首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hybridisation between wheat and Aegilops geniculata was quantified in a 4‐year crossing experiment in the glasshouse, using three wheat cultivars as pollen donors and herbicide resistance as a phenotypic marker. Hybridisation rates ranged from 5% to 74%. Most of the hybrids were self‐sterile. However, seven F2 seeds were obtained from 165 A. geniculata–wheat hybrids. Hybrid seeds were found in all backcross (BC1) combinations at average rates of 4.2% (0–26.3%) and 5.88% (0–34%) under glasshouse and field experiments, respectively, with significant differences among years and cultivars. Wheat cultivars, F1 and BC1 plants, were resistant to herbicides while A. geniculata plants were susceptible. In the subsequent generations, although few plants were available, the BC1F1 had a certain degree of fertility and the fertility increased in the F2 plants, with one plant that reached 66.7%. The commercial growing of genetically modified herbicide‐tolerant wheat is expected to have the potential for the inserted gene to escape from the crop and become incorporated in a closely related wild species, conferring a competitive advantage to these conferring weeds. Determining the frequency of crop‐wild transgene flow and the fertility of the formed hybrids is a necessity for risk assessment. Data presented here provide new knowledge on the potential A. geniculata–wheat herbicide resistance transfer.  相似文献   

3.
Auxinic herbicides mimic the effects of natural auxin. However, in spite of decades of research, the site(s) of action of auxinic herbicides has remained unknown and many physiological aspects of their function are unclear. Recent advances in auxin biology provide new opportunities for research into the mode of action of auxinic herbicides. Of considerable interest is the discovery of auxin receptors (TIR1 and possibly ABP1) that may lead to the discovery of auxinic herbicide site(s) of action. Knowledge of auxin-conjugating enzymes and auxin signal transduction components may shed new light on herbicide activity, selectivity in dicots, and mechanisms leading to phytotoxicity in sensitive plants. Analysis of genes induced in response to auxin may provide a novel approach for detection of off-target herbicide injury in crops. For example, the auxin-responsive gene GH3 is highly and specifically induced in response to auxinic herbicides in soybean, and may offer a novel method for diagnosing auxinic herbicide injury. Advances in our understanding of auxin biology will provide many new avenues and opportunities for auxinic herbicide research in the future.  相似文献   

4.
In southern Australia, oriental mustard (Sisymbrium orientale) has been controlled successfully by triazine herbicides for several decades. The screening of 40 populations that were collected from the southern grain belt of Australia during 2010 and 2013 for resistance to six different herbicides (glyphosate, diflufenican, imazamox, chlorsulfuron, atrazine and 2,4‐dichlorophenoxyacetic acid) identified two oriental mustard populations as highly resistant to atrazine. Compared to the known oriental mustard‐susceptible populations (S1 and S2), these two resistant populations (P17 and P18) from near Horsham, Victoria, Australia, were 311‐ and 315‐fold resistant to atrazine, as determined by a comparison of the LD50 values. However, there was no resistance to diuron detected in these populations. Sequencing of the chloroplast psbA gene identified a missense mutation of serine 264 to glycine in both herbicide‐resistant oriental mustard populations, which is known to confer high‐level atrazine resistance in other species.  相似文献   

5.
Herbicide‐resistant crops have had a profound impact on weed management. Most of the impact has been by glyphosate‐resistant maize, cotton, soybean and canola. Significant economic savings, yield increases and more efficacious and simplified weed management have resulted in widespread adoption of the technology. Initially, glyphosate‐resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate‐resistant crops over broad areas facilitated the evolution of glyphosate‐resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate‐resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl‐CoA carboxylase and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive effects (reduced cost, simplified weed management, lowered environmental impact and reduced tillage) that glyphosate‐resistant crops had initially. In the more distant future, other herbicide‐resistant crops (including non‐transgenic ones), herbicides with new modes of action and technologies that are currently in their infancy (e.g. bioherbicides, sprayable herbicidal RNAi and/or robotic weeding) may affect the role of transgenic, herbicide‐resistant crops in weed management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

6.
BACKGROUND: Wild radish, a problem weed worldwide, is a severe dicotyledonous weed in crops. In Australia, sustained reliance on ALS‐inhibiting herbicides to control this species has led to the evolution of many resistant populations endowed by any of several ALS mutations. The molecular basis of ALS‐inhibiting herbicide resistance in a novel resistant population was studied. RESULTS: ALS gene sequencing revealed a previously unreported substitution of Tyr for Ala at amino acid position 122 in resistant individuals of a wild radish population (WARR30). A purified subpopulation individually homozygous for the Ala‐122‐Tyr mutation was generated and characterised in terms of its response to the different chemical classes of ALS‐inhibiting herbicides. Whole‐plant dose‐response studies showed that the purified subpopulation was highly resistant to chlorsulfuron, metosulam and imazamox, with LD50 or GR50 R/S ratio of > 1024, > 512 and > 137 respectively. The resistance to imazypyr was found to be relatively moderate (but still substantial), with LD50 and GR50 R/S ratios of > 16 and > 7.8 respectively. In vitro ALS activity assays showed that Ala‐122‐Tyr ALS was highly resistant to all tested ALS‐inhibiting herbicides. CONCLUSION: The molecular basis of ALS‐inhibiting herbicide resistance in wild radish population WARR30 was identified to be due to an Ala‐122‐Tyr mutation in the ALS gene. This is the first report of an amino acid substitution at Ala‐122 in the plant ALS that confers high‐level and broad‐spectrum resistance to ALS‐inhibiting herbicides, a remarkable contrast to the known mutation Ala‐122‐Thr endowing resistance to imidazolinone herbicide. Copyright © 2012 Society of Chemical Industry  相似文献   

7.
Genes regularly move within species, to/from crops, as well as to their con‐ specific progenitors, feral and weedy forms (‘vertical’ gene flow). Genes occasionally move to/from crops and their distantly related, hardly sexually interbreeding relatives, within a genus or among closely related genera (diagonal gene flow). Regulators have singled out transgene flow as an issue, yet non‐transgenic herbicide resistance traits pose equal problems, which cannot be mitigated. The risks are quite different from genes flowing to natural (wild) ecosystems versus ruderal and agroecosystems. Transgenic herbicide resistance poses a major risk if introgressed into weedy relatives; disease and insect resistance less so. Technologies have been proposed to contain genes within crops (chloroplast transformation, male sterility) that imperfectly prevent gene flow by pollen to the wild. Containment does not prevent related weeds from pollinating crops. Repeated backcrossing with weeds as pollen parents results in gene establishment in the weeds. Transgenic mitigation relies on coupling crop protection traits in a tandem construct with traits that lower the fitness of the related weeds. Mitigation traits can be morphological (dwarfing, no seed shatter) or chemical (sensitivity to a chemical used later in a rotation). Tandem mitigation traits are genetically linked and will move together. Mitigation traits can also be spread by inserting them in multicopy transposons which disperse faster than the crop protection genes in related weeds. Thus, there are gene flow risks mainly to weeds from some crop protection traits; risks that can and should be dealt with. © 2014 Society of Chemical Industry  相似文献   

8.
The evolution of resistance to herbicides in weeds has become a great challenge for global agricultural production. Weeds have evolved resistance to herbicides through many different physiological mechanisms. Some weed species are known to secrete herbicide molecules from roots into the rhizosphere upon being treated. However, root exudation of herbicides as a mechanism of resistance has only recently been identified in two weed species. Root exudation pathways have been investigated in Arabidopsis, and this work suggested that ATP‐binding cassette (ABC) and multidrug and toxic compound extrusion (MATE) transporters play a role in the secretion of primary and secondary plant products from roots. We hypothesize that the mechanisms involved in root exudation of herbicides that result in resistance are mediated by overactive or overexpressed transporters, probably similar to those found for the exudation of primary and secondary compounds from roots. Elucidating the molecular and physiological basis of root exudation in herbicide‐resistant weeds would improve our understanding of the pathways involved in herbicide root secretion mediated by transporters in plants. © 2020 Society of Chemical Industry  相似文献   

9.
The management of weeds in Malaysian rice fields is very much herbicide‐based. The heavy reliance on herbicide for weed control by many rice‐growers arguably eventually has led to the development and evolution of herbicide‐resistant biotypes in Malaysian rice fields over the years. The continuous use of synthetic auxin (phenoxy group) herbicides and acetohydroxyacid synthase‐inhibiting herbicides to control rice weeds was consequential in leading to the emergence and prevalence of resistant weed biotypes. This review discusses the history and confirmed cases and incidence of herbicide‐resistant weeds in Malaysian rice fields. It also reviews the Clearfield Production System and its impact on the evolution of herbicide resistance among rice weed species and biotypes. This review also emphasizes the strategies and management options for herbicide‐resistant rice field weeds within the framework of herbicide‐based integrated weed management. These include the use of optimum tillage practices, certified clean seeds, increased crop competition through high seeding rates, crop rotation, the application of multiple modes of action of herbicides in annual rotations, tank mixtures and sequential applications to enable a broad spectrum of weed control, increase the selective control of noxious weed species in a field and help to delay the resistance evolution by reducing the selection pressure that is forced on those weed populations by a specific herbicidal mode of action.  相似文献   

10.
Yu Q  Han H  Powles SB 《Pest management science》2008,64(12):1229-1236
BACKGROUND: In the important grass weed Lolium rigidum (Gaud.), resistance to ALS‐inhibiting herbicides has evolved widely in Australia. The authors have previously characterised the biochemical basis of ALS herbicide resistance in a number of L. rigidum biotypes and established that resistance can be due to a resistant ALS and/or enhanced herbicide metabolism. The purpose of this study was to identify specific resistance‐endowing ALS gene mutation(s) in four resistant populations and to develop PCR‐based molecular markers. RESULTS: Six resistance‐conferring ALS mutations were identified: Pro‐197‐Ala, Pro‐197‐Arg, Pro‐197‐Gln, Pro‐197‐Leu, Pro‐197‐Ser and Trp‐574‐Leu. All six mutations were found in one population (WLR1). Each Pro‐197 mutation conferred resistance to the sulfonylurea (SU) herbicide sulfometuron, whereas the Trp‐574‐Leu mutation conferred resistance to both sulfometuron and the imidazolinone (IMS) herbicide imazapyr. A derived cleaved amplified polymorphic sequences (dCAPS) marker was developed for detecting resistance mutations at Pro‐197. Furthermore, cleaved amplified polymorphic sequences (CAPS) markers were developed for detecting each of the six mutant resistant alleles. Using these markers, the authors revealed diverse ALS‐resistant alleles and genotypes in these populations and related them directly to phenotypic resistance to ALS‐inhibiting herbicides. CONCLUSION: This study established the existence of a diversity of ALS gene mutations endowing resistance in L. rigidum populations: 1–6 different mutations were found within single populations. At field herbicide rates, resistance profiles were determined more by the specific mutation than by whether plants were homo‐ or heterozygous for the mutation. Copyright © 2008 Society of Chemical Industry  相似文献   

11.
A molecular genetic assessment of herbicide-resistant Sinapis arvensis   总被引:1,自引:0,他引:1  
MEIKLE  FINCH  McROBERTS  & MARSHALL 《Weed Research》1999,39(2):149-158
The acquisition of resistance to both the auxinic herbicide dicamba and the sulfonylurea herbicide chlorsulfuron has been recorded in Canadian populations of the weed species Sinapis arvensis L. (charlock, wild mustard) To study the effect of this selection for herbicide resistance on levels of genetic variation, polymerase chain reaction-based DNA fingerprinting techniques were used to characterize two herbicide-resistant and one susceptible population of S. arvensis . Analysis of the resultant DNA marker profiles revealed extensive polymorphism between individuals. However, segregation of the three biotypes was detectable despite high levels of intrabiotype polymorphism. No reduction in the levels of heterozygosity within the resistant populations were found compared with the susceptible population.  相似文献   

12.
We assessed the contributions of target site‐ and non‐target site‐based resistance to herbicides inhibiting acetyl‐coenzyme A carboxylase (ACC) in Alopecurus myosuroides (black grass). A total of 243 A. myosuroides populations collected across France were analysed using herbicide sensitivity bioassay (24 300 seedlings analysed) and ACC genotyping (13 188 seedlings analysed). Seedlings resistant to at least one ACC‐inhibiting herbicide were detected in 99.2% of the populations. Mutant, resistant ACC allele(s) were detected in 56.8% of the populations. Among the five resistant ACC alleles known in A. myosuroides, alleles containing an isoleucine‐to‐leucine substitution at codon 1781 were predominant (59.5% of the plants containing resistant ACC alleles). Comparison of the results from herbicide sensitivity bioassays with genotyping indicated that more than 75% of the plants resistant to ACC‐inhibiting herbicides in France would be resistant via increased herbicide metabolism. Analysis of herbicide application records suggested that in 15.9% of the populations studied, metabolism‐based resistance to ACC‐inhibiting herbicides was mostly selected for by herbicides with other modes of action. Our study revealed the importance of non‐target site‐based resistance in A. myosuroides. Using herbicides with alternative modes of action to control populations resistant to ACC‐inhibiting herbicides, the recommended management approach, may thus be jeopardised by the widespread occurrence of metabolism‐based resistance mechanisms conferring broad‐spectrum cross‐resistance.  相似文献   

13.
抗药性杂草与治理   总被引:7,自引:0,他引:7  
抗药性杂草对农田杂草治理和农业生产构成严重威胁,成为备受全球关注的严重问题。随着长期、大量使用相对有限的化学除草剂,全球抗药性杂草发展迅猛,目前已有217种杂草对化学除草剂产生了抗药性,我国抗药性杂草发展也十分迅猛。本文在介绍杂草抗药性基本概念、抗药性杂草发展过程、抗药性杂草现状的基础上,重点描述了抗药性杂草治理策略,以期为我国抗药性杂草研究和治理提供参考。  相似文献   

14.
杂草对AHAS抑制剂的抗药性分子机理研究进展   总被引:3,自引:1,他引:2  
除草剂在田间的重复及不合理使用,导致了杂草抗药性的发生和发展。其中AHAS抑制剂由于靶标单一,抗性发展十分迅速。截至2009年,已有103种杂草对AHAS抑制剂产生了抗药性,占19类化学除草剂总抗药性杂草生物型的近1/3。从AHAS基因突变位点及种类与杂草抗药性水平的关系、AHAS基因突变与AHAS酶活性的关系、AHAS基因拷贝数与杂草抗药性的关系以及AHAS酶与除草剂结合前后的三维结构等方面,综述了杂草对AHAS抑制剂产生抗药性的机理,旨在为AHAS抑制剂抗性研究提供参考。并对自然种群目标基因的等位基因检测技术(ECOTILLING)和衍生型酶切扩增多态性序列(dCAPS)两种通过检测等位基因多态性的手段快速诊断抗药性杂草的新技术进行了介绍,讨论了延缓杂草抗药性发生和发展的策略。  相似文献   

15.
Possible mechanism(s) of resistance to auxinic herbicides in wild mustard (Sinapis arvensis L.) were investigated by characterizing responses of susceptible and resistant biotypes to 2,4-D, di-camba or picloram. No differences between bio-types were observed in absorption, translocation, or metabolism of foliar-applied radiolabelled herbicides. In contrast, the levels of ethylene production varied between biotypes. The susceptible biotype produced twofold and sixfold more ethylene than the resistant biotype within 4 h and 44 h of herbicide application, respectively. These results suggest that the mechanism of resistance in wild mustard is not due to differences in absorption, translocation, or metabolism. Ethylene production studies imply that resistance to auxinic herbicides may be attributed to altered target site(s) of action. Bases physiologiques de la résistance aux herbicides auxiniques d'un biotype de moutarde des champs (Sinapis arvensis L.) Les mécanismes possibles de la résistance aux herbicides auxiniques chez la moutarde des champs (Sinapis arvensis L.) ont été recherchés en caractérisant les réponses de biotypes résis-tants et sensibles au 2,4-D, au dicamba et au pi-clorame. Aprés application des herbicides radioactifs sur le feuillage, aucune différence d'absorption, de migration ou de métabolisme n'a été observée. Par contre, la production d'éthylene différait entre les biotypes. Le biotype sensible produisait 2 et 6 fois plus d'éthylène que le biotype sensible, respectivement 4 et 44 heures après l'application d'herbicide. Ces résultats sug-gèrent que la résistance aux herbicides auxiniques chez la moutarde des champs n'est pas due à des différences d'absorption, de migration ou de métabolisme mais pourrait provenir d'une altération du site d'action. Physiologische Untersuchung der Resistenz eines Acker-Senf-(Sinapis arvensis-) Biotyps gegenüber Wuchsstoffherbiziden Der mögliche Mechanismus der Resistenz gegenüber Wuchsstoffherbiziden beim Acker-Senf (Sinapis arvensis L.) wurde unhand der Reaktion von empfindlichen und resistenten Biotypen gegenüber 2,4-D, Dicamba oder Picloram untersucht. Hinsichtlich Absorption, Translokation oder Metabolismus der auf die Blätter applizierten, radioaktiv markierten Her-bizide wurden keine Unterschiede beobachtet. Die Ethylenbildung variierte jedoch zwischen den Biotypen. Der empfindliche produzierte in-nerhalb 4 oder 44 Stunden nach der Herbizid-applikation 2-bzw. 6mal mehr Ethylen als der resistente. Aus den Ergebnissen läßt sich schließen, daß beim Acker-Senf der Resisten-zmechanismus nicht in der Absorption, der Translokation oder dem Metabolismus liegt, sondern die Ethylenbildung daran beteiligt ist, wo die Wirkorte fur die Wuchsstoffherbizide liegen.  相似文献   

16.
Despite frequent use for the past 25 years, resistance to glyphosate has evolved in few weed biotypes. The propensity for evolution of resistance is not the same for all herbicides, and glyphosate has a relatively low resistance risk. The reasons for these differences are not entirely understood. A previously published two‐herbicide resistance model has been modified to explore biological and management factors that account for observed rates of evolution of glyphosate resistance. Resistance to a post‐emergence herbicide was predicted to evolve more rapidly than it did to glyphosate, even when both were applied every year and had the same control efficacy. Glyphosate is applied earlier in the growing season when fewer weeds have emerged and hence exerts less selection pressure on populations. The evolution of glyphosate resistance was predicted to arise more rapidly when glyphosate applications were later in the growing season. In simulations that assumed resistance to the post‐emergence herbicide did not evolve, the evolution of glyphosate resistance was less rapid, because post‐emergence herbicides were effectively controlling rare glyphosate‐resistant individuals. On their own, these management‐related factors could not entirely account for rates of evolution of resistance to glyphosate observed in the field. In subsequent analyses, population genetic parameter values (initial allele frequency, dominance and fitness) were selected on the basis of empirical data from a glyphosate‐resistant Lolium rigidum population. Predicted rates of evolution of resistance were similar to those observed in the field. Together, the timing of glyphosate applications, the rarity of glyphosate‐resistant mutants, the incomplete dominance of glyphosate‐resistant alleles and pleiotropic fitness costs associated with glyphosate resistance, all contribute to its relatively slow evolution in the field.  相似文献   

17.
Surfactants can improve postemergence herbicide efficacy and reduce the amount of herbicide required to obtain weed control. The effect of surfactants on the efficacy of herbicides is complicated and depends on the interaction among the plant, surfactant, and herbicide. The effects of surfactants on the efficacy of clodinafop‐propargyl and/or tribenuron‐methyl on wild oat (Avena ludoviciana) and wild mustard (Sinapis arvensis) under greenhouse conditions were investigated. In addition, the surface tension of aqueous solutions of the surfactants and surfactants + herbicides was determined. Significantly lower surface tension values were obtained with the aqueous solutions of citofrigate (Citogate plus Frigate) alone and with the herbicides used in this study. The citofrigate surfactant lead to the greatest enhancement of clodinafop‐propargyl and/or tribenuron‐methyl efficacy and the effect was species‐dependent. The efficacy of clodinafop‐propargyl and/or tribenuron‐methyl in the presence of surfactants in controlling wild oat was higher than for wild mustard. The foliar activity of the tested herbicides rose with increasing surfactant concentrations. The tank mixture of clodinafop‐propargyl and tribenuron‐methyl showed a synergistic effect in controlling wild oat and wild mustard. The synergistic effect in controlling wild mustard was greater than for wild oat.  相似文献   

18.
The issue of cross‐ or multiple resistance to acetolactate synthase (ALS) inhibitors and the auxinic herbicide 2,4‐D was investigated in Papaver rhoeas L., a common and troublesome weed in winter cereals, in a broad‐scale study across four European countries. A combination of herbicide sensitivity bioassays and molecular assays targeting mutations involved in resistance was conducted on 27 populations of P. rhoeas originating from Greece (9), Italy (5), France (10) and Spain (3). Plants resistant to the field rate of 2,4‐D were observed in 25 of the 27 populations assayed, in frequencies ranging from 5% to 85%. Plants resistant to ALS‐inhibiting herbicides (sulfonylureas) were present in 24 of the 27 populations, in frequencies ranging from 4% to 100%. Plants resistant to 2,4‐D co‐occurred with plants resistant to sulfonylureas in 23 populations. In four of these, the probability of presence of plants with cross‐ or multiple resistance to 2,4‐D and sulfonylureas was higher than 0.5. ALS genotyping of plants from the field populations or of their progenies, identified ALS alleles carrying a mutation at codon Pro197 or Trp574 in 2,4‐D‐sensitive and in 2,4‐D‐resistant plants. The latter case confirmed multiple resistance to 2,4‐D and ALS inhibitors at the level of individual plants in all four countries investigated. This study is the first to identify individual plants with multiple resistance in P. rhoeas, an attribute rarely assessed in other weed species, but one with significant implications in designing chemical control strategies.  相似文献   

19.
A population of Bromus tectorum infesting an olive grove at Córdoba (Spain) survived simazine use rates of 3.0 kg a.i. ha−1 over two consecutive years. Non‐tillage olive monoculture and two annual simazine applications had been carried out for 10 years. The resistant biotype showed a higher ED50 value (7.3 kg a.i. ha−1) than that of the susceptible control (0.1 kg a.i. ha−1), a 73‐fold increase in herbicide tolerance. The use of fluorescence, Hill reaction, absorption, translocation and metabolism assays showed that simazine resistance in this biotype was caused by a modification of the herbicide target site, since chloroplasts from the resistant biotype of B. tectorum were more than 300 times less sensitive to simazine than those from the susceptible biotype. In addition, non‐treated resistant plants of B. tectorum displayed a significant reduction in the QA to QB electron transfer rate when compared with the susceptible biotype, a characteristic that has been linked to several mutations in the protein D1 conferring resistance to PS II inhibiting herbicides. Resistant plants showed cross‐resistance to other groups of triazine herbicides with the hierarchy of resistance level being methoxy‐s‐triazines ≥chloro‐s‐triazines > methylthio‐s‐triazines > cis‐triazines. The results indicate a naturally occurring target‐site point mutation is responsible for conferring resistance to triazine herbicides. This represents the first documented report of target site triazine resistance in this downy brome biotype.  相似文献   

20.
Continuous use of herbicides has resulted in the evolution of resistance to all major herbicide modes of action worldwide. Besides the well‐documented cases of newly acquired resistance through genetic changes, epigenetic regulation may also contribute to herbicide resistance in weeds. Epigenetics involves processes that modify the expression of specific genetic elements without changes in the DNA sequence, and play an important role in re‐programming gene expression. Epigenetic modifications can be induced spontaneously, genetically or environmentally. Stress‐induced epigenetic changes are normally reverted soon after stress exposure, although in specific cases they can also be carried over multiple generations, thereby having a selective benefit. Here, we provide an overview of the basis of epigenetic regulation in plants and discuss the possible effect of epigenetic changes on herbicide resistance. The understanding of these epigenetic changes would add a new perspective to our knowledge of environmental and management stresses and their effects on the evolution of herbicide resistance in weeds. © 2017 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号