首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theileria parva antigens recognized by cytotoxic T lymphocytes (CTLs) are prime vaccine candidates against East Coast fever in cattle. A strategy for enhancing induction of parasite-specific T cell responses by increasing recruitment and activation of dendritic cells (DCs) at the immunization site by administration of bovine Flt3L and GM-CSF prior to inoculation with DNA vaccine constructs and MVA boost was evaluated. Analysis of immune responses showed induction of significant T. parva-specific proliferation, and IFN-γ-secreting CD4(+) and CD8(+) T cell responses in immunized cattle. However, antigen-specific CTLs were not detected. Following lethal challenge, 5/12 immunized cattle survived by day 21, whereas all the negative controls had to be euthanized due to severe disease, indicating a protective effect of the vaccine (p<0.05). The study demonstrated the potential of this technology to elicit significant MHC class II and class I restricted IFN-γ-secreting CD4(+) and CD8(+) T cells to defined vaccine candidate antigens in a natural host, but also underscores the need to improve strategies for eliciting protective CTL responses.  相似文献   

2.
Leucocyte trafficking in afferent and efferent mammary lymph and the supramammary lymph node in cows was examined during 4 h after intramammary infusion of endotoxin from Escherichia coli. Total and differential leucocyte counts were measured in milk, blood and lymph. The proportions of CD4(+), CD8(+), major histocompatibility complex (MHC) class II(+) and IgM(+) lymphocytes were examined in the lymph and lymph node. At post-infusion hour (PIH) 4, the flow rates of both lymph fluids had increased approximately eightfold. Total leucocyte concentration increased in afferent lymph, but decreased in efferent lymph. Neutrophils increased in afferent lymph at PIH 2 and in efferent lymph and milk at PIH 4. The predominant cell type in afferent lymph shifted from lymphocyte to neutrophil while lymphocyte was still at PIH 4 the predominant type in efferent lymph. Among the lymphocytes, B cells were predominant in afferent lymph and lymph node at PIH 4 while T cells, mainly CD4(+) cells, were predominant in efferent lymph both at PIH 0 and PIH 4. The CD4 : CD8 ratio was higher in efferent lymph and the challenged lymph node than in afferent lymph and the control node, respectively. There was a significant difference in proportions of each lymphocyte subpopulation except for IgM(+) cells, between afferent and efferent lymph after infusion. According to the results, there was already during the first hours of the immune response, a non-random trafficking of neutrophils and lymphocyte subpopulations resulting in a changed distribution of cells in afferent and efferent lymph and a difference in lymphocyte reactivity between the two lymph fluids.  相似文献   

3.
Infection and transformation of cells of the bovine immune system by Theileria annulata and T. parva were compared. Preliminary experiments with mammary gland macrophages indicated that they were permissive to infection by T. annulata but only to a limited extent by T. parva. Further experiments involved several purified subpopulations of bovine cells including bovine monocytes, T cells and MHC class II positive and negative populations. These subpopulations were incubated with T. annulata or T. parva sporozoites in limiting dilution cultures. T. annulata preferentially infected macrophage type cells and also MHC class II positive cells, whereas the frequency of MHC class II negative cells infected by this parasite was negligible. T cells also showed a very low level of infection. In complete contrast, T. parva preferentially infected T cells and did not infect cells phenotypically defined as monocytes at all. These results suggested that class II expression was necessary for T. annulata infection and not necessary for, though not a barrier to T. parva infection. T. annulata infected cell lines all expressed class II molecules to varying degrees. Other available phenotypic markers were only expressed at very low levels or no longer expressed. The immunological significance of the different cell preferences and phenotypes of infected cell lines of T. annulata and T. parva is discussed.  相似文献   

4.
Astaxanthin is a potent antioxidant carotenoid and may play a role in modulating immune response in cats. Blood was taken from female domestic shorthair cats (8-9 mo old; 3.2 ± 0.04 kg body weight) fed 0, 1, 5 or 10mg astaxanthin daily for 12 wk to assess peripheral blood mononuclear cell (PBMC) proliferation response, leukocyte subpopulations, natural killer (NK) cell cytotoxic activity, and plasma IgG and IgM concentration. Cutaneous delayed-type hypersensitivity (DTH) response against concanavalin A and an attenuated polyvalent vaccine was assessed on wk 8 (prior to vaccination) and 12 (post-vaccination). There was a dose-related increase in plasma astaxanthin concentrations, with maximum concentrations observed on wk 12. Dietary astaxanthin enhanced DTH response to both the specific (vaccine) and nonspecific (concanavalin A) antigens. In addition, cats fed astaxanthin had heightened PBMC proliferation and NK cell cytotoxic activity. The population of CD3(+) total T and CD4(+) T helper cells were also higher in astaxanthin-fed cats; however, no treatment difference was found with the CD8(+) T cytotoxic and MHC II(+) activated lymphocyte cell populations. Dietary astaxanthin increased concentrations of plasma IgG and IgM. Therefore, dietary astaxanthin heightened cell-mediated and humoral immune responses in cats.  相似文献   

5.
ABSTRACT: Continuously growing cell lines infected with the protozoan parasite Theileria annulata can readily be established by in vitro infection of leukocytes with the sporozoite stage of the parasite. The aim of the current study was to determine whether such transformed cell lines could be used as antigen presenting cells to analyse the antigenic specificity of bovine CD8 T cell responses to viral infections. Bovine herpes virus 1 (BHV-1), which is known to induce CD8 T cell responses, was used as a model. T. annulata- transformed cells were shown to express high levels of CD40 and CD80 and were susceptible to infection with BHV-1, vaccinia and canarypox viruses. The capacity of the cells to generate antigen-specific CD8 T cell lines was initially validated using a recombinant canarypox virus expressing a defined immunodominant T. parva antigen (Tp1). Autologous T. annulata-transformed cells infected with BHV-1 were then used successfully to generate specific CD8 T cell lines and clones from memory T cell populations of BHV-1-immune animals. These lines were BHV-1-specific and class I MHC-restricted. In contrast to previous studies, which reported recognition of the glycoproteins gB and gD, the CD8 T cell lines generated in this study did not recognise these glycoproteins. Given the ease with which T. annulata-transformed cell lines can be established and maintained in vitro and their susceptibility to infection with poxvirus vectors, these cell lines offer a convenient and efficient in vitro system to analyse the fine specificity of virus-specific CD8 T cell responses in cattle.  相似文献   

6.
East Coast fever, an acute lymphoproliferative disease of cattle, is caused by the apicomplexan parasite Theileria parva. Protective immunity is mediated by CD8(+) cytotoxic T lymphocytes directed against schizont-infected cells. The polymorphic immunodominant molecule, although an antibody-inducing surface molecule of the schizont, has been hypothesized to play a role in protective immunity. In order to evaluate the immunogenicity of PIM for inducing CTL, cattle were immunized with PIM in isolation from other T. parva antigens, forcing the presentation of PIM-derived epitopes on the MHC class I molecules. Although parasite-specific cytotoxicity was induced in both vaccinated animals, their immune response was clearly different. One animal generated MHC-restricted parasite-specific CTL against PIM while the other calf exhibited a strong PIM-specific proliferative response but non-MHC-restricted parasite-specific cytotoxicity. Only calf 1 survived a lethal sporozoite challenge. This DNA immunization technique with an antigen in isolation of CTL-immunodominant antigens might open possibilities for directing CTL responses against predefined antigens, such as strain cross-reacting CTL antigens.  相似文献   

7.
Immune responses against polymorphic host molecules incorporated into lentiviral envelopes during cell budding have induced protection against primate immunodeficiency virus infection. Dendritic cells (DCs) express high levels of MHC molecules and are infectable by lentiviruses. Therefore, in this pilot study we addressed the hypothesis that immunization of cats with allogeneic DC would induce immune responses that protect against challenge with the feline immunodeficiency virus. Two groups of 3 cats each received 3 subcutaneous injections of allogeneic or autologous DC, and were then challenged with viruses propagated in the immunizing DC. Infection status and lymphocyte parameters of cats were assessed during 6 weeks after challenge. MHC II antigens were incorporated into viral particles as identified by Western blot; and antibodies reactive with MHC class II antigens were detected in the serum of cats immunized with allogeneic but not autologous DC. After challenge, all cats had proviral DNA in blood leukocytes from 2 weeks post-challenge onward and seroconverted. Cats immunized with allogeneic DC maintained higher total and CD21(+) lymphocyte concentrations, and higher CD4(+)/CD8(+) lymphocyte ratios; however, these differences were not significantly different from cats that received autologous DC immunizations. Plasma viral load was not significantly different between groups of cats (p=0.204). These results suggest that immunization of cats with allogeneic DC does not induce protective immunity against FIV infection.  相似文献   

8.
T cell activity is a critical component of immunity to bovine respiratory syncytial virus (BRSV). We tested the effects of immunization by modified-live and inactivated BRSV vaccines on cell-mediated and humoral immunity in young calves. The two forms of vaccine stimulated similar serum neutralizing antibody production, although the early kinetics of those responses differed. CD4+, CD8+, and gammadelta T cells were analyzed before and after immunization for BRSV-specific in vitro recall responses, as evaluated by CD25 upregulation measured by flow cytometry. Modified-live virus (MLV) primed each of the three subsets for statistically significant in vitro responses to antigen. Inactivated vaccine also primed each T cell population for significant antigen-driven CD25 upregulation, including responses by CD4+ and gammadelta T cells that were stronger and longer-lasting than those primed by MLV. Monoclonal antibody was used in additional assays to block MHC class I during incubation of BRSV antigen with peripheral blood mononuclear cells from an animal in the inactivated vaccine group. The recall response by CD8+ T cells was more inhibited by this treatment than the other subsets, further suggesting that the inactivated vaccine had primed antigen-specific CD8+ T cells. In summary, the data indicate that balanced BRSV-specific T cell responses can be induced by inactivated, as well as modified-live, conventional vaccines, which may implicate an alternative pathway of MHC class I antigen presentation.  相似文献   

9.
The evolution of antigenically distinct pathogen strains that fail to cross-protect is well documented for pathogens controlled primarily by humoral immune responses. Unlike antibodies, which recognise native proteins, protective T cells can potentially recognise epitopes in a variety of proteins that are not necessarily displayed on the pathogen surface. Moreover, individual hosts of different MHC genotypes generally respond to different sets of epitopes. It is therefore less easy to envisage how strain restricted immunity can arise for pathogens controlled by T cell responses, particularly in antigenically complex parasites. Nevertheless, strain restricted immunity is clearly a feature of a number of parasitic infections, where immunity is known to be mediated by T cell responses. One such parasite is Theileria parva which induces potent CD8 T cell responses that play an important role in immunity. CD8 T cells specific for parasitized lymphoblasts exhibit strain specificity, which appears to correlate with the ability of parasite strains to cross-protect. Studies using recently identified T. parva antigens recognised by CD8 T cells have shown that the strain restricted nature of immunity is a consequence of the CD8 T cell response in individual animals being focused on a limited number of dominant polymorphic antigenic determinants. Responses in animals of different MHC genotypes are often directed to different parasite antigens, indicating that, at the host population level, a larger number of parasite proteins can serve as targets for the protective T cell response. Nevertheless, the finding that parasite strains show overlapping antigenic profiles, probably as a consequence of sexual recombination, suggests that induction of responses to an extended but limited set of antigens in individual animals may overcome the strain restricted nature of immunity.  相似文献   

10.
The tick-borne protozoan parasite, Theileria annulata, causes an overwhelming disease in Friesian cattle, imported to improve productivity, in a large area of the world. The parasite invades bovine macrophages and induces aberrant changes which seem pivotal in triggering disease in na?ve susceptible animals: parasite infected cells acquire dendritic cell features and over-activate CD4+ and CD8+ T cells. Elevated levels of interferon-gamma (IFN-gamma) are induced and B cells are developmentally arrested in the light zone of germinal centres. Infected macrophages are refractory to the effects of IFN-gamma and indeed flourish in its presence. High levels of pro-inflammatory cytokines, as evinced by high acute phase protein responses, probably also play a role in pathology. However, animals can become immune to further challenge. Cellular immune responses involving macrophages, natural killer cells and CD8+ T cells play a major role in recovery and subsequent maintenance of immunity. The main target for immunity appears to be the parasite infected macrophage, as attenuated cell lines can protect and are used as vaccines. Cloned lines selected for low cytokine production protect with no associated pathological reactions. Theileria annulata causes a relatively mild disease in an indigenous breed of cattle, which is associated with lower acute phase protein responses (controlled by macrophage cytokines). Thus the initial host-parasite interactions must determine the balance between immunity and pathogenesis. New generation vaccines to T. annulata should both induce active immunity and suppress pathology.  相似文献   

11.
The distribution and population of immunocompetent cells in bovine hemal node, mesenteric lymph node and spleen were analyzed comparatively by immunohistochemistry and flow cytometry. Many CD8(+) cells, CD172a(+) cells and γδ T cells were found in the lymphatic cord along the sinus of the hemal node and the splenic red pulp. A few CD8(+) cells and γδ T cells were distributed diffusely in the paracortex and medullary cord of the mesenteric lymph node. Many germinal centers were recognized in the lymphatic regions such as the cortex and white pulp of these lymphoid organs. The populations of CD8(+) cells and γδ T cells in the hemal node and the spleen were higher than those of the mesenteric lymph node. In addition, the populations of CD21(+) cells and MHC class II(+) cells in the hemal node and the mesenteric lymph node were higher than those of the spleen. The results suggest that the hemal node has an important role in both cellular and humoral immunity as well as the lymph node and the spleen in cattle.  相似文献   

12.
Changes in lymphocyte traffic in efferent lymph from the prescapular lymph node of sheep were monitored during local primary and secondary infection with blowfly, Lucilia cuprina. During primary infections the response was characterised by an increase in the output of CD4+ T cells over CD8+ T cells for the first 48 h after wound initiation. By 72 h the output of CD8+ T cells exceeded that of CD4+ T cells. During secondary infections the increased output of CD8+ T cells was more pronounced and occurred earlier at approximately 48 h. The percentage of B lymphocytes as measured by sIg, CD45R and MHC class II expression increased at approximately 96–120 h after both primary and secondary infections, with the secondary response being greater than the primary. This increase in B cells corresponded with peak antibody titres recorded in the efferent lymph to a first instar antigen preparation as measured by ELISA. An increase in IFN-γ and soluble IL-2 receptor was recorded after both primary and secondary infections, with the response after secondary infection being greater than that recorded after primary larval infections.  相似文献   

13.
Bovine alloreactive cytotoxic lymphocyte (CTL) lines of known target specificity were infected in vitro with sporozoites of Theileria annulata and T parva and cultured in limiting dilution. The phenotypes of the CTL lines both pre- and post infection were assessed using a panel of monoclonal antibodies specific for defined bovine lymphocyte subpopulations. The effector function of the resultant infected cell lines was determined using a Cr51 release assay and compared to the uninfected control CTL line. The results indicated that T parva sporozoites consistently infected and transformed the CTL lines very efficiently even at the lowest cell doses. In contrast the T annulata sporozoites were largely unable to infect and transform the alloreactive CTL except at the very highest cell and sporozoite doses. A factor which appeared to influence susceptibility to T annulata infection was an increased level of class II expression on the CTL line. None of the cell lines showed cytotoxic effector function after infection with either T annulata or T parva sporozoites.  相似文献   

14.
The present review concentrates on the biological aspects of porcine T lymphocytes. Their ontogeny, subpopulations, localization and trafficking, and responses to pathogens are reviewed. The development of porcine T cells begins in the liver during the first trimester of fetal life and continues in the thymus from the second trimester until after birth. Porcine T cells are divided into two lineages, based on their possession of the alphabeta or gammadelta T-cell receptor. Porcine alphabeta T cells recognize antigens in a major histocompatibility complex (MHC)-restricted manner, whereas the gammadelta T cells recognize antigens in a MHC non-restricted fashion. The CD4+CD8- and CD4+CD8lo T cell subsets of alphabeta T cells recognize antigens presented in MHC class II molecules, while the CD4-CD8+ T cell subset recognizes antigens presented in MHC class I molecules. Porcine alphabeta T cells localize mainly in lymphoid tissues, whereas gammadelta T cells predominate in the blood and intestinal epithelium of pigs. Porcine CD8+ alphabeta T cells are a prominent T-cell subset during antiviral responses, while porcine CD4+ alphabeta T cell responses predominantly occur in bacterial and parasitic infections. Porcine gammadelta T cell responses have been reported in only a few infections. Porcine T cell responses are suppressed by some viruses and bacteria. The mechanisms of T cell suppression are not entirely known but reportedly include the killing of T cells, the inhibition of T cell activation and proliferation, the inhibition of antiviral cytokine production, and the induction of immunosuppressive cytokines.  相似文献   

15.
Jembrana disease virus (JDV) is an unusual bovine lentivirus that causes an acute and sometimes fatal disease after a short incubation period in Bali cattle (Bos javanicus). The pathological changes occur primarily in lymphoid tissues, which feature proliferating lymphoblastoid-like cells predominantly throughout parafollicular (T-cell) areas, and atrophy of follicles (B-cell) areas. Five Bali cattle were experimentally infected with JDV and all developed typical clinical signs of Jembrana disease characterised by a transient febrile response, enlargement of superficial lymph nodes and a significant leukopenia. Flow cytometric analysis of PBMC during the acute (febrile) disease phase showed that the reduced number of lymphocytes was due to a significant decrease in both the proportion and absolute numbers of CD4(+) T cells, but not CD8(+) T-cells or CD21(+) B-cells. At the end of the febrile phase, total numbers of both CD8(+) T-cells and CD21(+) B-cells increased significantly, while CD4(+) T-cell numbers remained below normal values, resulting in a significantly reduced CD4(+):CD8(+) ratio. We speculate that the persistent depletion of CD4(+) T cells following JDV infection, through lack of CD4(+) T cell help to B cells, may explain the lack of production of JDV-specific antibodies for several weeks after recovery despite an increase in CD21(+) B cell numbers. Further, our previous data showing that IgG(+) plasma cells are targets for JDV infection, correlated with our current data demonstrating an increase in CD8(+) T cell numbers, supports the suggestion that anti-viral cytotoxic T cell or other cell-mediated immune responses may be critical in the recovery process, although this remains to be formally demonstrated for JDV.  相似文献   

16.
The appearance of non-cytolytic T cells that suppressed feline immunodeficiency virus (FIV) replication in vitro, and FIV-specific cytotoxic T cell (CTL) responses was compared in a group of seven, specific pathogen free (SPF) domestic cats following primary infection with the Glasgow(8) isolate of FIV (FIV(GL-8)). FIV proviral burdens were quantified in the blood and lymphoid tissues by real-time PCR. Non-cytolytic T cell suppression of FIV replication was measured by co-cultivating lymphoblasts prepared from the cats at different time-points during infection with FIV-infected MYA-1 cells in vitro. Non-cytolytic suppressor activity was detected as early as 1 week after infection, and was evident in all the lymphoid tissues examined. Further, this activity was present in subpopulations of T cells in the blood with normal (CD8(hi)) or reduced (CD8(lo)) expression of the CD8 molecule, and temporal modulations in non-cytolytic suppressor activity were unrelated to the circulating CD8(+) T cell numbers. Virus-specific CTL responses, measured by (51)Cr release assays, were not detected until 4 weeks after infection, with the emergence of FIV-specific effector CTLs in the blood. Throughout infection the response was predominantly directed towards FIV Gag-expressing target cells, and by 47 weeks after infection CTL responses had become localised in the lymph nodes and spleen. The results suggest that both non-cytolytic T cell suppression of FIV replication and FIV-specific CTL responses are important cellular immune mechanisms in the control of FIV replication in infected asymptomatic cats.  相似文献   

17.
Surface expression of IL-2R-alpha (CD25) is widely used to identify activated lymphocyte populations, while interferon-gamma (IFN-gamma) levels have been shown to be a good indicator of cell-mediated immunity (CMI) in pigs. To investigate the relationship between these two parameters, we developed an intracellular cytokine-staining assay and studied the kinetics of cytokine (IFN-gamma and interleukin-10, IL-10) production relative to CD25 expression in porcine lymphocyte subpopulations, following immunization with a classical swine fever (CSF) vaccine. The number of activated memory T cells (CD4(+)CD8(+)CD25(+) cells) increased slightly in the peripheral blood mononuclear cell (PBMC) population soon after vaccination, then diminished within a few weeks. The number of activated cytotoxic T cells (CD4(-)CD8(+)CD25(+) cells) peaked approximately 2 weeks after the memory population. Although the number of IFN-gamma producing cells detected in this experiment was relatively low, the CD4(+)CD8(+) T cells were major IFN-gamma producers in the PBMCs throughout the experiment. In another experiment, CSF-vaccinated pigs were challenged with a virulent classical swine fever virus (CSFV), and the kinetics of CD25 expression and cytokine productions were monitored. Following exposure to the virus, the number of IFN-gamma producing cells in the PBMCs increased markedly in both the vaccinated and unvaccinated groups. The CD4(-)CD8(+) cells were major IFN-gamma producing cells in vaccinated pigs, while both CD4(+)CD8(+) and CD4(-)CD8(+) populations contributed to the IFN-gamma production in the control group. Interestingly, the enhanced IFN-gamma production was not associated with the upregulation of CD25 expression following the CSFV challenge. In addition, exposure to the virulent CSFV significantly increased interleukin-10 production by the CD4(-)CD8(+) populations in PBMCs of the unvaccinated pigs. Taken together, our results indicated that CD25 expression and IFN-gamma production were not tightly associated in porcine lymphocytes. In addition, the CD4(-)CD8(+) lymphocytes of the PBMCs played a major role in cytokine productions following the CSFV challenge.  相似文献   

18.
We examined the contribution of MHC class II-restricted T cells (CD4+), MHC class I-restricted T cells (CD8+), gamma/delta T cell receptor (TCR)+ T cells, B cells and macrophages to the development and control of in vitro proliferative responses of bovine lymphocytes to ovalbumin (OA). Cell populations for in vitro assay were obtained from peripheral blood (peripheral blood leukocytes, PBL) of OA-primed cattle. Specific cell populations were depleted or purified from PBL by staining with monoclonal antibodies (MAbs) against the appropriate differentiation antigens and sorting on a Fluorescence Activated Cell Sorter (FACS). OA-specific in vitro responses of in vivo primed PBL were dependent on the presence of CD4+ T cells. Their presence could not be replaced by the inclusion of T cell growth factor (TCGF) in the culture system, indicating that CD4+ T cells probably actively proliferate in response to antigenic stimulation. Bovine CD8+ T cells and gamma/delta TCR+ T cells appeared to exert a suppressive effect on proliferative responses. No proliferation was observed in PBL after the depletion of MHC class II+ cells. In this case, the response could be restored by the addition of macrophages or LPS-activated B cells to the MHC class II- population.  相似文献   

19.
Cellular changes in the abomasal tissue and draining abomasal lymph nodes were examined after primary infection of lambs with Haemonchus contortus for 3, 5 or 27-36 days.Infection with H. contortus larvae resulted in a rapid and selective increase in the percentage of CD4(+) T-cells in the abomasal lymph node at 3 days post-infection (PI). By 5 days PI, the lymph node weight had increased two-fold; however, the percentage of lymphocyte populations in the abomasal lymph node resembled that seen in uninfected sheep. Lymph node weights remained at increased levels in the adult nematode infected sheep and down-regulation of B-cell surface markers (sIg and MHC Class II) was apparent in this group. Significant increases in the percentage of CD4(+) T-cells co-expressing MHC Class II, but not CD25, were observed in the larval infected groups except in adult nematode infected sheep. Increased numbers of eosinophils, CD4(+), gamma delta(+) T-cells and B-cells were found in the abomasal tissue by 5 days PI, but no further increases in these cell populations were observed in the adult nematode infected group. In contrast, the level of both lamina propria and intraepithelial mast cells observed in the abomasal mucosa was highest in the sheep carrying an adult nematode burden. These findings indicate that sheep are able to generate an early immune response to infection with H. contortus larvae, characterised by the activation of CD4 T-cells and B-cells in the draining lymph nodes and recruitment of eosinophils, CD4(+) and gamma delta-TCR,WC1(+) T-cells and B-cells in larval infected tissues. However, these changes do not seem to be maintained during infection with the adult parasite where increases in mast cell numbers dominate the local response, indicating that different parasite stages may induce distinct and possibly counteractive immune responses.  相似文献   

20.
Theileria parva, a tick-borne parasite of African cattle, causes a fatal disease known as East Coast fever. Cattle that recover from the disease develop strong parasite-specific MHC-class I-restricted cytotoxic T-lymphocyte responses. Protection can be transferred between immune and na?ve calves in the CD8+ T cell fraction emanating from a responding lymph node. In vitro studies suggest that this response requires input from activated CD4+ T cells. The T parva life cycle involves developmental stages in mammalian and tick hosts and can lead to a number of different endemic scenarios for the disease. These range from a stable situation with high prevalence of herd infection, but low fatality rates, to a low prevalence/high fatality scenario. The impact on endemic stability is an important consideration for the design of vaccine implementation strategies. For subunit vaccines targeted at T parva schizonts, the principal issue in this regard is whether development of the piroplasm stage is blocked by immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号