首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pre-harvest sprouting (PHS) in wheat (Triticum aestivum L.) is a significant problem. Introgression of genes controlling grain dormancy into white-grained bread wheat is one means of improving resistance to PHS. In this study seven dormant (containing the SW95-50213 and AUS1408 sources) × non-dormant crosses were produced to investigate the effectiveness of selection for grain dormancy in early segregating generations. Each generation (F1–F4) was grown in a temperature controlled glasshouse with an extended photoperiod (i.e. continuous light). F2 and F3 generations were subject to selection. Five hundred harvest-ripe grains were tested for germination over a 14 day period, and the 100 most dormant grains were retained and grown-on to produce the next generation within each cross. The response to selection was assessed through analysis of the time to 50% germination (G50) in the F2, F3 and F4 generations. In addition, changes in marker class frequencies for two SSR markers (barc170 and gpw2279) flanking a known quantitative trait locus (QTL) for grain dormancy on chromosome 4A were assessed in DNA from F2 plants selected from early germinating (non-dormant) and late germinating (dormant) phenotypic extremes within each cross. Selection for grain dormancy in the F2 and F3 generations effectively recovered the dormant phenotype in all seven crosses, i.e. the F4 generation was not significantly different from the dormant parent. Further, selection based on individual F2 grains changed marker class frequencies for the 4A dormancy QTL; in most cases eliminating the marker class homozygous for the non-dormant alleles. Application of this screening method will enable breeders to better select for grain dormancy and may lead to development of new cultivars offering effective resistance to PHS in the near future.  相似文献   

2.
Pre-harvest sprouting (PHS) in developing wheat (Triticum aestivum L.) spikes is stimulated by cool and wet weather and leads to a decline in grain quality. A low level of harvest-time seed dormancy is a major factor for PHS, which generally is a larger problem in white-grained as compared to red-grained wheat. We have in this study analyzed seed dormancy levels at the 92nd Zadok growth stage of spike development in a doubled-haploid (DH) white wheat population and associated variation for the trait with regions on the wheat genome. The phenotypic data was generated by growing the parent lines Argent (non-dormant) and W98616 (dormant) and 151 lines of the DH population in the field during 2002 and 2003, at two locations each year, followed by assessment of harvest-time seed dormancy by germination tests. A genetic map of 2681 cM was constructed for the population upon genotyping 90 DH lines using 361 SSR, 292 AFLP, 252 DArT and 10 EST markers. Single marker analysis of the 90 genotyped lines associated regions on chromosomes 1A, 2B, 3A, 4A, 5B, 6B, and 7A with seed dormancy in at least two out of the four trials. All seven putative quantitative trait loci (QTLs) were contributed by alleles of the dormant parent, W98616. The strongest QTLs positioned on chromosomes 1A, 3A, 4A and 7A were confirmed by interval mapping and markers at these loci have potential use in marker-assisted selection of PHS resistant white-grained wheat.  相似文献   

3.
Pre-harvest sprouting of durum wheat (Triticum turgidum L. var durum) reduces commercial grade, although the actual effects on processing quality are controversial. Little is known about the genetics of the dormancy component of pre-harvest sprouting resistance in durum. We studied the segregation of dormancy in 98 recombinant inbred lines from a cross of a relatively non-dormant line, CI13102, with a moderately dormant line, Kyle. The lines and parents were grown in field tests over three years, 1996, 1997 and 1998. Spikes were collected at approximately 20% moisture and stored at −23 ∘C. Hand-threshed grain of the lines was germinated, and number of seeds germinated was counted each day. A germination resistance index was calculated to characterize dormancy. Dormancy appeared to be complexly inherited in this cross. Lines were observed that were significantly (P < 0.05) more dormant than the parents. The lines transgressive for dormancy expressed in different combinations of the three environments, indicating an environmental interaction. DNA of lines and parents was tested with simple sequence repeat primers and AFLPs that were used in quantitative trait loci (QTL) analysis of dormancy. Significant QTLs for dormancy were found, with the most notable being on chromosome 1A, where other QTLs for pre-harvest sprouting resistance have been reported in common wheat.  相似文献   

4.
White-grained wheat cultivars have long been recognized to be less resistant to preharvest sprouting (PHS) than the red-grained ones. Previously two QTLs for grain dormancy, QPhs.ocs-3A.1 (QPhs-3AS) and QPhs.ocs-4A.1 (QPhs-4AL) were identified in a highly dormant Japanese red wheat, Zenkoujikomugi (Zen). Aiming at improvement of PHS tolerance in white-grained wheat, the introgression effect of these two QTLs in a white-grained population consisting of 40 recombinant inbred lines (RILs) developed from a cross between Zen and white-grained Spica was examined here. Random 20 RILs with red grains were also developed from the same cross and used as a control population. The RILs were grown in the field and in the glasshouse to evaluate the grain dormancy by germination test. Several SSR markers closely linked to the QPhs-3AS and QPhs-4AL were used to estimate the alleles at the QTLs. Dormancy variation in the RILs was significantly associated with the differences for grain color and the alleles at QPhs-3AS over several years. Although allelic variation was detected in a SSR marker closely linked to QPhs-4AL there was no difference in germination data between the Zen-allele and the Spica-allele groups. As expected, the red-grained RILs with the Zen allele at QPhs-3AS were the most dormant. Some white-grained RILs with the Zen allele at QPhs-3AS showed higher dormancy compared to the red-grained RILs with the alternative allele. These results demonstrated that introgression of the QPhs-3AS gene could contribute to the increased grain dormancy in white-grained wheat.  相似文献   

5.
Preharvest sprouting is common in cereals, which lack grain dormancy when maturing grain is exposed to rainfall or high moisture conditions. Environmental conditions such as drought and high temperature during grain filling have a large effect on the expression of sprouting tolerance. A dormant (DM 2001) and non-dormant (Cunderdin) hard white spring wheat were exposed to drought or irrigated conditions and either low or high temperature during grain filling. Dormancy and embryo sensitivity to ABA were analysed throughout grain filling. The conclusions from this investigation were as follows; firstly DM 2001 was more dormant than Cunderdin, with a four-fold lower germination index (GI) at maturity. Secondly during grain ripening drought increased dormancy and overrides any increase in dormancy with low temperature. Finally embryo sensitivity can be induced in a non-dormant genotype to the extent where the non-dormant genotype in a hot dry environment can have the same phenotype as a dormant genotype grown in a cool wet environment. In summary drought during grain filling increases dormancy suggesting breeders need to avoid drought when screening for sprouting tolerance in order to maximise the chances of identifying genetic differences in grain dormancy and avoid any maturity by drought interactions.  相似文献   

6.
Pre-harvest sprouting (PHS) in spring wheat (Triticum aestivum L.) is a major downgrading factors for grain producers and can significantly reduce end-use quality. PHS resistance is a complex trait influenced by genotype, environment and plant morphological factors. A population of 185 doubled haploid (DH) lines from the spring wheat cross ‘RL4452/AC Domain’ were used as the mapping population to detect quantitative trait loci (QTLs) associated with three PHS traits, germination index (GI), sprouting index (SI) and falling number (FN). Six major QTLs linked with PHS traits were mapped on bread wheat chromosomes 3A, 3D, 4A (2 loci), 4B and 7D. ‘AC Domain’ alleles contributed to PHS resistance on 3A, 4A (locus-2) and 4B, and ‘RL4452’ alleles contributed resistance on 3D, 4A (locus-1) and 7D. QTLs detected on chromosome 4B controlling FN (QFN.crc-4B), GI (QGI.crc-4B) and SI (QSI.crc-4B) were coincident, and explained the largest amount of phenotypic variation in FN (22%), GI (67%) and SI (26%), respectively.  相似文献   

7.
Grain dormancy in wheat is an important component of resistance to preharvest sprouting and hence an important trait for wheat breeders. The significant influence of environment on the dormancy phenotype makes this trait an obvious target for marker-assisted-selection. Closely related breeding lines, SUN325B and QT7475, containing a major dormancy QTL derived from AUS1408 located on chromosome 4A, but substantially different in dormancy phenotype, were compared with a non-dormant cultivar, Hartog, in a range of controlled environments. As temperature increased, dormancy at harvest-ripeness decreased particularly for QT7475. The dormancy phenotypes of reciprocal F1 grains involving all possible combinations of Hartog, QT7475 and SUN325B were also compared in two environments with different temperatures. The results were consistent with the presence of QTL in addition to 4A in SUN325B, compared with QT7475, at least one of which was associated with the seed coat. Genetic analysis of a doubled haploid population derived from SUN325B × QT7475 identified a highly significant QTL located on chromosome 3BL, close to the expected position of the mutant allele of the red seed coat colour gene in white-grained wheat, R-B1a. When the lines in the population were grouped according to the parental alleles at marker loci flanking the 3B QTL, the dormancy phenotype frequency distribution for the SUN325B group was shifted towards greater dormancy compared with the QT7475 group. However, significant variation for dormancy phenotype remained within each group. Lines representing the extremes of the range of phenotypes within each group maintained their relative ranking across seven environments consistent with the presence of another unidentified QTL contributing to dormancy in SUN325B.  相似文献   

8.
Preharvest sprouting reduces grain quality and lowers grade. Characterization of preharvest sprouting resistance is important in selection in breeding for transgressive segregation and understanding the genetics of the trait for identifying QTL. Methods of measuring dormancy and other factors contributing to preharvest sprouting resistance are varied. The objective of this study was to demonstrate the requirement of multiple methods of measurement over multiple durations of germination to maximize understanding of transgressive segregation and QTL for preharvest sprouting resistance within a segregating durum wheat population grown in multiple environments. Ninety-eight durum wheat (Triticum turgidum L. var. durum) recombinant inbred lines (RIL) from a cross of a minimally dormant line, Sentry, by a moderately dormant line, Kyle, and controls were grown in replicated field tests in 1996, 1997 and 1998 and in a growth chamber trial in 1998. Preharvest sprouting was measured from intact spikes as sprouting index or from hand threshed grain as germination index (GI), germination resistance (GR), and percent germination (PG). The threshed grain measures were evaluated using counts at 7, 14 and 21 days intervals from the start of germination. Correlations performed on the measure type and duration using lines within the RIL population showed some discontinuity across environments, type of measure and duration of measure, with counts at extended intervals for PG producing the lowest correlations. The number of transgressive segregant lines varied with environment, duration and type of measure. Different QTL were identified by different types of measures and duration of counts. GI calculated for 7, 14 and 21 days germination count intervals and GR calculated for 21 days identified a highly significant QTL on chromosome1A (QPhsd.spa.-1A.1). GR calculated for 7 days identified a highly significant QTL on 2A (QPhsd.spa.-2A.1) in two different environments, and GI calculated for 21 days and PG at 7 days identified the same highly significant QTL on chromosome 7B (QPhsd.spa.-7B.1). The results indicated that multiple measures and durations of measure intervals must be applied to results collected across different environments to maximize the identification of QTL and transgressive segregants of the population segregating for preharvest sprouting resistance.  相似文献   

9.
10.
Grain dormancy provides protection against pre-harvest sprouting (PHS) in cereals. Composite interval mapping and association analyses were performed to identify quantitative trait loci (QTL) contributing grain dormancy in a doubled haploid (DH) barley population (ND24260?×?Flagship) consisting of 321 lines genotyped with DArT markers. Harvest-ripe grain collected from three field experiments was germinated over a 7-day period to determine a weighted germination index for each line. DH lines displaying moderate to high levels of grain dormancy were identified; however, both parental lines were non-dormant and displayed rapid germination within the first two?days of testing. Genetic analysis identified two QTL on chromosome 5H that were expressed consistently in each of the three environments. One QTL (donated by Flagship) was located close to the centromeric region of chromosome 5H (qSDFlag), accounting for up to 15% of the phenotypic variation. A second QTL with a larger effect (from ND24260) was detected on chromosome 5HL (qSDND), accounting for up to 35% of the phenotypic variation. qSDFlag and qSDND displayed an epistatic interaction and DH lines that had the highest levels of grain dormancy carried both genes. We demonstrate that qSDND in the ND24260?×?Flagship DH population is positioned proximal and independent to the well-characterised SD2 region that is associated with both high levels of dormancy and inferior malt quality. This indicates that it should be possible to develop cultivars that combine acceptable malting quality and adequate levels of grain dormancy for protection against PHS by utilizing these alternate QTL.  相似文献   

11.
Two main types of summer dormancy in tall fescue [Schedonorus arundinaceus (Schreb.) Dumort] are recognized, eco-dormancy and endo-dormancy. Endo-dormancy is a physiological response to environmental signals leading to slowing of metabolic activity in meristematic tissues and most likely controlled by circadian clock genes. Therefore, it is genetically inherited and allelic variation among and between summer-dormant and non-dormant varieties is expected. The main objective of this study was to explore the association between dormancy and various candidate genes. Twenty-three genes were amplified and sequenced in two dormant and two non-dormant checks. Nucleotide variants unique to each group were converted to kompetitive allele specific PCR markers and were tested on 52 dormant and non-dormant accessions. Five markers, from the genes CONSTANS and TERMINAL FLOWER showed significant associations (R2 = 0.10 to 0.13, p < 0.05) with field phenotypic scores. These two genes are known to modulate meristem determinacy and growth, suggesting that meristem determinacy is probably one of the mechanisms involved in summer dormancy in tall fescue. Another five markers showed significant associations with the surrogate germination phenotype (R2 = 0.13 to 0.20, p < 0.05). One marker originated from dormancy-associated MADS-box gene sequence, three markers originated from auxin response factors sequences, and one marker was derived from heat shock proteins sequences. These results confirm the implication of photoperiod and temperature in the regulation of summer dormancy. A selection index combining these markers may be valuable for the differentiation between dormant and non-dormant tall fescue genotypes.  相似文献   

12.
Pre-harvest sprouting of wheat grain can cause economic losses especially in cultivars with low levels of seed dormancy. The aim of this study was to determine genotype differences in embryo sensitivity to germination in response to exogenous (+/–) cis-trans ABA treatments at different concentrations. Six white and four red seed-colored bread wheat genotypes that differed in dormancy were grown in a field near Swift Current, Saskatchewan in 2000 as a randomized complete block design with four replicates. The seed samples from this experiment were germinated in a controlled environment at 20 °C without light. The exogenous ABA treatments were 0 μM – whole seed (control), 0 μM-embryos, 25 μM – embryos and 50 μM – embryos. The ABA experiment was a factorial design with four randomized complete blocks with four ABA treatments in all combinations with the ten genotypes. A weighted (by day) germination index (WGI) was calculated for each genotype in each ABA treatment. Genotypes differed in response to ABA. The genotypes, ABA concentration and genotype by ABA concentration interaction effects were significant (p ≤ 0.05). Excised embryos showed significantly decreased dormancy in most of the experimental genotypes. The addition of exogenous ABA enhanced embryo dormancy of most genotypes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Wheat grain protein content (GPC) is important for human nutrition and has a strong influence on the quality of pasta and bread. The objective of this study was to analyse the introduction of the Gpc‐B1 allele into two Argentinean bread wheat cultivars. Near‐isogenic lines were developed in ‘ProINTA Oasis’ and ‘ProINTA Granar’ using marker‐assisted selection. Gpc‐B1 lines showed a significant (P = 0.01) increase in GPC and a significant (P = 0.001) decrease in grain weight in comparison with control lines without Gpc‐B1. Differences in yield were not significant (P = 0.49) between lines. Gpc‐B1 lines significantly reduced (P = 0.02) straw nitrogen concentration at maturity and significantly increased (P = 0.02) the nitrogen harvest index. When data were analysed by genotype and environment, differences in some analysed parameters were found, indicating that Gpc‐B1 expression may be affected by different genetic backgrounds and environmental conditions. These results suggest that the introgression of the Gpc‐B1 allele into Argentinean wheat germplasm could be a valuable resource for improving GPC with no detrimental effect on grain yield.  相似文献   

14.
The diploid D-genome progenitor of hexaploid wheat, Triticum tauschii (Coss.) Schmahl., was screened to identify mechanisms for resistance to pre-harvest sprouting. A number of promising mechanisms were identified, and transferred to hexaploid wheat via wide-hybridisation. One identified mechanism, an inhibitory phenolic compound present in the bracts surrounding the grain, has been shown to function effectively in synthetic hexaploid wheats. A number of seed-borne dormancy mechanisms were also identified. Expression of embryo dormancy in synthetic hexaploid wheats was demonstrated when compared with non-dormant hexaploid wheat. Effects of the seed coat on dormancy were also studied, with the seed coat of synthetic hexaploids accelerating rather than inhibiting germination. Embryo dormancy was also demonstrated in two `direct-cross' hybrids. The results suggest that a combination of the described mechanisms may produce white wheats with resistance to pre-harvest sprouting adequate for most Australian climatic conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The possibility of breeding white-grained wheats tolerant to pre-harvest sprouting under Japanese humid weather conditions is discussed. New genetic dormancy sources, such as, AUS1408, 8019R1 and RyuuMai7, were evaluated for seed dormancy in different weather conditions. Some white-grained dormant wheats showed a strong dormancy similar to that of red-grained dormant wheats in a greenhouse trial, in the field their dormancy expression was much less than the red wheats. Three populations involving crosses with these new sources for winter wheat breeding were examined under repeated selection for seed dormancy. Some dormant white-grained lines, as judged under glasshouse conditions, were developed. Again the level of dormancy in these lines was not sufficient compared to red dormant varieties in field trial. In order to develop truly superior dormant white-grained materials, one population involving crosses with two dormant varieties, AUS1408 and 8019R1, was examined under repeated selection. From these materials we succeeded in breeding lines that had not only a good dormancy but also showed adaptation to Japanese weather conditions, including earliness, scab resistance and good seed appearance. However again the dormancy of these lines in field trial was not sufficient compared to that of red wheats and there was not a clear difference for seed dormancy between breeding lines and their parents. We conclude therefore that more work involving the use of new genetic sources or new breeding techniques, will be necessary for breeding advanced lines that maintain a sufficient tolerance to PHS in humid Japanese weather condition. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Pre-harvest sprouting (PHS) causes immediate loss of seed viability, making barley (Hordeum vulgare L.) grains worthless for malting purposes. Grain dormancy release rate in barley crops is genetically and environmentally controlled. A 2 year experiment was conducted to evaluate the effect of soil nitrogen and water availability during grain filling on the dormancy release pattern (and then on the PHS susceptibility) for five malting barley commercial cultivars. Drought and well-irrigated control treatments were imposed from anthesis onwards, and contrast nitrogen fertilization treatments were applied at tillering. Nitrogen availability showed no effects on dormancy release. Drought during grain filling accelerated dormancy release with respect to well-irrigated control in 2004, but not in 2005 year. Mean temperatures during the last stages of grain filling were much higher (ca. 6°C) in 2005 than in 2004, indicating that high-dormancy loss promoting temperatures had masked drought effects on dormancy release.  相似文献   

17.
Few Chinese high yielding white-grained wheat cultivars possess sufficient dormancy to avoid pre-harvest sprouting (PHS). Because the field evaluation of PHS is difficult, the identification of informative molecular markers is a priority for improving the level of dormancy. In this report, the effectiveness of phenotypic and genotypic selection was compared. Four microsatellite loci Xbarc57, Xbarc294, Xbarc310 and Xbarc321, mapped on the short arm of chromosome 3A, were used for selection in white-grained wheat F5 lines which were also selected on the basis of their grain filling rate (GFR). One of these (later designated cv. Zhongmai911) was further selected on the basis of its allelic constitution at the four SSR loci. This cultivar combines a high level of PHS resistance with high grain yield. The results suggested that rapid GFR and PHS resistance can be bred simultaneously.  相似文献   

18.
Hard white wheat (Triticum aestivum L.) is a value-added product because of its processing advantages over red wheat; however, white wheat tends to be more susceptible to pre-harvest sprouting (PHS). To identify quantitative trait loci (QTLs) associated with PHS tolerance, we developed a doubled haploid (DH) mapping population from the cross AC Domain (red seeded) × White-RL4137 (white seeded). A genetic map was constructed using microsatellite markers located on chromosome groups 3, 4, 5 and 6. A population of 174 DH lines was characterized for important aspects of PHS including sprouting index, germination index, Hagberg falling number and seed coat colour. A total of 11 QTLs were identified on group 3 chromosomes and on chromosome 5D. Seven QTLs associated with the PHS traits were found to be co-incident with seed coat colour on chromosomes 3A, 3B and 3D. The 5D PHS QTL was notable because it is independent of seed coat colour.  相似文献   

19.
Scarcity of water is a severe constraint, which hinders the wheat productivity worldwide. However, foliage application of osmoprotectants may be useful in reducing the drought‐induced yield losses in wheat (Triticum aestivum L.). In this study, potential of foliage applied osmoprotectants (proline, gamma‐aminobutyric acid) in improving the performance of bread wheat against terminal drought was evaluated. Both proline and gamma‐aminobutyric acid (GABA) were foliage applied at 50, 100 and 150 mg/L at anthesis stage (BBCH‐identification code‐ 61), in two bread wheat cultivars viz. Mairaj‐2008 and BARS‐2009. After 1 week of foliage application of these osmoprotectants, drought was imposed by maintaining the pots at 35% water holding capacity. Imposition of drought caused significant reduction in the grain yield of both tested bread wheat cultivars; nonetheless, foliage applied osmoprotectants at either concentration improved the chlorophyll contents, accumulation of proline, glycinebetaine and total soluble phenolics and reduced the malondialdehyde contents, which resulted in better stay green, maintenance of grain weight and grain number under drought stress, thus resulting in better grain yield, water‐use efficiency and transpiration efficiency in both wheat cultivars. However, foliage applied proline at 150 mg/L, and GABA at 100 mg/L was most effective than other concentrations of these osmoprotectants. Performance of cultivar Mairaj‐2008 was quite better than cultivar BARS‐2009. In crux, foliar application of proline and GABA at pre‐optimized rate can be opted as a shotgun approach to improve the performance of wheat under terminal drought.  相似文献   

20.
Because preharvest sprouting decreases quantity and quality of wheat grain, researchers need effective protocols to assess response to preharvest sprouting conditions. The aim of this study was to determine which temperature gives the greatest difference in seed germination and expression of seed dormancy in 10 spring wheat genotypes. The genotypes were grown in the field near Swift Current, Saskatchewan in 2000 in a randomized complete block with four replicates. Seed samples were harvested at approximately 25% moisture content (wet weight basis) and dried to 12% moisture content with minimal after-ripening. Germination was under controlled environment at temperatures of 10, 15, 20 and 30 °C in darkness. A weighted germination index (WGI) was calculated. The analysis of WGI, for each temperature, showed highly significant (p ≤ 0.01) genotype effects on germination. Most genotypes decreased in WGI (increased dormancy) as temperature was increased from 10 to 30 °C. The greatest differences in seed germination tended to be at 15 °C and 20 °C. The level of seed dormancy depended on the genotype and germination temperature. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号