首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
【目的】利用原子力显微镜(AFM)研究竹材纤维细胞和薄壁细胞纤维素微纤丝聚集体的分布规律,为竹纤维及竹材的加工利用提供理论支持。【方法】通过对脱木素处理的竹材进行树脂包埋及钻石刀修块抛光,制备出可以在AFM下进行表征的样品,利用AFM的Tapping模式对竹材纤维细胞和薄壁细胞中纤维素微纤丝聚集体进行观察。【结果】通过AFM对处理的样品进行定位扫描可以得到高度图和相图,一个维管束内不同位置纤维细胞的高度图和相图都显示出多层结构,且细胞壁层数及各壁层厚度因细胞在竹材中所处位置不同而改变;一个维管束内不同位置细胞壁的相图显示高亮度的物质分布密度不同,从细胞壁内侧到细胞壁外侧都呈不均匀分布,且各壁层相邻的位置处高亮度的物质比较密集;一个竹纤维细胞壁的相图中显示各层高亮度物质大小差异不大,而一个竹薄壁细胞壁中各层高亮度物质差异比较大。【结论】利用AFM的Tapping模式对竹材细胞壁进行观察,需要对样品进行适当处理,不仅操作相对同分辨率的手段简单,而且还可以进行定位观察,除了能够获得传统手段得到的细胞壁多壁层结构外,还能获得纤维素微纤丝聚集体的分布,是一种便捷、有效的手段;竹纤维细胞和竹薄壁细胞中纤维素微纤丝聚集体在其胞壁的横截面上都呈随机的无序排列;纤维素微纤丝聚集体在一个细胞壁各层内的分布密度不同,并且在壁层与壁层相邻的位置密度明显大于壁层内的密度,这一现象在薄壁细胞内表现得更明显;纤维素微纤丝聚集体的尺寸在一个纤维细胞各壁层内差异不大,但在薄壁细胞中差异较大。  相似文献   

2.
为了探究亚氯酸盐预处理过程中植物细胞壁木质素的区域化学溶解机理,采用紫外-可见光光谱与共聚焦拉曼显微光谱,对杉木管胞细胞壁在不同预处理时间亚细胞区域木质素分布规律及其含量变化进行了研究。结果表明:亚氯酸盐预处理杉木细胞壁木质素的溶解总体上分为4个阶段,木质素少量溶解(Ⅰ),反应溶液缓慢渗透到样品内部(Ⅱ),快速脱除内部大量木质素(Ⅲ),反应平衡阶段(Ⅳ)。尽管杉木细胞壁各层,细胞角隅(CC)、胞间层(CML)及次生壁(SW)都具有木质素的存在,但木质素在细胞壁不同形态区域中的分布具有明显的不均一性,因此在亚氯酸盐预处理过程中细胞壁不同形态学区域木质素的脱除速率不同,大量脱除木质素阶段(8~10 min)时呈现CCCMLSW的规律。  相似文献   

3.
【目的】基于扫描热显微镜(STh M)对木材细胞壁横切面和径切面进行扫描,研究木材微观尺度的导热特性,以获得木材细胞壁微观组成和构造对导热特性的影响机制。【方法】使用钻石刀对北美红栎试样进行显微切片以获得足够光滑的试样表面,制备符合扫描热显微镜和显微拉曼光谱测试要求的试样。采用扫描热显微镜的热传导对照模式对北美红栎纤维细胞区进行扫描成像。【结果】STh M测试结果表明,STh M探针在横切面对木材细胞壁进行扫描时,细胞壁胞间层和角隅区域的STh M探针电流强度明显低于S2层,即细胞壁胞间层和角隅区域的导热能力显著低于S2层;而在径切面,STh M探针扫描后细胞壁S2层和胞间层及角隅区域的探针电流差异不明显,即S2层、胞间层和角隅区域的导热能力未表现出明显差异。显微拉曼光谱测试结果表明,相比S2层,胞间层和角隅区域拉曼谱图中归属木质素的特征峰强度相对归属纤维素的特征峰明显要强。选用归属木质素的1 520~1 680 cm-1波数范围对细胞壁进行拉曼成像,成像结果显示木质素在细胞壁胞间层和角隅区域含量高。【结论】木材细胞壁S2层、胞间层和角隅区域的导热能力在横切面表现出明显差异,而在径切面差异不明显。木材细胞壁在横切面表现出S2层导热能力强的原因,主要是由细胞壁不同壁层的空间构造特征差别造成的。S2层纤维素含量高,纤维素结构单元微纤丝排列接近平行于细胞轴向,由此在横切面施加热量后热量在S2层顺纹传递,而胞间层和角隅区域木质素含量高,在此两区域化学成分排列呈无序状态,因而表现出S2层导热能力强。当STh M探针从径切面施加给细胞壁热量后,热量在S2层中的传递近似垂直于微纤丝,即热量从横切面的顺纹传递转变为横纹传递,由此造成横切面S2层导热能力强的条件消失,进而在径切面S2层与胞间层和角隅区表现出的导热能力基本一致。STh M技术揭示了木材细胞壁中纤维定向排列结构对细胞壁不同壁层导热性能的影响,该技术可以有效用于研究木材微观导热性能与结构。  相似文献   

4.
随着人类对环境污染和资源危机等问题认识的不断深入,开发利用廉价、可再生、可降解的天然高分子材料日益受到重视。木质素是总量仅次于纤维素的第二大天然高分子材料,是自然界中唯一能提供可再生芳基化合物的非石化资源,木质素及其分子结构研究备受关注。木质素主要由愈创木基(G)、紫丁香基(S)和对羟基苯基(H)3种基本结构单元组成,其存在不仅能够增强植物细胞壁的机械强度,同时也能够防止微生物对细胞壁的侵害,使木质化的植物直立挺拔,不易腐朽。在植物细胞壁中,木质素和半纤维素以共价键形式结合,构成木质素-碳水化合物复合体,其与纤维素微纤丝交联在一起,形成了一个复杂的三维网络结构,这一结构被认为是植物细胞壁天然的抗降解屏障。在生物炼制过程中,木质素在木质纤维原料细胞壁中的分布特点直接影响生物质的转化效率,因此,在原位状态下研究植物细胞壁木质素分子结构、微区分布以及细胞壁水平的溶解规律具有重要意义。在传统湿部化学中,定性或定量研究木质素分子结构普遍采用的是磨木木素和克拉森木素,这2种方法都需要对木质素样品进行物理或化学预处理,不可避免地会改变木质素样品天然状态下的分子结构。尽管传统的光学和电子显微技术能够提供木质素的微区分布信息,但是样品通常需要染色处理,且制样过程繁琐。相比较而言,显微拉曼光谱技术因其无损、快速、高分辨率和高灵敏度等特点在研究大分子结构、区域化学等方面具有得天独厚的优势。本文首先对G、S、H型木质素模型物拉曼光谱特征峰及这些结构单元在生物质原料中的特征峰进行归属,并简要介绍影响木质素拉曼光谱的因素,在此基础上综述该技术在植物细胞壁木质素微区分布和生物质预处理过程中木质素溶解规律等方面的研究进展,最后对该技术在木质素研究领域的发展方向进行展望,以期为植物生理学和生物炼制研究领域,尤其是设计高效的生物质预处理工艺提供新思路和新方法,进而拓宽该技术在生物大分子研究中的应用范围。  相似文献   

5.
对12个月的毛竹和茶秆竹进行了木质素微区分布的研究,实验运用光学显微镜和激光共聚焦扫描显微镜鉴定了木质素的存在,并且利用组织化学染色方法及其可见光显微分光光度计半定量测定竹材纤维?薄壁组织和导管的细胞壁各微区木质素含量。毛竹竹茎各组织细胞壁各微区的木质素含量均大于茶秆竹相应部位的。木质素在各组织中均有分布,其含量因组织类型及其细胞壁不同微区而有差异,其结构中存在愈创木基(G)和紫丁香基(S)两种木质素组成单元。竹壁径向和纤维帽不同位置的木质素含量未有明显的规律性变化。纤维次生壁具有薄厚层交替的多层结构,薄层的木质素含量大于厚层的。  相似文献   

6.
三聚氰胺—甲醛与木材的交联作用   总被引:11,自引:2,他引:11  
方桂珍  李坚 《林业科学》1997,33(3):252-258
为了研究木材压密化处理过程中交联试剂与木材的作用机理,以大青杨木材为试样,分离制得综纤维素、纤维素、α-纤维素、木质素和半纤维素,并分别与三聚氰胺-甲醛反应,测定了不同化学组分与交联剂作用的活性顺序及其分布。结果表明:三聚氰胺-甲醛与大青杨木材细胞壁组分的反应活性顺序为:木质素>半纤维素>综纤维素>α-纤维素>纤维素。还采用红外光谱(IR)对交联作用前后的综纤维素、纤维素和木质素的化学结构变化进行了分析,从而定性确定了交联化处理木材的主要官能团变化。关键词  相似文献   

7.
随着化石资源的日益匮乏,生物质三大组分的高值化利用已成为国内外众多学者关注的热点。由于半纤维素在植物细胞壁中与纤维素和木质素等组分结合紧密或存在化学键连接,因此半纤维素在植物细胞壁中的分布研究越来越受到世界各国的重视。按技术发展的轨迹,详细介绍了近50年来半纤维素在植物细胞壁中分布的3种主要研究方法,即传统植物组织化学法、光谱显微镜法和免疫细胞化学法,总结分析了每一种研究方法下具体的分析方法,指出传统方法的不足并对今后半纤维素的研究方向进行了展望。  相似文献   

8.
木质纤维素是地球上数量最大的可再生资源,由木质素、半纤维素及纤维素三者紧密结合产生的抗降解屏障作用是纤维素能源利用的主要障碍。高效分离木质素,须对木质素在木材细胞壁中的结构与分布进行充分的研究。本研究中选定莽草酸/奎尼酸羟基肉桂酰转移酶HCT基因和毛白杨香豆酰莽草酸/奎宁酸羟化酶C3H基因为调控目标,通过根癌农杆菌叶盘转化法转化银腺杨无性系84K,最终得到C3H-RNAi与HCT-RNAi转基因植株。发现C3H-RNAi和HCTRNAi转基因株系比野生型植株内中外三层木质部的平均导管腔茎、导管壁、木纤维腔径、木纤维壁均变小。壁腔比值都小于1,比较适合作为造纸纤维原料。探索通过基因改良技术改变杨树木质素结构在细胞壁中空间尺度上分布变化,这将为林木材性改良,木质纤维素高效利用研究奠定基础。  相似文献   

9.
【目的】将微波加热与甘油利用相结合的综合炼制工艺用于木质纤维素生物质预处理,探索其在燃料乙醇制备中的可行性,为实现经济可行、经济有效的木质纤维素生物质酶解预处理技术和生物燃料生产提供基础信息。【方法】以银腺杨、日本落叶松、刚竹和柳枝稷为试验材料,采用微波液化法对其进行液化处理,将液化产物分为纤维素、半纤维素和木质素组分,并对纤维素纤维组分进行综合表征。【结果】化学分析结果表明,纤维素纤维具有较高的葡聚糖含量;红外光谱显示,木质素和半纤维素的信号逐渐减弱,说明半纤维素和木质素经液化处理后有效脱除;XRD分析结果表明,纤维素纤维结晶度高、表面积大。【结论】相比原木质纤维素生物质,银腺杨、日本落叶松、刚竹和柳枝稷4种原材料纤维素纤维的酶解糖化效率均有不同程度提升(最高酶解转化率可达70%),液化固体产物--纤维素纤维在制备燃料乙醇中具有广阔的潜力和前景。  相似文献   

10.
木材流变学主要研究木材在应力/应变、温度、湿度等条件下与时间因素有关的变形规律和机制,以研究木材的黏弹性为主要内容。木材发生形变时,其实质承载结构是细胞壁,细胞壁的壁层构造和化学组分对其黏弹行为有显著影响,深入了解木材细胞壁结构及黏弹性质对于实现木纤维/塑料复合材料和制浆造纸工艺的高效设计具有重要意义。本文围绕木材细胞壁S2层超微构造和细胞壁化学组分2个方面对细胞壁结构进行阐述,归纳S2层微纤丝角和化学组分对木材细胞壁黏弹行为的影响规律,并从分子水平上解释其作用机制,总结动态力学分析技术和纳米压痕技术在研究木材细胞壁结构与黏弹性之间关系上的具体应用。木材细胞壁的黏弹性受壁层构造的复杂性、化学组分的多样性和外部环境条件等多种因素影响,并且各因素之间存在一定的交互作用。因此,建议今后从以下几个方面开展研究:1)解明木材细胞生长过程中的微纤丝取向、纤维素结晶区与非结晶区比例的分子控制机制;2)阐明木材细胞壁次生壁Matrix的空间组织排列方式、纤维素聚合体与Matrix之间相互作用的力学行为表达;3)揭示木材细胞壁中半纤维素的含量、种类以及木质素类型对细胞壁黏弹性的影响机制;同时将环境外因(温度、湿度)和载荷类型(静态/动态、拉/压/弯)纳入研究体系,系统揭示"湿-热-力"协同作用下木材细胞壁的机械吸湿蠕变行为规律和响应机制;4)联合运用多种测试技术手段,并引入相关学科的研究方法及理论模型,如有限元法及复合材料的研究方法,构建可以解释木材细胞壁黏弹特性的物理和数学模型。  相似文献   

11.
【目的】测定10.3年生尾叶桉与巨桉杂种F_1的材质性状和木材化学组分,估算其遗传参数,分析其遗传变异规律,为桉树纸浆材良种选育和遗传改良提供理论依据。【方法】利用Asreml-R估算木材基本密度、纤维长、纤维宽、纤维素含量、木质素含量以及半纤维素含量的遗传力、加显性效应、父母本效应、相关系数以及杂交力。【结果】杂种材质性状和木材化学组分的杂种家系遗传力范围分别为0.367~0.788和0.418~0.807,呈高度-中度遗传控制,其单株遗传力的范围分别为0.032~0.187和0.039~0.208,呈中度-低度遗传控制;杂种的材质性状与木材化学组分的母本效应均大于父本效应,加性效应均大于显性效应。基本密度与纤维特性均呈遗传负相关,与纤维宽、纤维长宽比呈极显著的表型正相关;基本密度与化学组分均呈遗传负相关,与木质素含量呈显著的表型正相关。纤维长宽比与化学组分中纤维素含量呈遗传正相关,与半纤维含量和木质素含量呈遗传负相关,与化学组分呈不显著表型相关。父母本的一般杂交力在不同材质性状和木材化学组分间表现不一致。【结论】采用综合指数选择法,并结合GHA和SHA,筛选出1个优良母本DU1和6个优良杂种,其中优良杂种分别为U8G5、U8G9、U15G5、U55G19、DU1G9和DU1G24。  相似文献   

12.
为了提高常压醋酸法分离毛竹木质素的效率,深入了解过程中醋酸法毛竹木质素化学结构特征,采用单因素逐步优化方法得出最佳的毛竹木质素分离条件为:醋酸溶液浓度90%,硫酸用量3%,液固比12:1,在106℃下保温时间2.5h;采用紫外光谱、红外光谱及磁共振波谱等检测结果表明:毛竹磨木木质素与醋酸木质素主要化学官能团和化学键基本一致,基本化学结构保存完好,但醋酸木质素酚羟基增多,化学活性增强,有利于更进一步的开发利用。  相似文献   

13.
通过基因工程技术培养出木质素含量低、纤维素含量高和糖转化效率高以及优质的木材,对于将其定向应用于制浆造纸、生物炼制、木质建筑及装饰材料方面具有重要的研究意义。文章详细阐明了木质素和纤维素基因调控技术对转基因林木生长表型、细胞壁化学组分含量及其微区分布、组织细胞形态及细胞壁超微构造影响的研究进展,并对转基因林木今后的重点发展方向进行了展望,以期为我国定向培育优质速生人工林提供理论依据。  相似文献   

14.
【目的】MYB转录因子是调控植物木质素合成和次生壁形成的重要转录因子之一。本文分离克隆到一个与拟南芥AtMYB20高度同源的橡胶树MYB转录因子基因HbMYB20,并在拟南芥中对其功能进行研究,以期了解其在橡胶树木质素合成和次生壁发育的分子调控中的作用,为橡胶树木材形成的分子调控机制研究及其遗传改良奠定基础。【方法】采用 blast分析从树皮转录组中筛选出与拟南芥 AtMYB20序列同一性较高的橡胶树 MYB 基因HbMYB20;设计 ORF区特异性引物,以树皮 cDNA 为模板进行扩增得到该目的基因 cDNA 序列。实时荧光定量PCR检测该基因在橡胶树叶片、胶乳、茎干以及木质部与韧皮部的相对表达量。构建 HbMYB20过表达植物载体,使用农杆菌蘸花法转化拟南芥,获得该基因过表达转基因株系。采用乙酰溴法和间苯三酚染色法,分析转基因、野生型拟南芥茎的木质素含量以及木质素在拟南芥茎基部横截面中的分布。对转基因、野生型拟南芥茎基部横截面切片进行甲苯胺蓝染色,并测量分析导管、木质纤维和维管束间纤维细胞的细胞壁厚度。最后,采用实时荧光定量PCR分析转基因及野生型拟南芥木质素和纤维素合成相关酶基因的表达。【结果】克隆得到1个橡胶树 MYB 转录因子基因 HbMYB20,该基因开放阅读框( ORF)为927 bp,编码309aa 的蛋白,氨基酸序列分析显示,HbMYB20与AtMYB20/43和 AtMYB85/42同源性较高,属 R2R3MYB转录因子 G8亚组成员。表达分析显示 HbMYB20在橡胶树茎干和木质部中高表达,胶乳中表达最低。对 HbMYB20过表达拟南芥分析显示,该基因在3个转基因株系中均表达;相对野生型拟南芥,转 HbMYB20拟南芥植株生长抑制,木质部和维管束间纤维的木质素染色面积较少、染色程度变浅,茎的木质素含量和木质纤维、导管及维管束间纤维的细胞壁厚度均显著低于野生型;同时转基因株系中木质素合成关键酶基因4CL1和 CCoAOMT的表达量以及纤维素合成关键酶基因 CesA8的表达显著下调。【结论】橡胶树 MYB转录因子 G8亚组成员 HbMYB20,在茎和木质细胞中高表达。拟南芥中过表达 HbMYB20导致转基因植株的矮小,细胞壁变薄,阻碍木质部中木质素的合成和积累,同时木质素和纤维素合成相关酶基因的表达显著下降。由此推测 HbMYB20对拟南芥的木质素和纤维素合成都具有负调控作用,可能是1个橡胶树次生壁发育的负调控因子。  相似文献   

15.
对12个月的茶秆竹进行细胞壁解剖特性和木质素微区分布的研究,运用光学显微镜、激光共聚焦扫描显微镜以及颜色反应鉴定木质素的存在,利用组织化学染色方法及其可见光显微分光光度计半定量测定竹材纤维、薄壁组织和导管细胞壁各微区的木质素含量。12个月时细胞壁全部木质化,木质素在各组织中均有分布,其含量因组织类型及其细胞壁微区不同而有差异。从组织化学染色及可见光吸收光谱图的吸收峰值,说明细胞壁各微区中存在愈创木基(G)和紫丁香基(S)2种木质素组成单元。竹壁径向和纤维帽不同位置的木质素含量未有明显的规律性变化。纤维次生壁具有薄厚层交替的多层结构,薄层木质素含量大于厚层。  相似文献   

16.
木材多尺度结构差异对其破坏影响的研究进展   总被引:1,自引:0,他引:1  
木材多尺度结构主要包括纳米级高分子结构、微米级细胞壁多层结构和毫米级生长轮结构。纳米级高分子结构中三大素(纤维素、半纤维素和木质素)性质各异,微米级细胞壁多层结构中细胞壁各层三大素含量和微纤丝角不同,毫米级生长轮结构中细胞类型、大小和排列方向存在差异,这些结构差异均会导致多尺度结构单元之间的力学性质各异。木材破坏过程主要包括初始裂纹萌生和裂纹扩展,裂纹萌生和扩展主要由木材不同尺度单元间结构和力学性质的差异以及木材内部缺陷的不规则演化决定。本研究综述木材不同尺度单元间的结构和力学性质差异,并分析结构差异对木材破坏的影响。同时,提出今后有关木材多尺度结构差异对其破坏影响研究的几点建议:1)深入解译木材微纳结构的性质差异,研究木材三大素的排列取向规律以及木材不同化学组分对外部载荷的响应差异,揭示壁层内三大素的变形机制;研究细胞壁各层化学组分分布以及微纤丝取向不同导致的力学性能差异,分析外载荷作用下各壁层之间存在的应力传递规律; 2)研究不同载荷作用下木材生长轮结构和细胞壁结构的裂纹萌生和扩展规律,精准定位木材破坏过程中不同尺度结构的裂纹萌生位置,区分裂纹在不同木材组织内部扩展时破坏断面的细胞破坏模式; 3)借助有限元分析等理论方法,研究木材不同尺度单元间结构差异对木材生长轮结构和细胞壁结构上应力分布规律和应力集中位置的影响,揭示木材多尺度结构差异对木材破坏的影响机制。  相似文献   

17.
紫外线照射对毛竹茎秆细胞壁超微结构   总被引:1,自引:0,他引:1  
魏学智  齐清琳 《林业科学》2003,39(2):137-139,T001,T002
应用光学显微镜,扫描电子显微镜和色度计,研究了毛竹竹材表面经紫外线照射后细胞壁的破损程度,具木质素组织分解深度以及颜色变化等规律。结果表明:经紫外线照射后,在竹材横切面上,纤维细胞壁的分解始于次生壁各层连接处,接着是细胞角隅处和复合中层,最后纤维细胞壁全部被分解消失,薄壁组织细胞壁的复合层先被分解,随后细胞壁分解变薄,坍塌和消失。竹秆壁表面的分解,最初从表皮细胞的短细胞开始,然后扩展到其它表皮细胞。根据木质素的显色反应显示,紫外线照射竹材样品40d时,薄壁组织比纤维组织分解得更深,其中前者为590μm,而后者只有146μm。另外,经紫外线照射后的竹材样品,其横切面上的颜色和亮度变化最大,径向切面次之,竹秆壁表面变化最小。本文还讨论了经紫外线照射后,竹材中具薄壁组织比纤维组织分解更深的原因,以及样品3个面上颜色和亮度变化的机制。  相似文献   

18.
《林业科学》2021,57(1)
【目的】研究金丝楸木材化学成分在纵向不同高度及径向心、边材中的含量和组成特点,为金丝楸木材加工利用提供科学依据。【方法】分析金丝楸木材纵向不同高度心、边材苯醇抽提物、聚糖和木质素含量,采用细胞壁全溶法结合二维异核单量子核磁共振(2D HSQC NMR)技术对相应部位的原生木质素分子结构进行表征。【结果】金丝楸木材边材苯醇抽提物含量高于心材,且心材中靠近树心部分的苯醇抽提物含量高于靠近边材部分。心、边材苯醇抽提物化学成分存在差异,但不同高度相同径向区域苯醇抽提物含量及其成分差异较小且并未随树高不同体现出特定变化规律。边材木质素含量低于心材,但心、边材木质素含量在树高方向上无明显变化规律。金丝楸木材木质素为典型G/S型木质素,纵向不同高度区域木质素大分子结构基本一致,但心材木质素分子结构中β-5'连接的相对含量高于边材。木聚糖是金丝楸木材半纤维素的主要组分。边材聚糖相对含量高于心材,但心、边材聚糖含量并未随树高不同体现出特定变化规律。【结论】金丝楸木材径向心、边材化学成分含量及相应成分分子结构具有规律性差异,边材向心材过渡过程中主要变化为木质素成分的积累和发色物质的生物合成。木材纵向不同高度相应区域中各化学成分含量也存在一定差别,但并未随树高不同发生规律性变化。木材纵向不同高度相同径向区域中各组分的化学成分和分子结构基本一致。对金丝楸木材进行加工利用时,应重点关注其径向方向的化学成分含量和性质差异。  相似文献   

19.
【目的】化学预处理是生物质聚合物产品高值化利用的关键步骤,阐明预处理机制有助于提高热处理效率。【方法】以4年生毛竹为研究对象,采用稀酸、碱、甘油分别在117℃和135℃进行砂浴预处理,并采用光谱和湿化学方法对预处理前后样品的结构进行表征和比较,包括傅里叶红外光谱、聚合度、X射线衍射等。【结果】综纤维素和纤维素的产量显著增加,碱(NaOH)预处理比稀硫酸(H_2SO_4)和甘油(丙三醇)脱木素效果好;在相同预处理条件下,135℃比117℃样品的结构变化更明显。平均聚合度结果显示,所有预处理样品均表现出较低的聚合度,说明纤维素结晶区尺寸发生变化,部分木质素和半纤维素降解,从而增加可及度。X射线衍射结果表明,002峰位置明显偏移,晶体宽度和半峰宽下降,不同化学预处理后的结晶强度明显增加,相对结晶度在117℃下降,在135℃逐渐恢复,傅里叶红外光谱与X射线衍射研究结果一致。【结论】无论采用117℃还是135℃砂浴预处理,碱预处理纤维分离的效果均强于稀酸和甘油,可为后续木质纤维素原料水解和能源化转换方面的相关研究提供基础和依据。  相似文献   

20.
《林业科学》2021,57(1)
【目的】鉴定日本落叶松木质部发育相关基因,构建核心基因与木质部发育相关基因的共表达网络,为后期开展日本落叶松木材形成相关研究提供参考。【方法】对日本落叶松木质部、韧皮部和针叶3个组织进行二代和三代转录组测序,利用R软件的DEseq2包筛选木质部相对韧皮部和木质部相对针叶的差异表达基因,通过整合2组差异基因获得木质部特异表达基因,借助GO、KEGG及BLASTN等生物信息学分析手段探索基因功能,利用WGCNA分析构建木质部特异表达基因共表达网络。【结果】共获得2 596个木质部特异的高表达和低表达基因;GO分析结果显示这些基因在代谢过程、细胞过程、定位膜、细胞、细胞组件、催化活性、位点结合和转运活性等分类中显著富集; KEGG分析结果显示这些基因在淀粉和蔗糖代谢、类黄酮生物合成和代谢途径通路中显著富集,在苯丙烷代谢途径及淀粉和蔗糖代谢途径中分别富集到38个和196个基因;鉴定出木材形成相关基因,包括木质素合成相关基因PAL4、CCR1、C4H、HCT、COMT1、PER12、PER52、CYP98A3、LAC12和LAC17等,纤维素和半纤维素合成相关基因DEC、CEL1、Csl、CTL2和SPS3等; 2 596个木质部特异的高表达和低表达基因经WGCNA分析后筛选出与木质部发育相关基因关联度较高的17个核心基因。【结论】筛选的日本落叶松木质部发育相关基因参与半乳甘露聚糖合成、木葡聚糖合成、纤维素微纤丝形成、细胞壁纤维素合成、次生细胞壁形成过程、纤维伸长过程、调控合成木质素的碳代谢流、木质素生物合成及降解、木质素单体聚合、木质素单体甲基化和细胞程序化死亡等木材形成相关生物学过程;在共表达网络中筛选出的17个核心基因可作为今后研究的重点来探索其在木材形成过程中的具体功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号