首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
长期施肥下褐土易氧化有机碳及有机碳库的变化特征   总被引:5,自引:1,他引:5  
本研究探讨了24年长期施肥对褐土土壤有机碳(TOC)、有机碳储量(TOCs)、净固碳效率(NCSE)和碳库管理指数(CPMI)的影响,为评价褐土土壤碳库变化与质量及科学施肥提供理论依据。研究以褐土肥力与肥料长期定位试验为平台,通过9个处理[A组:不施肥处理(N_0P_0、CK);B组:单施无机肥处理(N_1P_1、N_2P_2、N_3P_3和N_4P_4);C组:有机肥与无机肥配施处理(N_2P_1M_1、N_3P_2M_3和N_4P_2M_2);D组:单施高量有机肥处理(M_6)]测定土壤TOC与易氧化有机碳(ROOC)含量,并计算TOCs、NCSE及CPMI等相关指标。结果表明,在不同土层不同时期施用较高量有机肥配施无机肥及施用高量有机肥(N_3P_2M_3、N_4P_2M_2和M_6)均可提高TOC和ROOC含量,且随土层深度加深提升作用减弱。TOCs、NCSE与0~20 cm土层TOC含量在时间和空间上的变化规律基本一致。施用高量有机肥(C组、D组)可有效提高TOCs,A组、B组的TOCs均值分别比C组、D组低76.77%与17.36%。长期施肥处理可提高NCSE,尤其是施用有机肥处理可显著提高NCSE。NCSE为D组C组A组=B组;D组NCSE为1 152.27 kg·hm~(-2)·a~(-1),是C组的2.51倍,B组的16.20倍。与试验前相比,C组和D组的CPMI无显著变化,且C组与D组间差异不显著,但A组与B组比试验前降低16.38~40.02。与A组(CK)相比,B组中N1P1处理与C、D组处理显著影响CPMI,提高了23.30~45.67。在0~40 cm土层CPMI与ROOC含量呈显著正相关,CPMI可以很好地指示有机碳的变化。可见,施用高量有机肥或者较高量有机肥与无机肥配施可极显著提高褐土土壤TOCs、NCSE和CPMI,即施用高量有机肥或者较高量有机肥与无机肥配施(N_3P_2M_3和N_4P_2M_2)有利于褐土有机碳的固存,可减少无机肥的施用量,使土壤性质向良性方向发展,培肥土壤。  相似文献   

2.
Summary The concentrations of organic C and total N in five different particle-size fractions were studied under different mineral and organic fertilizer regimens by examining soil samples from the 34-year-old soil-formation pot experiment Hu 3 in Rostock. The C and N concentrations were generally highest in the clay fraction and decreased in the order medium silt >fine silt >coarse silt and sand. For nearly all years and size fractions the following order was obtained for C and N concentrations under the various fertilizer regimens: Compost >farmyard manure >straw + mineral fertilizer >mineral fertilizer. The various particle-size fractions and fertilizer regimens differed in the development of soil organic matter levels. Consequently, characteristic redistributions were found in the proportions of C and N in the various particle-size fractions, particularly after organic fertilizer was no longer applied (years 20–34). This experimental phase was characterized by decreased organic C and increased total N concentrations, and increased proportions of C and N in the clay-size at the expense of the sand fractions.  相似文献   

3.
Abstract. Knowledge of the stocks and the potential range of soil organic carbon (SOC) in various land–soil combinations is an important precursor to policies aimed at linking, for example, management of SOC to greenhouse gas emission controls. To investigate the factors controlling the percentage of SOC (%SOC) of soils in England and Wales, we made a multiple regression analysis of data for the 2448 arable and ley-arable sites in the 1980 England and Wales National Soil Inventory (NSI). Clay content, average annual precipitation and depth of topsoil explained 25.5% of the variation in %SOC, when calcareous and peaty soils and those susceptible to flooding were excluded. Using 'robust' statistics, 'indicative SOC management ranges' were estimated for different physiotopes, that is, landscape units for which the environmental factors governing %SOC are similar, namely soil clay content and precipitation. These ranges describe the expected %SOC range for an arable soil in a given physiotope. They have potential to support approximate targets for the %SOC of arable soils and for estimating upper and lower limits for sequestered soil carbon in arable systems.  相似文献   

4.
土壤生物活性有机碳库及其表征指标的研究   总被引:36,自引:0,他引:36  
土壤生物活性有机碳库 (C0)的大小和周转可以指示土壤供应养分的能力以及养分的循环状况。对浙江省 11个土壤的研究表明 ,生物活性有机碳库的变化幅度为 184.87~ 3022.41mg/kg ,占土壤总有机碳的2.91%~8.94% ,生物活性有机碳库的周转速率k为0.0070~0.0199d-1。C0与土壤总有机碳、全氮、有效氮、CEC、重铬酸钾易氧化有机碳、微生物生物量碳、微生物生物量氮、水溶性有机碳、热水提取有机碳、轻组有机碳都呈显著性正相关 ,k与这些指标均无相关性。C0与重铬酸钾易氧化有机碳、微生物生物量碳、微生物生物量氮、水溶性有机碳、热水提取有机碳、轻组有机碳占土壤总有机碳的百分比均无相关性 ,k只与水溶性有机碳占土壤总有机碳的百分比呈显著性正相关 (R2=0.4684 ,P0.025)。水溶性有机碳占土壤总有机碳的百分比是表征土壤生物活性有机碳库周转的较好指标。  相似文献   

5.
Soil organic matter (SOM) and its different pools have key importance in nutrient availability, soil structure, in the flux of trace gases between land surface and the atmosphere, and thus improving soil health. This is particularly critical for tropical soils. The rates of accumulation and decomposition of carbon in SOM are influenced by several factors that are best embodied by simulation models. However, little is known about the performance of SOM simulation model in an acid tropical soil under different tillage systems including no-tillage (NT). Our objective was to simulate soil organic matter dynamics on an Acrisol under no-tillage and different plowed systems using Century model. Tillage systems consisted of no-tillage, disc plow, heavy disc harrow followed by disc plow, and heavy disc harrow. Soil C stocks simulated by Century model showed tendency to recovery only under no-tillage. Also, simulated amounts of C stocks of slow and active pools were more sensitive to management impacts than total organic C. The values estimated by Century of soil C stocks and organic carbon in the slow and passive pools fitted satisfactorily with the measured data. Thus fitted, except for the active pool, Century showed acceptable performance in the prediction of SOM dynamics in an acid tropical soil.  相似文献   

6.
Abstract

Total organic carbon content and its composition have been evaluated in the topsoil in the selected plots of 13 long-term field experiments conducted in different soil and climate conditions. The altitude of the sites ranged from 225 – 670 m above sea level. Four variants of the organic and mineral fertilization were selected in each experiment: Nil, which did not receive any organic or mineral fertilizers since the beginning of the experiment, mineral fertilized variant NPK, organic fertilized (manured) variant FYM and both organic and mineral fertilized variant FYM + NPK. Total organic carbon (C) content in the topsoil differed as a result of the soil and climate conditions (it ranged from 0.96 – 1.80% C in the Nil variants) and due to the organic and mineral fertilization. The inert and decomposable part of the soil organic C content was calculated and the hot water soluble carbon content was determined. Relationships between the individual SOM fractions have shown a highly significant correlation, except for the decomposable C calculated as a difference to Nil variant.  相似文献   

7.
Site specific variables and anthropogenic factors influence composition of soil organic matter (SOM). We evaluated quantity and quality of SOM under different fertilization regimes and site conditions. The study combines data based on repeated measurements obtained from six long-term field experiments, which have been established between 1955 and 1983 at ten locations, resulting in thirteen site and experiment combinations. The experimental sites cover a wide spectrum of pedological and climatic conditions of the Czech Republic. Four basic fertilization regimes were selected: unfertilized plots, mineral-only fertilized plots, plots with application of farmyard manure, and both organic and mineral fertilized plots. The study employs compositional data analysis, principal component analysis, and mixed effect linear models for statistical inference. Under combined organic and mineral fertilization, total soil organic C (SOC) increased by 1?3 g kg?1. Evidence of possible priming effect was obtained for mineral-only fertilization. Local site conditions were the dominant factor shaping SOM properties. The positive relationship between proportion of clay in soil and decomposition index (DI) was confirmed. In the absence of fertilization, DI was eleven times higher in clay-rich than in clay-poor soil. This effect was moderated by fertilization, decreasing to a seven-fold difference under the full fertilization regime.  相似文献   

8.
The effects of several dominant tillage and rotation systems on soil organic C content of different particle-size fractions were studied in Chernozemic soils from southwestern and east-central Saskatchewan, Canada. In an Orthic Brown Chernozem in southwestern Saskatchewan, 7 years of no-till cereal–fallow, imposed on a long-term tillage fallow–wheat rotation soil, resulted in 0.1 Mg C ha−1 more organic C mass in the sand + organic matter (OM) fraction of the 0- to 5-cm layer, whereas organic C associated with coarse silt (CS), fine silt (FS), coarse clay, and fine clay of 0- to 5- and 5- to 10-cm layers was less than that of the comparable tilled cereal–fallow system. Conversion of tilled fallow–wheat rotation soil to continuous cropping had a slight effect, whereas the organic C mass in all the size fractions was significantly increased in both 0- to 5- and 5- to 10-cm layers after alfalfa was introduced on tilled fallow–wheat as perennial forage for 10 years. In an Orthic Black Chernozem in east-central Saskatchewan that was cultivated and tilled using a cereal–fallow rotation for 62 years, organic C mass decreased in sand + OM, CS, and FS of 0- to 10-cm depth. Conversion of the tilled cereal–fallow cropland soil back to seeded grassland resulted in significantly more soil organic C in sand + OM fraction after 12 years of grass seed-down. The sand + OM fraction appears to be the size fraction pool initially most sensitive to adoption of management practices that are liable to sequester carbon in the soil.  相似文献   

9.
Water-extractable soil carbon in relation to the belowground carbon cycle   总被引:20,自引:0,他引:20  
We investigated the role of water-extractable carbon (C-extr) as potential substrate for forest soil microorganisms by comparing belowground C fluxes at a plot with the forest floor removed (no-litter) and at a control plot. One-third lower soil respiration rates at the no-litter plot gave evidence that the forest floor was the source of considerable amounts of microbially degradable C. Laboratory incubation of C-extr, fractionated into neutral and acid moieties, showed that part of the C-extr was degraded rapidly, and that the high-molecular-weight acid fraction was much less degradable than the neutral C. To the extent that the degradable portion of the water-extractable C can be regenerated quickly, it may supply much of the substrate for heterotrophic soil respiration. Received: 11 December 1995  相似文献   

10.
Long-term effects of forest disturbance 25 yr ago on lignin and non-cellulosic polysaccharide pools in an unmanaged high-elevation Norway spruce (Picea abies L. [Karst.]) forest were investigated by comparing three dieback sites with three adjacent control sites with non-infested spruce on identical soils. Samples were taken from the forest floor and the mineral soil; one Ah horizon sample per site was physically fractionated into density and particle size fractions. Additionally, changes in the above- and belowground input of lignin and non-cellulosic polysaccharides after forest dieback were quantified. Lignin and its degree of structural alteration in plant and soil samples were assessed by CuO oxidation and subsequent analysis of the lignin phenols. Non-cellulosic polysaccharides were determined after hydrolysis with trifluoroacetic acid (TFA), derivatisation of their neutral sugar monomers by reduction to alditols, and subsequent acetylation. The total plant-derived input of lignin and non-cellulosic polysaccharides to the soil was similar for the dieback and the control sites. The chemical composition of the input has changed considerably after forest dieback, as shown by significantly higher syringyl/vanillyl (S/V) ratios and significantly lower (galactose+mannose)/(arabinose+xylose) (GM/AX) ratios. This indicates a changed plant input and a higher contribution of microbial sugars. Contents of lignin phenols in the forest floor and coarse particle size fractions of the A horizons were significantly smaller at the dieback sites (p<0.01). Moreover, larger acid-to-aldehyde ratios of vanillyl units (Ac/Al)v indicated an increased degree of lignin phenol alteration. Also contents of neutral sugars were significantly (p<0.01) smaller in the forest floor, but not in the A horizons of the dieback sites. The GM/AX mass ratios as well as the (rhamnose+fucose)/(arabinose+xylose) (RF/AX) ratios in the forest floor and coarse particle size fractions of the mineral topsoil were significantly (p<0.01) larger after forest dieback, indicating a larger relative contribution of microbial sugars. In general, the lignin phenol and neutral sugar pools of all three soil types exhibited similar response patterns to the changed site conditions. Our results demonstrate that the lignin and neutral sugar pools of humic topsoil horizons are highly sensitive to forest disturbances. However, the two compounds show different patterns in the mineral soil, with the major neutral sugar pool being stabilized against changes whereas the lignin phenol pool decreases significantly.  相似文献   

11.
不同植被类型对滨海盐碱土壤有机碳库的影响   总被引:4,自引:0,他引:4  
康健  孟宪法  许妍妍  栾婧  隆小华  刘兆普 《土壤》2012,44(2):260-266
对江苏滨海盐碱地5种不同植被类型土壤(0 ~ 40 cm)有机碳(SOC)含量、密度和表层(0 ~ 20 cm)土壤微生物量碳(SMBC)、可溶性有机碳(DOC)含量及其占总有机碳(TOC)的比例进行了分析。结果显示,随土层深度的增加,SOC含量降低,表层SOC密度占整个剖面的54.6% ~ 75.8%。表层SOC含量和密度分别介于2.02 ~ 9.61 g/kg和5.87 ~ 21.54 t/hm2,平均值分别为4.77 g/kg和12.56 t/hm2。随着原生植被群落的演替(光滩→盐蒿→茅草),SOC、SMBC和DOC含量均依次增加。茅草荒地围垦后,稻-油轮作地和菊芋地表层SOC密度分别比茅草地的增加了55%(5.77 t/hm2)和107%(11.15 t/hm2);稻-油轮作地的SMBC含量及SMBC/TOC比值下降,而菊芋地的上升;围垦后土壤DOC含量及DOC/TOC比值都明显下降。结果表明,滨海盐碱地SOC主要分布在表层,原生植被群落的顺行演替使SOC库容增加且活性增强,在盐荒地围垦初期(3年),SOC库容增加但活性有所减弱。经估算,滨海盐碱非耕地具有较大的固碳潜力,但需要合理的耕作管理措施来保证农业生产的可持续发展并实现增汇减排的目标。  相似文献   

12.
The major aim of this study was to evaluate how the pool size of slowly mineralizable, ‘old’ soil organic N can be derived from more easily accessible soil and site information via pedotransfer functions (PTF). Besides modeling, this pool size might be of great importance for the identification of soils with high mineralization potential in drinking‐water catchments. From long‐term laboratory incubations (ca. 200 days) at 35 °C, the pool sizes of easily mineralizable organic N (Nfast), mainly in fresh residues, and slowly mineralizable, ‘old’ soil organic N (Nslow) as well as their first‐order rate coefficients were obtained. 90 sandy arable soils from NW Germany served to derive PTFs for Nslow that were evaluated using another 20 soils from the same region. Information on former land‐use and soil type was obtained from topographical, historical, and soil maps (partly from 1780). Pool size Nslow very strongly depends on soil type and former land‐use. Mean pool sizes of Nslow were much lower in old arable lowland (105 mg N kg–1) than upland soils (175 mg N kg–1) possibly due to lower clay contents. Within lowlands, mean pool sizes in former grassland soils (245 mg N kg–1) were 2 to 3 times larger than in old arable soils due to accumulation of mineralizable N. In contrast, mean pool sizes of Nslow were lowest in recently cleared, former heath‐ and woodland (31 mg N kg–1) as a result of the input of hardly decomposable organic matter. Neither N nor C in the light fraction (density < 1.8 g cm–3) was adequate to derive pool size Nslow in the studied soils (r2 < 0.03). Instead, Nslow can be accurately (r2 = 0.55 – 0.83) derived from one or two basic soil characteristics (e.g. organic C, total N, C : N, mineral fraction < 20 μm), provided that sites were grouped by former land‐use. Field mineralization from Nslow during winter (independent data set) can be predicted as well on the basis of Nslow‐values calculated from PTFs that were derived after grouping the soils by former land‐use (r2 = 0.51***). In contrast, using the PTF without soil grouping strongly reduced the reliability (r2 = 0.16).  相似文献   

13.
不同保护性耕作措施对麦-豆轮作土壤有机碳库的影响   总被引:13,自引:3,他引:13  
通过设置在甘肃省定西市李家堡镇的不同保护性耕作试验,对春小麦、豌豆两种轮作次序下的土壤总有机碳、活性有机碳、微生物量碳含量进行了测定,并计算了各处理土壤碳库管理指数.结果表明:经过5年的轮作后,与传统耕作相比,两种轮作次序下免耕秸秆覆盖和传统耕作结合秸秆还田处理均能不同程度地提高土壤总有机碳、活性有机碳、微生物量碳含量及土壤碳库管理指数,而免耕不覆盖处理除在0~5 cm提高了土壤有机碳库管理指数外,其他各层次均降低了土壤有机碳库管理指数,说明仅依靠免耕而不结合秸秆覆盖或还田对于土壤有机碳库的管理来讲是不可持续的.  相似文献   

14.
施肥对土壤有机碳含量及碳库管理指数的影响   总被引:16,自引:0,他引:16  
在华北夏玉米生产体系中,采用田间试验,研究了不同施肥措施下(不施肥、单施有机肥、推荐施肥、习惯施肥和单施化肥),土壤有机碳含量、活性有机碳含量和碳库管理指数的变化。结果表明:与不施肥相比,单施有机肥土壤有机碳和活性有机碳含量分别增加 11.68%,21.71%。推荐施肥和习惯施肥土壤有机碳含量分别增加 6.57%,7.58%,活性有机碳含量分别增加 8.53%,4.26%。单施化肥土壤有机碳与活性有机碳含量均没有显著增加;施有机肥和推荐施肥土壤碳库管理指数比不施肥分别高 31.79,13.01。单施化肥土壤碳库管理指数没有显著变化;土壤活性有机碳与总有机碳、碳库管理指数、玉米子粒产量均存在极显著相关关系。碳库管理指数与玉米子粒产量极显著相关,能够指示土壤生产力的变化。可见在当地土壤肥力条件下,施有机肥或有机无机适当配施能提高土壤有机碳含量和土壤碳库管理指数,有利于改善土壤质量,提高土壤肥力。  相似文献   

15.
温度对土壤吸附有机肥中可溶性有机碳、氮的影响   总被引:5,自引:0,他引:5  
可溶性有机碳、氮(Soluble organic carbon or nitrogen,SOC和SON)可被土壤吸附.土壤可溶性有机碳、氮组分复杂,土壤对可溶性有机物吸附的不均一性会导致可溶性有机物组分的变化,大部分疏水性化合物被吸附,而亲水性化合物被释放进入溶液中[1].因此,可溶性有机碳、氮在土壤中的吸附,直接影响其在土壤-水系统中的迁移和行为[2-3].林地土壤中含有相当数量的可溶性有机养分,因此,关于林地土壤对可溶性有机养分的吸附特性,国外研究者已开展了不少研究.研究表明,可溶性有机碳吸附特性与土壤性质如pH、表面积、有机碳、铁铝氧化物和黏粒含量等因素有关[4-5].关于农业土壤对可溶性有机碳的吸附特性的影响,国内也开展了一些研究,主要集中在pH、铁铝氧化物含量等对吸附影响方面[6-9].  相似文献   

16.
Current trends of soil organic carbon in English arable soils   总被引:1,自引:0,他引:1  
Abstract. A model of the impact of land management changes upon soil organic carbon (SOC) was constructed, and the total amount of topsoil organic carbon was estimated for the arable area of England from 1940 to 2000. The largest influence on the overall mean SOC in arable topsoils proved to be a decline in the area of both permanent and temporary grassland. SOC declined over a prolonged period (60 years), but has now reached a plateau. Modelling changes in mean values enabled a statistical evaluation to be made between a measured decline in the number of sites with 'high' SOC levels between 1980 and 1995, and the decline predicted by the model. The SOC content of arable soils in England was measured at National Soil Inventory sites twice in recent decades: in 1980 and 1995. The proportion of fine textured soils in the lowest SOC class (<2.3%) rose from just over 40% to about 50% over the same period. There was a significant difference between the observed values of 1995 and those expected from modelling the decline from 1980 values, in the category of 'low SOC' fine textured soils. The variation in the fine textured soils represents a significant and widespread decline in topsoil organic carbon concentrations, which was greater than the underlying long-term trend.  相似文献   

17.
The dynamics of the soil organic carbon pool and soil fertility were studied in soils with different number of growing years of alfalfa (Medicago sativa L.) in the semiarid Loess Plateau of China. The soil water content and soil water potential decreased and the depth of desiccated layers grew with the number of growing years of alfalfa. The soil organic C (SOC) cannot be enhanced on short timescales in these unfertilized and mowed-alfalfa grasslands in the topsoil, but the light fraction of organic C (LFOC), soil microbial biomass C (MBC) and microbial biomass N (MBN) all increased with the number of growing years. When alfalfa had been growing for more than 13 yr, the soil MBC increased slowly, suggesting that the MBC value is likely to reach a constant level. SOC, soil total P (STP), available P (AvaiP) and the ratio of SOC to soil total N (C/N) all decreased monotonically with the growing years of alfalfa up to 13 yr and then increased. SOC was significantly positively correlated with STP, AvaiP, soil total C (STC) and soil total N (STN) (R=0.627**, 0.691**, 0.497*, 0.546*, respectively). MBC and LFOC were significantly positively correlated with the number of growing years of alfalfa (R=0.873*** and 0.521*, respectively), and LFOC was more sensitive to vegetation components, degree of cover and landform than to the number of years of growth. SOC showed a significant negative correlation with LFOC/SOC and MBC/SOC (R=−0.689**, −0.693**, respectively). A significant positive correlation exists between MBC and soil inorganic C (SIC). LFOC, MBC, LFOC/SOC and MBC/SOC were all significantly positively correlated with each other. Therefore, practices that involve water-harvesting technologies and add residues and phosphate fertilizer to soils should be promoted to improve soil nutrients and hydration and to postpone the degradation of alfalfa grasslands under long-term alfalfa production.  相似文献   

18.
长期施肥下新疆灰漠土有机碳及作物产量演变   总被引:5,自引:1,他引:5  
为明确长期不同施肥下新疆灰漠土有机碳和作物产量演变特征,依托始于1990年的灰漠土肥力长期定位监测试验,选择对照(CK,不施肥)、施氮磷肥(NP)、氮磷钾平衡施肥(NPK)、氮磷钾配合常量有机肥(NPKM)、氮磷钾配合高量有机肥(h NPKM,有机肥施用量为NPKM的2倍)、氮磷钾配合秸秆还田(NPKS)6个处理,分析不同处理下土壤有机碳和小麦、玉米产量演变特征,探讨碳投入及有机碳与作物产量的关系。结果表明:1)长期耗竭种植(CK)、连续施用NP或NPK肥,灰漠土有机碳含量持续下降,年均下降速率分别为0.094 g·kg~(-1)、0.043 g·kg~(-1)和0.053 g·kg~(-1),表明施化肥(NP、NPK)不能维持土壤有机碳含量,不利于土壤肥力的保持。NPKM和h NPKM处理,土壤有机碳显著增加,年均增加0.360 g·kg~(-1)和0.575 g·kg~(-1),增施有机肥是快速提高灰漠土肥力的重要措施。秸秆还田处理(NKPS),土壤有机碳年均增幅0.006 g·kg~(-1),与NPK处理对比,秸秆还田虽没有大幅度提高土壤有机碳,但维持了土壤肥力。2)较CK,长期化肥有机肥配施(NPKM、h NPKM)显著增加了作物产量(P0.05)。与NP和NPK比较,长期化肥有机肥配施显著提高了小麦产量(P0.05),但玉米产量与施化肥处理差异不显著(P0.05),玉米产量以平衡施肥(NPK)的增幅最高,达到220 kg·hm~(-2)·a~(-1)。小麦的产量变异系数(29.1%~43.9%)高于玉米产量变异(19.0%~32.7%)。化肥配合秸秆还田(NPKS)处理的小麦增产幅度与高量施用有机肥(h NPKM)处理接近,喻示了秸秆还田对作物增产的作用不可忽视。3)碳投入与土壤有机碳和小麦、玉米产量有显著线性正相关(P0.05)。基于以上分析,在干旱区灰漠土增加土壤碳投入(有机肥或秸秆)仍然是最基本的土壤培肥措施。  相似文献   

19.
四川盆地秸秆还田免耕对土壤养分及碳库的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
在四川盆地2种不同母质的土壤上,通过3 a 6季作物的田间试验,研究作物秸秆还田对稻田土壤N、P、K,土壤活性碳,微生物碳,矿化碳和碳库管理指数的影响.结果表明:与对照相比,秸秆还田免耕和旋耕均可提高土壤全N,全P,全K,有效N、P、K,不同形态碳素含量和碳库管理指数.作物秸秆还田旋耕比秸秆还田免耕更能改善土壤有效碳库质量,土壤活性碳、微生物碳、矿化碳和碳库管理指数分别提高5.81%~31.76%、33.87~39.33%、15.42%~21.56%和4.03%~21.13%.相关性分析表明,运用土壤碳库管理指数表征土壤养份及碳素动态变化比土壤有机碳更具灵敏性.  相似文献   

20.
长期施肥对黄壤有机碳平衡及玉米产量的影响   总被引:7,自引:1,他引:7  
基于长期定位试验,以黔中典型黄壤为研究对象,采用单因素方差分析、可持续性指数、稳定性指数等方法对长期定位试验获取的数据进行分析和比较,以探讨长期不同施肥处理对黄壤有机碳含量、有机碳平衡量、玉米产量稳定性、可持续性及其相互关系的影响。结果表明:(1)与施化肥和对照处理相比,施有机肥处理土壤有机碳含量明显升高,按大小排序依次为:MMNPK1/2M+1/2NPK1/4M+3/4NPK;(2)施有机肥处理黄壤有机碳平衡量为正值,且随有机肥施用量增加而增加,相反,施化肥和对照处理均为负值,大小依次为:MNPK、M1/2M+1/2NPK1/4M+3/4NPKNPKNKNPN、CKPK,各处理差异显著;(3)有机肥与化肥配施、有机肥单施及氮磷钾化肥协调施用更有利于提高玉米产量,排序为:MNPK1/4M+3/4NPK、1/2M+1/2NPKNPK、MNPNK、PK、NCK;(4)适量有机肥与化肥配施可提高玉米产量稳定性和可持续性(可持续性指数0.6,变异系数0.3),其中,1/4M+3/4NPK处理玉米产量稳定性和持续性最好;(5)玉米年产量与黄壤有机碳平衡量相关度较高,而玉米可持续性、稳定性则主要受有机碳含量影响。综上,有机肥与化肥配施有利于黄壤有机碳含量提升、玉米维持高产稳产。按适量"减肥"原则,以25%有机肥配施75%氮磷钾化肥效果最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号