首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study were to evaluate the contribution of arbuscular mycorrhizal (AM) fungal hyphae to 15N uptake from vineyard cover crop litter (Medicago polymorpha), and to examine the soil microbial community under the influence of mycorrhizal roots and extraradical hyphae. Mycorrhizal grapevines (Vitis vinifera) were grown in specially designed containers, within which a polyvinyl chloride (PVC) mesh core was inserted. Different sizes of mesh allowed mycorrhizal roots (mycorrhizosphere treatment) or extraradical hyphae (hyphosphere treatment) to access dual labeled 15N and 13C cover crop litter that was placed inside the cores after 4 months of grapevine growth. Mesh cores in the bulk soil treatment, which served as a negative control, had the same mesh size as the hyphosphere treatment, but frequent rotation prevented extraradical hyphae from accessing the litter. Grapevines and soils were harvested 0, 7, 14, and 28 days after addition of the cover crop litter and examined for the presence of 15N. Soil microbial biomass and the soil microbial community inside the mesh cores were examined using phospholipid fatty acid analysis. 15N concentrations in grapevines in the hyphosphere treatment were twice that of grapevines in the bulk soil treatment, suggesting that extraradical hyphae extending from mycorrhizal grapevine roots may have a role in nutrient utilization from decomposing vineyard cover crops in the field. Nonetheless, grapevines in the mycorrhizosphere treatment had the highest 15N concentrations, thus highlighting the importance of a healthy grapevine root system in nutrient uptake. We detected similar peaks in soil microbial biomass in the mycorrhizosphere and hyphosphere treatments after addition of the litter, despite significantly lower microbial biomass in the hyphosphere treatment initially. Our results suggest that although grapevine roots play a dominant role in the uptake of nutrients from a decomposing cover crop, AM hyphae may have a more important role in maintaining soil microbial communities associated with nutrient cycling.  相似文献   

2.
The direction of carbon (C) allocation in mycorrhizal mycelia is of fundamental importance to coexistence of individual plants. We therefore investigated the transfer of C from established plants to plant seedlings through fungal mycelia. C allocation by the arbuscular mycorrhizal (AM) fungus Glomus intraradices, from ‘donor’ plants to mycelia in soil and two different species of introduced ‘receiver’ seedlings, was investigated in a pot experiment using 13C labelling and fatty acid analysis. After 13CO2 application to the shoots of Trifolium subterraneum or Plantago lanceolata, used as donor plants, T. subterraneum and P. lanceolata receiver seedlings were introduced. Samples were collected 4-20 days after 13CO2 application and analysed regarding 13C and the fatty acid 16:1ω5, the signature of AM fungi. 13C transfer from T. subterraneum donor plants was demonstrated by 13C enrichment of the roots of the receiver seedlings, but not from the P. lanceolata donor plants. 13C allocation to the neutral lipid fatty acid 16:1ω5 was only 1 ng in each receiver seedling, but 2 μg of the fatty acid in whole soil. The results indicate that C allocation through mycelial networks is influenced by the donor plant species, but is not directed towards receiver seedlings to any higher degree than towards other directions. The importance of the extraradical AM fungal mycelium as a C sink was demonstrated.  相似文献   

3.
We evaluate the use of signature fatty acids and direct hyphal counts as tools to detect and quantify arbuscular mycorrhizal (AM) and saprotrophic fungal (SF) biomass in three Hawaiian soils along a natural soil fertility gradient. Phospholipids16:1ω5c and 18:2ω6,9c were used as an index of AM and saprotrophic fungal biomass, respectively. Both phospholipid analysis and hyphal length indicated that the biomass of AMF was greatest at the highest fertility site, and lowest where phosphorus limits plant growth. Saprotrophic fungal biomass did not vary. Hyphal length counts appeared to under-estimate SF abundance, while the phospholipid AMF:SF ratio was in line with expectations. This study indicates that phospholipids may be a valuable and reliable tool for studying the abundance, distribution, and interactions between AM and saprotrophic fungi in soil.  相似文献   

4.
Arbuscular mycorrhiza (AM) fungi form symbiotic relationships with the majority of land plants and are known for their positive effects on plant P acquisition and soil quality. The extramatrical growth of the mycelium is a key factor in nutrient acquisition by the symbiont. Soil grinding and extraction/fractionation of lipids were used in a field experiment to identify probable sources of the AM biomarker C16:1cis11 and its functional significance during reproductive growth of corn (Zea mays L.). Chambers, enclosed with a 1 mm mesh fabric to allow roots and hyphae to pass into the enclosed soil volume, were installed in two field sites cropped to continuous corn in central Nebraska. The chambers were installed at tasselling and removed after 3, 6 and 9 weeks. Soil from the chambers was analyzed by ester-linked fatty acid (EL-FAME) and chloroform-methanol fatty acid (CM-FAME) analysis. We also separated and analyzed the neutral lipid (NLFA), glycolipid (GLFA) and phospholipid (PLFA) fatty acid fractions. Roller milling the soil gave up to two-fold increases in the recovery of EL- and CM-FAMEs common to saprophytic fungi (C16:0, C18:1cis9, C18:2cis9,12) and AM fungi (C16:0, C16:1cis11, C18:1cis11) but not those specific to bacteria or fauna. Resistant AM fungal structures were enriched in NLFA and GLFA C16:1cis11, but not PLFA, indicating that storage lipids and possibly cell-wall lipids are released by roller milling. Similar proportional increases in C16:1cis11 on roller milling indicates that mild alkaline hydrolysis (EL-FAME) is as inefficient as chloroform-methanol (CM-FAME) in extracting lipids from AM spores. EL- and CM-FAME C16:1cis11 increased by one-third between R5 and R6, indicating C allocation from the plant to the AM fungus during the reproductive stages of corn. This increase was attributed to accumulation of NLFA and GLFA in lipid-containing structures of the extramatrical mycelium and AM structures within roots, not increased sporulation. We propose EL-FAME C16:1cis11 as a simple measure of AM biomass in soils that largely reflects the AM hyphal network important to nutrient acquisition by the plant.  相似文献   

5.
Saline soils around Lake Urmia in northern Iran constitute a stressed environment for plants and microbial communities, including arbuscular mycorrhizal (AM) fungi. Soil and root samples were collected from fields cultivated with the glycophytes Allium cepa L. and Medicago sativa L., and sites dominated by the halophyte Salicornia europaea L. Soil and root samples were analyzed for the AM fungal signature neutral lipid fatty acid (NLFA) 16:1ω5. The roots were also examined microscopically for mycorrhizal colonization. Each plant species was sampled across a salt gradient. Microscopic examination showed no AM fungal structures in the roots of S. europaea. The highest root colonization was recorded for M. sativa. The highest NLFA 16:1ω5 values were found in soil around M. sativa roots and the lowest in soil around S. europaea roots. We found evidence for stimulation of vesicle formation at moderate salinity levels in M. sativa, which is an indication of increased carbon allocation to mycorrhiza. On the other hand, we found a negative correlation between salinity and arbuscule formation in A. cepa, which may indicate a less functional symbiosis in saline soils.  相似文献   

6.
We have compared the total microbial biomass and the fungal/bacterial ratio estimated using substrate-induced respiration (SIR) in combination with the selective inhibition technique and using the phospholipid fatty acid (PLFA) technique in a pH gradient (3.0-7.2) consisting of 53 mature broad-leaved forest soils. A fungal/bacterial biomass index using the PLFA technique was calculated using the PLFA 18:2ω6,9 as an indicator of fungal biomass and the sum of 13 bacterial specific PLFAs as indicator of the bacterial biomass. Good linear correlation (p<0.001) was found between the total microbial biomass estimated with SIR and total PLFAs (totPLFA), indicating that 1 mg biomass-C was equivalent to 130 nmol totPLFA. Both biomass estimates were positively correlated to soil pH. The fungal/bacterial ratio measured using the selective inhibition technique decreased significantly with increasing pH from about 9 at pH 3 to approximately 2 at pH 7, while the fungal/bacterial biomass index using PLFA measurements tended to increase slightly with increasing soil pH. Good correlation between the soil content of ergosterol and of the PLFA 18:2ω6,9 indicated that the lack of congruency between the two methods in estimating fungal/bacterial ratios was not due to PLFA 18:2ω6,9-related non-fungal structures to any significant degree. Several PLFAs were strongly correlated to soil pH (R2 values >0.8); for example the PLFAs 16:1ω5 and 16:1ω7c increased with increasing soil pH, while i16:0 and cy19:0 decreased. A principal component analysis of the total PLFA pattern gave a first component that was strongly correlated to soil pH (R2=0.85, p<0.001) indicating that the microbial community composition in these beech/beech-oak forest soils was to a large extent determined by soil pH.  相似文献   

7.
Using an in vitro bioreactor system in which the arbuscular mycorrhizal (AM) fungus Glomus intraradices was grown in a soil devoid of detectable living microbes, we could show that the mycelium of this fungus contributed to the maintenance of water-stable soil aggregates and increased soil water repellency, as measured by water drop penetration time. This is to our knowledge the first demonstration of a causal link between AM fungal growth and water repellency of soil aggregates. Our results also place AM fungal contributions to soil aggregation on a firm mechanistic footing by showing that hyphae are sufficient to produce effects, in the absence of other soil biota, which have always been included in previous studies.  相似文献   

8.
The external hypha of arbuscular mycorrhizal (AM) fungi, extending from roots out into soil, is an important structure in the uptake of phosphate from the depletion zone around each root. In this paper, we analysed some phospholipid fatty acids (PLFAs) derived from external hyphae of four AM fungi (Glomus etunicatum, Glomus clarum, Gigaspora margarita and Gigaspora rosea) to find fatty acids which may be useful as specific markers for identifying and quantify the external hyphae of Gigaspora species. Leek (Allium porrum L.) seedlings inoculated with each AM fungus were grown in river sand. Sand samples were collected and four PLFAs (16:1ω5, 18:1ω9, 20:1ω9 and 20:4) in the sand were analysed. In addition, the hyphal biomass in the sand was determined by the direct microscopic method. PLFAs 18:1ω9 and 20:4 were found in all the AM-inoculated and non-inoculated sand samples. PLFA 16:1ω5 was detected in the sand inoculated with G. etunicatum, G. clarum and Gi. rosea. PLFA 20:1ω9 was detected only in the sand inoculated with Gi. rosea. PLFAs 16:1ω5 and 20:1ω9 were not found in the sand inoculated with Gi. margarita. The amount of PLFA 20:1ω9 was closely correlated with the amount of biomass of external hyphae of Gi. rosea (r=0.937, P<0.001), whereas no correlation was observed for PLFA 16:1ω5. The 20:1ω9 content of Gi. rosea was approximately 6.56 nmol mg−1 hyphal biomass. We suggest that PLFA 20:1ω9 can be used as a specific marker for identifying and quantifying the external hyphae of Gi. rosea, at least in controlled experimental systems.  相似文献   

9.
Plant invasions alter soil microbial community composition; this study examined whether invasion-induced changes in the soil microbial community were reflected in soil aggregation, an ecosystem property strongly influenced by microorganisms. Soil aggregation is regulated by many biological factors including roots, arbuscular mycorrhizal fungal hyphae, and microbially-derived carbon compounds. We measured root biomass, fungal-derived glomalin-related soil protein (GRSP), and aggregate mean weight diameter in serpentine soils dominated by an invasive plant (Aegilops triuncialis (goatgrass) or Centaurea solstitialis (yellow starthistle)), or by native plants (Lasthenia californica and Plantago erecta, or Hemizonia congesta). Root biomass tended to increase in invaded soils. GRSP concentrations were lower in goatgrass-dominated soils than native soils. In contrast, starthistle dominated soil contained a higher amount of one fraction of GRSP, easily extractable immunoreactive soil protein (EE-IRSP) and a lower amount of another GRSP fraction, easily extractible Bradford reactive soil protein (EE-BRSP). Soil aggregation increased with goatgrass invasion, but did not increase with starthistle invasion. In highly aggregated serpentine soils, small increases in soil aggregation accompanying plant invasion were not related to changes in GRSP and likely have limited ecological significance.  相似文献   

10.
We compared arbuscular mycorrhizal (AM) and dark septate endophyte (DSE) fungal associations in 2 crops and 31 weeds commonly occurring in pulp and paper mill effluent irrigated and well-water irrigated soils. Soil pH, organic C, N, P and K, were higher in pulp and paper mill effluent irrigated than in well-water irrigated soils. In contrast, the average AM fungal colonization, root length with AM fungal hyphae/hyphal coils, spore numbers and diversity were lower in pulp and paper mill effluent irrigated soils compared to well-water irrigated soils. However, no significant variation was found in DSE fungal colonization nor root length with AM fungal arbuscules/arbusculate coils and vesicles between pulp and paper mill effluent irrigated and well-water irrigated soils. A significant negative correlation existed between AM and DSE fungal colonization in both effluent and well-water irrigated soils. Twelve AM fungal spore morphotypes belonging to Acaulospora, Dentiscutata, Glomus, Racocetra and Scutellospora were isolated from the well-water irrigated soils, whereas spores of six morphotypes were isolated from effluent irrigated soils. AM fungal spore numbers were correlated significantly and positively to AM fungal colonization in effluent and well-water irrigated soils.  相似文献   

11.
Arbuscular mycorrhizal (AM) fungi are key organisms of the soil/plant system, influencing soil fertility and plant nutrition, and contributing to soil aggregation and soil structure stability by the combined action of extraradical hyphae and of an insoluble, hydrophobic proteinaceous substance named glomalin-related soil protein (GRSP). Since the GRSP extraction procedures have recently revealed problems related to co-extracting substances, the relationship between GRSP and AM fungi still remains to be verified. In this work the hypothesis that GRSP concentration is positively correlated with the occurrence of AM fungi was tested by using Medicago sativa plants inoculated with different isolates of Glomus mosseae and Glomus intraradices in a microcosm experiment. Our results show that (i) mycorrhizal establishment produced an increase in GRSP concentration - compared to initial values - in contrast with non-mycorrhizal plants, which did not produce any change; (ii) aggregate stability, evaluated as mean weight diameter (MWD) of macroaggregates of 1-2 mm diameter, was significantly higher in mycorrhizal soils compared to non-mycorrhizal soil; (iii) GRSP concentration and soil aggregate stability were positively correlated with mycorrhizal root volume and weakly correlated with total root volume; (iv) MWD values of soil aggregates were positively correlated with values of total hyphal length and hyphal density of the AM fungi utilized.The different ability of AM fungal isolates to affect GRSP concentration and to form extensive and dense mycelial networks, which may directly affect soil aggregates stability by hyphal enmeshment of soil particles, suggests the possibility of selecting the most efficient isolates to be utilized for soil quality improvement and land restoration programs.  相似文献   

12.
秦华  白建峰  徐秋芳  李永春 《土壤》2015,47(4):704-710
以摩西球囊霉(Glomus mosseae)为供试菌种,在光照培养箱内利用分室根箱研究丛枝菌根真菌菌丝对多氯联苯(polychlorinated biphenyls,PCBs)污染土壤的修复效应及其机理。试验设置接种丛枝菌根真菌的处理以及不接种的对照,选用美国南瓜(Cucurbita pepo L.)为供试植物,在南瓜生长40天后将接种菌根真菌处理的菌丝室土壤从尼龙网向外水平分为4层取样,测定PCBs及磷脂脂肪酸含量。结果表明:菌丝可以穿越尼龙网影响菌丝室土壤,且距离尼龙网越远菌丝量越低;菌丝显著促进了土壤微生物量(P0.05),并改变了不同土层土壤微生物群落结构;接种菌根真菌处理各土层PCBs降解率为35.67%~57.39%,均显著高于对照的17.31%,相关分析结果表明土壤三氯、四氯联苯以及PCBs总量与菌丝量呈极显著负相关(P0.01);菌丝际土壤微生物量,特别是细菌生物量与土壤三氯联苯含量呈显著负相关(P0.05)。可见,菌丝通过影响菌丝际土壤微生物群落结构及生物量,促进三氯及四氯联苯降解,从而提高土壤PCBs修复效率。  相似文献   

13.
Root colonization, abundance of spores and hyphae, as well as species diversity of arbuscular mycorrhizal (AM) fungi were analyzed in citrus orchards along an altitudinal gradient. The citrus trees were heavily colonized (50.87–77.45%) by native AM fungi. In citrus orchards located at <600 m above sea level (asl), we recorded more extensive hyphal and arbuscular colonization, and higher spore and hyphal length density. AM fungal colonization, spore density, and hyphal length density were closely correlated with edaphic factors such as available phosphorus, pH, and organic matter. A total of 18 AM fungal species belonging to 3 different orders, Archaeosporales (1 species), Diversisporales (7 species) and Glomerales (10 species), were identified on the basis of spore morphological characteristics. In orchards located at higher altitudes (≥700 m asl), we observed a significant decrease in species richness and Shannon–Wiener index values. However, in all of the surveyed orchards, Glomus aggregatum, Funneliformis mosseae and Rhizophagus intraradices were the dominant species. Isolate frequency and relative abundance of AM fungi exhibited clearly distinct distribution patterns among taxonomic families. Canonical correspondence analysis revealed that the AM fungal community structure was significantly influenced by environmental factors, especially altitude, pH, soil moisture, and available nitrogen. Our data indicated that environmental factors are important in determining AM fungal root colonization, propagule numbers, and species diversity in citrus orchards.  相似文献   

14.
Arbuscular mycorrhizal (AM) fungi are recognized for their positive effects on plant growth, playing an important role in plant P nutrition. We used C16:1cis11 and C18:1cis11 fatty acid methyl ester (FAME) biomarkers to monitor the dynamics of AM fungi during the reproductive stages of maize (Zea mays L.) grown at high yield in Nebraska, USA. Two fields with four different levels of P availability were sampled throughout the reproductive stages. Chambers, made of PVC enclosed mesh fabric to allow passage of roots and hyphae (+R) or hyphae alone (-R) and amended with either KH2PO4(+P) or distilled water (-P), were installed in the field at tasselling and removed after three, six and nine weeks. Our objectives were (i) to provide evidence for C allocation to AM fungi during the reproductive stages of high productivity maize and (ii) to link AM fungal growth dynamics with changes in soil P availability. We observed that initial AM FAME concentration was lower at sites with a high availability of P. During the reproductive growth of maize, AM biomarkers increased inside the chambers and were consistent with the biomarker increase observed in adjacent field soil. This confirms that there is C allocation from the plant to the symbiont during the reproductive stages of maize. We also observed a reduction in available P in +R and -R chambers. This observation implies that hyphae were as efficient as roots and hyphae in reducing the P concentration in chambers. These results demonstrate that AM fungi are active during the reproductive growth stages of maize and may benefit high productivity maize crops by facilitating P uptake.  相似文献   

15.
《Applied soil ecology》2010,46(3):138-143
We tested the potential for arbuscular mycorrhizal fungi to mediate plant adaptation to mine soil conditions utilizing a full factorial experiment involving two fungal communities, two ecotypes of plants and two soil types. We found that plants grew larger with fungal communities derived from mine soil regardless of the soil type in which they were grown. There was no evidence that the plants suffered from aluminum toxicity; however, plants grown in coal tailings produced far less biomass than those grown in low-nutrient clay soil. Andropogon virginicus L. grown from seeds collected from a coal mine had increased allocation to roots in sterile soil. Plantago lanceolata L. grown from seeds collected from a coal mine also showed an increased allocation to roots. We concluded that harsh edaphic conditions may help reinforce the symbiotic relationship between plants and AM fungi, resulting in more beneficial symbionts.  相似文献   

16.
The effect of endogeic earthworms (Octolasion tyrtaeum (Savigny)) on the translocation of litter-derived carbon into the upper layer of a mineral soil by fungi was investigated in a microcosm experiment. Arable soil with and without O. tyrtaeum was incubated with 13C/15N-labelled rye leaves placed on plastic rings with gaze (64 μm mesh size) to avoid incorporation of leaves by earthworms. The plastic rings were positioned either on or 3 cm above the soil surface, to distinguish between biotic and chemical/physical translocation of nutrients by fungi and leaching.Contact of leaves to the soil increased 13C translocation, whereas presence of O. tyrtaeum reduced the incorporation of 13C into the mineral soil in all treatments. Although biomass of O. tyrtaeum decreased during the experiment, more 13C and 15N was incorporated into earthworm tissue in treatments with contact of leaves to the soil. Contact of leaves to the soil and the presence of O. tyrtaeum increased cumulative 13CO2-C production by 18.2% and 14.1%, respectively.The concentration of the fungal bio-indicator ergosterol in the soil tended to be increased and that of the fungal-specific phospholipid fatty acid 18:2ω6 was significantly increased in treatments with contact of leaves to the soil. Earthworms reduced the concentration of ergosterol and 18:2ω6 in the soil by 14.0% and 43.2%, respectively. Total bacterial PLFAs in soil were also reduced in presence of O. tyrtaeum, but did not respond to the addition of the rye leaves. In addition, the bacterial community in treatments with O. tyrtaeum differed from that without earthworms and shifted towards an increased dominance of Gram-negative bacteria.The results indicate that litter-decomposing fungi translocate litter-derived carbon via their mycelial network in to the upper mineral soil. Endogeic earthworms decrease fungal biomass by grazing and disruption of fungal hyphae thereby counteracting the fungal-mediated translocation of carbon in soils.  相似文献   

17.
In this work the arbuscular mycorrhizal (AM) fungal communities colonizing a polluted ash dump island, downtown Venice, were studied by using a multimodal approach. The island, Sacca San Biagio, was covered with a thick layer of municipal solid waste residues produced by an incinerator operating from 1973, to 1984. Such residues contained high levels of heavy metals (Cu, Pb and Zn). We characterized the AMF communities present in soils on Sacca San Biagio island by using molecular methods. Nine AM fungal sequence types were detected in the roots of three plant species, representative of the dominant flora, by using partial SSU ribosomal RNA genes. The most abundant sequence types corresponded to Glomus intraradices/Glomus fasciculatum, and to Glo18, a sequence detected so far only in planta. Two sequences were new to science. Glomalin-related soil protein (GRSP), extracted from rhizosphere soil of dominant plant species, ranged from 1.6 to 2.3 mg g−1. The occurrence of an active AM fungal community able to live in such harsh environment was evinced by the correlation between mycorrhizal colonization and GRSP content.  相似文献   

18.
Soil warming can affect plant performance by increasing soil nutrient availability through accelerating microbial activity. Here, we test the effect of experimental soil warming on the growth of the three invasive plant species Trifolium pratense (legume), Phleum pratense (grass), and Plantago lanceolata (herb) in the temperate-boreal forest ecotone of Minnesota (USA). Plants were grown from seed mixtures in microcosms of soils with three different warming histories over four years: ambient, ambient +1.7 °C, and ambient +3.4 °C. Shoot biomass of P. pratense and P. lanceolata and plant community root biomass increased significantly in soils with +3.4 °C warming history, whereas T. pratense responded positively but not significantly. Soil microbial biomass and N concentration could not explain warming effects, although the latter correlated significantly with the shoot biomass of P. lanceolata. Our results indicate that soil with a warming history may benefit some invasive plants in the temperate-boreal ecotone with potential impacts on plant community composition. Future studies should investigate the impact of warming-induced differences in soil organisms and nutrients on plant invasion.  相似文献   

19.
Recycling of olive mill wastewaters (OMW) into agricultural soils is a controversial issue since benefits to soil fertility should counterbalance potential short-term toxicity effects. We investigated the short-term effects of OMW on the soil-plant system, regarding the diversity, structure and root colonization capacity of arbuscular mycorrhizal (AM) fungi and the respective growth response of Vicia faba L, commonly used as green manure in olive-tree plantations. A compartmentalized pot system was used that allowed the establishment of an AM fungal community in one compartment (feeder) and the application of three OMW dose levels in an adjacent second compartment (receiver). At 0, 10, and 30 days after OMW treatment (DAT), V. faba pre-germinated seeds were seeded in the receiver compartment. At harvest, shoot and root dry weights, AM fungal root colonization, soil hyphal length and P availability were recorded in the receiver compartment. In addition, OMW effects on AM fungal diversity in plant roots were studied by DGGE. A transient effect of OMW application was observed; plant growth and AM fungal colonization were initially inhibited, whereas soil hyphal length was stimulated, but in most cases differences were absent when seeding was performed 30 DAT. Similarly, changes induced in the structure of the root AM fungal community were of transient nature. Cloning and sequencing of all the major DGGE bands showed that roots were colonized by Glomus spp. The transient effects of OMW on the structure and function of AM fungi could be attributed to OMW-derived phytoxicity to V. faba plants or to an indirect effect via alteration of soil nutritional status. The high OMW dose significantly increased soil P availability in the presence of AM fungi, suggesting efficient involvement of AM fungi in organic-P minerilization. Overall our results indicate that soil application of OMW would cause transient changes in the AM fungal colonization of V. faba plants, which, would not impair their long-term plant growth promoting ability.  相似文献   

20.
Aspergillus niger-treated dry olive cake (DryOC) can be used as a soil organic amendment and the aim of this work was to study the effectiveness of this amendment and a Cd-adapted arbuscular mycorrhizal (AM) fungus in improving Trifolium repens growth and nutrition in Cd-contaminated soil. In a compartmentalized growth system, consisting of a root compartment (RC) and two hyphal compartments (HCs), we investigated the influence of the amendment on intraradical and extraradical AM fungi development. In addition, we studied the viability and infectivity of the detached extraradical mycelium in plants, designated as receptor plants, grown in the HC after removal of the RC. Both the amendment and the AM fungus increased shoot and root biomass and nodulation in both the non-contaminated and Cd-contaminated soils. The positive interaction between the microbiologically treated DryOC and the AM fungus resulted in the highest plant yield, which can be explained by enhanced nutrient acquisition and arbuscular richness as well as by the immobilisation of Cd in amended soils. However, A. niger-treated DryOC had no effect on the extraradical mycorrhizal mycelium development. Although Cd decreased AM hyphal length density, symbiotic infectivity was similar in receptor plants grown in non-contaminated and contaminated soil, thus confirming the AM fungal inoculum potential.The combination of the AM fungus and A. niger-treated DryOC increased plant tolerance to Cd in terms of plant growth and nutrition and can be regarded as an important strategy for reclaiming Cd-contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号