense economic and societal problems. The objective of this study was to quantify the mineral element concentration distribution in milled fractions, using 43 common wheat (Triticum aestivum L.) cultivars sown in Jinan, China during the 2005–2006 crop season. All 43 cultivars had low Fe (average 28.2 mg Kg−1) and Zn (28.6 mg Kg−1) concentrations, and wide ranges of variation for mineral element concentrations. Highly significant effects among milling fractions and cultivars on all traits were observed, with fraction effect being the larger. There was an uneven distribution of mineral element concentrations in wheat grain. Shorts and bran fractions had the highest mineral element concentrations, whereas flours from break and reduction had low concentrations. Compared with those in the central endosperm, the concentration of inorganic phosphorus (Pi) decreased the most with decreasing flour yield, whereas the concentration of phytic acid P (PAP), phytase activity, and Ca decreased the least. Pi was the most concentrated element in the aleurone, whereas PAP, phytase activity, and Ca were the least, compared to those in the central endosperm. Milling technique through adjusting flour yield can be used to improve the element composition of flour.  相似文献   

16.
Malnutrition related to micronutrient deficiency can create immense economic and societal problems. The objective of this study was to quantify the mineral element concentration distribution in milled fractions, using 43 common wheat (Triticum aestivum L.) cultivars sown in Jinan, China during the 2005–2006 crop season. All 43 cultivars had low Fe (average 28.2 mg Kg−1) and Zn (28.6 mg Kg−1) concentrations, and wide ranges of variation for mineral element concentrations. Highly significant effects among milling fractions and cultivars on all traits were observed, with fraction effect being the larger. There was an uneven distribution of mineral element concentrations in wheat grain. Shorts and bran fractions had the highest mineral element concentrations, whereas flours from break and reduction had low concentrations. Compared with those in the central endosperm, the concentration of inorganic phosphorus (Pi) decreased the most with decreasing flour yield, whereas the concentration of phytic acid P (PAP), phytase activity, and Ca decreased the least. Pi was the most concentrated element in the aleurone, whereas PAP, phytase activity, and Ca were the least, compared to those in the central endosperm. Milling technique through adjusting flour yield can be used to improve the element composition of flour.  相似文献   

17.
The concepts of fracture mechanics have been applied to quantify the fracture behaviour of vitreous and mealy wheat endosperm in a single wheat cultivar. Two new techniques were developed and used to measure fracture toughness (energy per unit area of fracture) of individual grains: (1) load cycling of a notched grain; and (2) instrumented microtome cutting. The load cycling method gave average fracture toughness values for vitreous endosperm of 130 ± 42 J/m2 and 50 ± 12 J/m2 for mealy endosperm. Fracture toughness measured using the instrumented microtome gave values of 159 ± 7·4 J/m2 for vitreous endosperm and 44 ± 4·6 J/m2 for mealy endosperm. The results are consistent with the hypothesis that vitreous endosperm has stronger starch-protein matrix bonding than mealy endosperm. The effect of changing grain moisture on cutting fracture properties was investigated. As moisture decreased, values of fracture toughness increased for both mealy and vitreous endosperms at the same rate down to 11% moisture content, below which fracture toughness increased more rapidly for vitreous than for mealy endosperm. Intra-grain fracture toughness was also investigated by cutting successive sections across individual wheat grains. These showed a decrease in cutting force from the outside of the grain towards the centre, and then an increase near the crease. The critical particle size at which a transition from brittle to ductile failure occurs was calculated, giving predicted values of 1·2 mm for vitreous endosperm and 0·9 mm for mealy endosperm at 15% moisture content. This shows that vitreous endosperm undergoes more ductile deformation during deformation than does mealy endosperm, and that larger particle sizes are predicted for vitreous endosperm as a result of milling.  相似文献   

18.
The aim of this study was to evaluate the effect of particle size distribution on composition, properties rheological, pasting, microstructural and baking properties of whole grain wheat flour (WGWF) of three different particles sizes (194.9 μm, 609.4 μm and 830.0 μm). The quantification of free sulfhydryl groups (-SH) of WGWF samples, together with the effects observed in the behavior of the dough and bread showed that particle size influences the functionality of the gluten network in a differentiated way. Firmer and lower breads volume compared to refined wheat flour (RF) were correlated with the quality of the gluten network. In the sample of finer particles, more pronounced adverse effects in quality (dough rheology, bread volume and texture) compared to the medium and coarse particle size sample suggests that the larger contact surface and the increased release of reactive compounds due to cell rupture interact with the gluten-forming proteins changing their functionality.  相似文献   

19.
Environmental conditions during grain-fill can affect the duration of protein accumulation and starch deposition, and thus play an important role in grain yield and flour quality of wheat. Two bread-, one durum- and one biscuit wheat were exposed to extreme low (−5.5 °C for 3 h) and high (32 °C/15 °C day/night for three days) temperatures during grain filling under controlled conditions for two consecutive seasons. Flour protein content was increased significantly in one bread wheat, Kariega, under heat stress. Cold stress significantly reduced SDS sedimentation in both bread wheats. Kernel weight and diameter were significantly decreased at both stress treatments for the two bread wheats. Kernel characteristics of the biscuit wheat were thermo stable. Kernel hardness was reduced in the durum wheat for the heat treatment. Durum wheat had consistently low SDS sedimentation values and the bread wheat high values. Across the two seasons, the starch content in one bread wheat was significantly reduced by both high and low temperatures, as is reflected in the reduction of weight and diameter of these kernels. In the durum wheat, only heat caused a significant reduction in starch content, which is again reflected in the reduction of kernel weight and diameter.  相似文献   

20.
青海小麦籽粒硬度等位变异研究   总被引:1,自引:0,他引:1  
为了解小麦品种籽粒硬度的遗传多样性,利用单粒谷物硬度测定、PCR扩增和核苷酸测序技术,分析了66份青海小麦品种籽粒硬度主效基因的等位变异。结果表明,青海小麦以硬质类型为主,比例达到47.0%,混合麦比例为19.7%,软质麦比例为33.3%。硬度基因有5种组合类型:野生型、Pina-D1a/PinbD1b、Pina-D1a/Pinb-D1c、Pina-D1a/Pinb-D1x和Pina-D1b/Pinb-D1a。野生型小麦类型比例最高,占59.09%,SKCS硬度指数平均为44.12,变化范围为12.75~84.89。突变类型的品种籽粒均为硬质。因此,在青海硬质小麦可以通过突变类型的分子标记进行选育,软质小麦选育需在利用硬度基因分子标记筛选的基础上进一步考察籽粒硬度性状的表现型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号